Safetensors
ParagonLight's picture
upload loras
a12f5b5
metadata
license: other
library_name: peft
tags:
  - llama-factory
  - lora
  - generated_from_trainer
base_model: /data1/model/llama2/meta-llama/Llama2-13b
model-index:
  - name: elementary_math_qa_no_sys
    results: []

elementary_math_qa_no_sys

This model is a fine-tuned version of /data1/model/llama2/meta-llama/Llama2-13b on the elementary_math_qa_no_sys dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0705

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 24
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
0.3438 0.05 50 0.3364
0.3021 0.09 100 0.3056
0.2676 0.14 150 0.2710
0.2679 0.18 200 0.2582
0.2448 0.23 250 0.2475
0.2355 0.28 300 0.2372
0.2335 0.32 350 0.2282
0.2226 0.37 400 0.2227
0.2098 0.42 450 0.2109
0.1839 0.46 500 0.2048
0.2008 0.51 550 0.1992
0.1945 0.55 600 0.2019
0.1891 0.6 650 0.1859
0.2015 0.65 700 0.1966
0.174 0.69 750 0.1801
0.1565 0.74 800 0.1762
0.1825 0.79 850 0.1717
0.1651 0.83 900 0.1682
0.1598 0.88 950 0.1598
0.1502 0.92 1000 0.1558
0.1599 0.97 1050 0.1465
0.0977 1.02 1100 0.1520
0.1166 1.06 1150 0.1403
0.0943 1.11 1200 0.1387
0.1007 1.16 1250 0.1311
0.1035 1.2 1300 0.1325
0.0842 1.25 1350 0.1309
0.1114 1.29 1400 0.1225
0.1047 1.34 1450 0.1184
0.0807 1.39 1500 0.1136
0.0846 1.43 1550 0.1200
0.0737 1.48 1600 0.1145
0.0844 1.52 1650 0.1037
0.0809 1.57 1700 0.0940
0.0718 1.62 1750 0.0931
0.0687 1.66 1800 0.0930
0.0629 1.71 1850 0.0969
0.0852 1.76 1900 0.0872
0.0622 1.8 1950 0.0849
0.0653 1.85 2000 0.0831
0.0507 1.89 2050 0.0829
0.0518 1.94 2100 0.0785
0.0566 1.99 2150 0.0750
0.0193 2.03 2200 0.0837
0.0233 2.08 2250 0.0766
0.0249 2.13 2300 0.0829
0.0217 2.17 2350 0.0824
0.0233 2.22 2400 0.0735
0.0192 2.26 2450 0.0767
0.0207 2.31 2500 0.0794
0.0232 2.36 2550 0.0843
0.0295 2.4 2600 0.0800
0.0185 2.45 2650 0.0777
0.0178 2.5 2700 0.0767
0.0245 2.54 2750 0.0717
0.0226 2.59 2800 0.0774
0.0222 2.63 2850 0.0671
0.0194 2.68 2900 0.0666
0.0162 2.73 2950 0.0713
0.0184 2.77 3000 0.0740
0.0227 2.82 3050 0.0675
0.0176 2.87 3100 0.0701
0.034 2.91 3150 0.0675
0.0148 2.96 3200 0.0688
0.014 3.0 3250 0.0673
0.0178 3.05 3300 0.0719
0.0059 3.1 3350 0.0734
0.0069 3.14 3400 0.0764
0.0074 3.19 3450 0.0818
0.009 3.23 3500 0.0705
0.0048 3.28 3550 0.0735
0.005 3.33 3600 0.0705
0.0073 3.37 3650 0.0724

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2