cnn_news_summary_model_trained_on_reduced_data
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6040
- Rouge1: 0.2178
- Rouge2: 0.0941
- Rougel: 0.1838
- Rougelsum: 0.1839
- Generated Length: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 431 | 1.6239 | 0.2174 | 0.0936 | 0.1828 | 0.1829 | 19.0 |
1.92 | 2.0 | 862 | 1.6075 | 0.2169 | 0.0935 | 0.1826 | 0.1827 | 19.0 |
1.8221 | 3.0 | 1293 | 1.6040 | 0.2178 | 0.0941 | 0.1838 | 0.1839 | 19.0 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Mohammed-Zuhair/cnn_news_summary_model_trained_on_reduced_data
Base model
google-t5/t5-small