|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <ctype.h> |
|
#include <float.h> |
|
#include <string.h> |
|
#include <stdarg.h> |
|
#include <climits> |
|
#include <random> |
|
#include "svm.h" |
|
#include "_svm_cython_blas_helpers.h" |
|
#include "../newrand/newrand.h" |
|
|
|
|
|
#ifndef _LIBSVM_CPP |
|
typedef float Qfloat; |
|
typedef signed char schar; |
|
#ifndef min |
|
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; } |
|
#endif |
|
#ifndef max |
|
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; } |
|
#endif |
|
template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; } |
|
template <class S, class T> static inline void clone(T*& dst, S* src, int n) |
|
{ |
|
dst = new T[n]; |
|
memcpy((void *)dst,(void *)src,sizeof(T)*n); |
|
} |
|
static inline double powi(double base, int times) |
|
{ |
|
double tmp = base, ret = 1.0; |
|
|
|
for(int t=times; t>0; t/=2) |
|
{ |
|
if(t%2==1) ret*=tmp; |
|
tmp = tmp * tmp; |
|
} |
|
return ret; |
|
} |
|
#define INF HUGE_VAL |
|
#define TAU 1e-12 |
|
#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) |
|
|
|
static void print_string_stdout(const char *s) |
|
{ |
|
fputs(s,stdout); |
|
fflush(stdout); |
|
} |
|
static void (*svm_print_string) (const char *) = &print_string_stdout; |
|
|
|
static void info(const char *fmt,...) |
|
{ |
|
char buf[BUFSIZ]; |
|
va_list ap; |
|
va_start(ap,fmt); |
|
vsprintf(buf,fmt,ap); |
|
va_end(ap); |
|
(*svm_print_string)(buf); |
|
} |
|
#endif |
|
#define _LIBSVM_CPP |
|
|
|
|
|
|
|
|
|
#ifdef _DENSE_REP |
|
#ifdef PREFIX |
|
#undef PREFIX |
|
#endif |
|
#ifdef NAMESPACE |
|
#undef NAMESPACE |
|
#endif |
|
#define PREFIX(name) svm_##name |
|
#define NAMESPACE svm |
|
namespace svm { |
|
#else |
|
|
|
#ifdef PREFIX |
|
#undef PREFIX |
|
#endif |
|
#ifdef NAMESPACE |
|
#undef NAMESPACE |
|
#endif |
|
#define PREFIX(name) svm_csr_##name |
|
#define NAMESPACE svm_csr |
|
namespace svm_csr { |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Cache |
|
{ |
|
public: |
|
Cache(int l,long int size); |
|
~Cache(); |
|
|
|
|
|
|
|
|
|
int get_data(const int index, Qfloat **data, int len); |
|
void swap_index(int i, int j); |
|
private: |
|
int l; |
|
long int size; |
|
struct head_t |
|
{ |
|
head_t *prev, *next; |
|
Qfloat *data; |
|
int len; |
|
}; |
|
|
|
head_t *head; |
|
head_t lru_head; |
|
void lru_delete(head_t *h); |
|
void lru_insert(head_t *h); |
|
}; |
|
|
|
Cache::Cache(int l_,long int size_):l(l_),size(size_) |
|
{ |
|
head = (head_t *)calloc(l,sizeof(head_t)); |
|
size /= sizeof(Qfloat); |
|
size -= l * sizeof(head_t) / sizeof(Qfloat); |
|
size = max(size, 2 * (long int) l); |
|
lru_head.next = lru_head.prev = &lru_head; |
|
} |
|
|
|
Cache::~Cache() |
|
{ |
|
for(head_t *h = lru_head.next; h != &lru_head; h=h->next) |
|
free(h->data); |
|
free(head); |
|
} |
|
|
|
void Cache::lru_delete(head_t *h) |
|
{ |
|
|
|
h->prev->next = h->next; |
|
h->next->prev = h->prev; |
|
} |
|
|
|
void Cache::lru_insert(head_t *h) |
|
{ |
|
|
|
h->next = &lru_head; |
|
h->prev = lru_head.prev; |
|
h->prev->next = h; |
|
h->next->prev = h; |
|
} |
|
|
|
int Cache::get_data(const int index, Qfloat **data, int len) |
|
{ |
|
head_t *h = &head[index]; |
|
if(h->len) lru_delete(h); |
|
int more = len - h->len; |
|
|
|
if(more > 0) |
|
{ |
|
|
|
while(size < more) |
|
{ |
|
head_t *old = lru_head.next; |
|
lru_delete(old); |
|
free(old->data); |
|
size += old->len; |
|
old->data = 0; |
|
old->len = 0; |
|
} |
|
|
|
|
|
h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); |
|
size -= more; |
|
swap(h->len,len); |
|
} |
|
|
|
lru_insert(h); |
|
*data = h->data; |
|
return len; |
|
} |
|
|
|
void Cache::swap_index(int i, int j) |
|
{ |
|
if(i==j) return; |
|
|
|
if(head[i].len) lru_delete(&head[i]); |
|
if(head[j].len) lru_delete(&head[j]); |
|
swap(head[i].data,head[j].data); |
|
swap(head[i].len,head[j].len); |
|
if(head[i].len) lru_insert(&head[i]); |
|
if(head[j].len) lru_insert(&head[j]); |
|
|
|
if(i>j) swap(i,j); |
|
for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) |
|
{ |
|
if(h->len > i) |
|
{ |
|
if(h->len > j) |
|
swap(h->data[i],h->data[j]); |
|
else |
|
{ |
|
|
|
lru_delete(h); |
|
free(h->data); |
|
size += h->len; |
|
h->data = 0; |
|
h->len = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class QMatrix { |
|
public: |
|
virtual Qfloat *get_Q(int column, int len) const = 0; |
|
virtual double *get_QD() const = 0; |
|
virtual void swap_index(int i, int j) const = 0; |
|
virtual ~QMatrix() {} |
|
}; |
|
|
|
class Kernel: public QMatrix { |
|
public: |
|
#ifdef _DENSE_REP |
|
Kernel(int l, PREFIX(node) * x, const svm_parameter& param, BlasFunctions *blas_functions); |
|
#else |
|
Kernel(int l, PREFIX(node) * const * x, const svm_parameter& param, BlasFunctions *blas_functions); |
|
#endif |
|
virtual ~Kernel(); |
|
|
|
static double k_function(const PREFIX(node) *x, const PREFIX(node) *y, |
|
const svm_parameter& param, BlasFunctions *blas_functions); |
|
virtual Qfloat *get_Q(int column, int len) const = 0; |
|
virtual double *get_QD() const = 0; |
|
virtual void swap_index(int i, int j) const |
|
{ |
|
swap(x[i],x[j]); |
|
if(x_square) swap(x_square[i],x_square[j]); |
|
} |
|
protected: |
|
|
|
double (Kernel::*kernel_function)(int i, int j) const; |
|
|
|
private: |
|
#ifdef _DENSE_REP |
|
PREFIX(node) *x; |
|
#else |
|
const PREFIX(node) **x; |
|
#endif |
|
double *x_square; |
|
|
|
BlasFunctions *m_blas; |
|
|
|
|
|
const int kernel_type; |
|
const int degree; |
|
const double gamma; |
|
const double coef0; |
|
|
|
static double dot(const PREFIX(node) *px, const PREFIX(node) *py, BlasFunctions *blas_functions); |
|
#ifdef _DENSE_REP |
|
static double dot(const PREFIX(node) &px, const PREFIX(node) &py, BlasFunctions *blas_functions); |
|
#endif |
|
|
|
double kernel_linear(int i, int j) const |
|
{ |
|
return dot(x[i],x[j],m_blas); |
|
} |
|
double kernel_poly(int i, int j) const |
|
{ |
|
return powi(gamma*dot(x[i],x[j],m_blas)+coef0,degree); |
|
} |
|
double kernel_rbf(int i, int j) const |
|
{ |
|
return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j],m_blas))); |
|
} |
|
double kernel_sigmoid(int i, int j) const |
|
{ |
|
return tanh(gamma*dot(x[i],x[j],m_blas)+coef0); |
|
} |
|
double kernel_precomputed(int i, int j) const |
|
{ |
|
#ifdef _DENSE_REP |
|
return (x+i)->values[x[j].ind]; |
|
#else |
|
return x[i][(int)(x[j][0].value)].value; |
|
#endif |
|
} |
|
}; |
|
|
|
#ifdef _DENSE_REP |
|
Kernel::Kernel(int l, PREFIX(node) * x_, const svm_parameter& param, BlasFunctions *blas_functions) |
|
#else |
|
Kernel::Kernel(int l, PREFIX(node) * const * x_, const svm_parameter& param, BlasFunctions *blas_functions) |
|
#endif |
|
:kernel_type(param.kernel_type), degree(param.degree), |
|
gamma(param.gamma), coef0(param.coef0) |
|
{ |
|
m_blas = blas_functions; |
|
switch(kernel_type) |
|
{ |
|
case LINEAR: |
|
kernel_function = &Kernel::kernel_linear; |
|
break; |
|
case POLY: |
|
kernel_function = &Kernel::kernel_poly; |
|
break; |
|
case RBF: |
|
kernel_function = &Kernel::kernel_rbf; |
|
break; |
|
case SIGMOID: |
|
kernel_function = &Kernel::kernel_sigmoid; |
|
break; |
|
case PRECOMPUTED: |
|
kernel_function = &Kernel::kernel_precomputed; |
|
break; |
|
} |
|
|
|
clone(x,x_,l); |
|
|
|
if(kernel_type == RBF) |
|
{ |
|
x_square = new double[l]; |
|
for(int i=0;i<l;i++) |
|
x_square[i] = dot(x[i],x[i],blas_functions); |
|
} |
|
else |
|
x_square = 0; |
|
} |
|
|
|
Kernel::~Kernel() |
|
{ |
|
delete[] x; |
|
delete[] x_square; |
|
} |
|
|
|
#ifdef _DENSE_REP |
|
double Kernel::dot(const PREFIX(node) *px, const PREFIX(node) *py, BlasFunctions *blas_functions) |
|
{ |
|
double sum = 0; |
|
|
|
int dim = min(px->dim, py->dim); |
|
sum = blas_functions->dot(dim, px->values, 1, py->values, 1); |
|
return sum; |
|
} |
|
|
|
double Kernel::dot(const PREFIX(node) &px, const PREFIX(node) &py, BlasFunctions *blas_functions) |
|
{ |
|
double sum = 0; |
|
|
|
int dim = min(px.dim, py.dim); |
|
sum = blas_functions->dot(dim, px.values, 1, py.values, 1); |
|
return sum; |
|
} |
|
#else |
|
double Kernel::dot(const PREFIX(node) *px, const PREFIX(node) *py, BlasFunctions *blas_functions) |
|
{ |
|
double sum = 0; |
|
while(px->index != -1 && py->index != -1) |
|
{ |
|
if(px->index == py->index) |
|
{ |
|
sum += px->value * py->value; |
|
++px; |
|
++py; |
|
} |
|
else |
|
{ |
|
if(px->index > py->index) |
|
++py; |
|
else |
|
++px; |
|
} |
|
} |
|
return sum; |
|
} |
|
#endif |
|
|
|
double Kernel::k_function(const PREFIX(node) *x, const PREFIX(node) *y, |
|
const svm_parameter& param, BlasFunctions *blas_functions) |
|
{ |
|
switch(param.kernel_type) |
|
{ |
|
case LINEAR: |
|
return dot(x,y,blas_functions); |
|
case POLY: |
|
return powi(param.gamma*dot(x,y,blas_functions)+param.coef0,param.degree); |
|
case RBF: |
|
{ |
|
double sum = 0; |
|
#ifdef _DENSE_REP |
|
int dim = min(x->dim, y->dim), i; |
|
double* m_array = (double*)malloc(sizeof(double)*dim); |
|
for (i = 0; i < dim; i++) |
|
{ |
|
m_array[i] = x->values[i] - y->values[i]; |
|
} |
|
sum = blas_functions->dot(dim, m_array, 1, m_array, 1); |
|
free(m_array); |
|
for (; i < x->dim; i++) |
|
sum += x->values[i] * x->values[i]; |
|
for (; i < y->dim; i++) |
|
sum += y->values[i] * y->values[i]; |
|
#else |
|
while(x->index != -1 && y->index !=-1) |
|
{ |
|
if(x->index == y->index) |
|
{ |
|
double d = x->value - y->value; |
|
sum += d*d; |
|
++x; |
|
++y; |
|
} |
|
else |
|
{ |
|
if(x->index > y->index) |
|
{ |
|
sum += y->value * y->value; |
|
++y; |
|
} |
|
else |
|
{ |
|
sum += x->value * x->value; |
|
++x; |
|
} |
|
} |
|
} |
|
|
|
while(x->index != -1) |
|
{ |
|
sum += x->value * x->value; |
|
++x; |
|
} |
|
|
|
while(y->index != -1) |
|
{ |
|
sum += y->value * y->value; |
|
++y; |
|
} |
|
#endif |
|
return exp(-param.gamma*sum); |
|
} |
|
case SIGMOID: |
|
return tanh(param.gamma*dot(x,y,blas_functions)+param.coef0); |
|
case PRECOMPUTED: |
|
{ |
|
#ifdef _DENSE_REP |
|
return x->values[y->ind]; |
|
#else |
|
return x[(int)(y->value)].value; |
|
#endif |
|
} |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Solver { |
|
public: |
|
Solver() {}; |
|
virtual ~Solver() {}; |
|
|
|
struct SolutionInfo { |
|
double obj; |
|
double rho; |
|
double *upper_bound; |
|
double r; |
|
bool solve_timed_out; |
|
int n_iter; |
|
}; |
|
|
|
void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, |
|
double *alpha_, const double *C_, double eps, |
|
SolutionInfo* si, int shrinking, int max_iter); |
|
protected: |
|
int active_size; |
|
schar *y; |
|
double *G; |
|
enum { LOWER_BOUND, UPPER_BOUND, FREE }; |
|
char *alpha_status; |
|
double *alpha; |
|
const QMatrix *Q; |
|
const double *QD; |
|
double eps; |
|
double Cp,Cn; |
|
double *C; |
|
double *p; |
|
int *active_set; |
|
double *G_bar; |
|
int l; |
|
bool unshrink; |
|
|
|
double get_C(int i) |
|
{ |
|
return C[i]; |
|
} |
|
void update_alpha_status(int i) |
|
{ |
|
if(alpha[i] >= get_C(i)) |
|
alpha_status[i] = UPPER_BOUND; |
|
else if(alpha[i] <= 0) |
|
alpha_status[i] = LOWER_BOUND; |
|
else alpha_status[i] = FREE; |
|
} |
|
bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } |
|
bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } |
|
bool is_free(int i) { return alpha_status[i] == FREE; } |
|
void swap_index(int i, int j); |
|
void reconstruct_gradient(); |
|
virtual int select_working_set(int &i, int &j); |
|
virtual double calculate_rho(); |
|
virtual void do_shrinking(); |
|
private: |
|
bool be_shrunk(int i, double Gmax1, double Gmax2); |
|
}; |
|
|
|
void Solver::swap_index(int i, int j) |
|
{ |
|
Q->swap_index(i,j); |
|
swap(y[i],y[j]); |
|
swap(G[i],G[j]); |
|
swap(alpha_status[i],alpha_status[j]); |
|
swap(alpha[i],alpha[j]); |
|
swap(p[i],p[j]); |
|
swap(active_set[i],active_set[j]); |
|
swap(G_bar[i],G_bar[j]); |
|
swap(C[i], C[j]); |
|
} |
|
|
|
void Solver::reconstruct_gradient() |
|
{ |
|
|
|
|
|
if(active_size == l) return; |
|
|
|
int i,j; |
|
int nr_free = 0; |
|
|
|
for(j=active_size;j<l;j++) |
|
G[j] = G_bar[j] + p[j]; |
|
|
|
for(j=0;j<active_size;j++) |
|
if(is_free(j)) |
|
nr_free++; |
|
|
|
if(2*nr_free < active_size) |
|
info("\nWarning: using -h 0 may be faster\n"); |
|
|
|
if (nr_free*l > 2*active_size*(l-active_size)) |
|
{ |
|
for(i=active_size;i<l;i++) |
|
{ |
|
const Qfloat *Q_i = Q->get_Q(i,active_size); |
|
for(j=0;j<active_size;j++) |
|
if(is_free(j)) |
|
G[i] += alpha[j] * Q_i[j]; |
|
} |
|
} |
|
else |
|
{ |
|
for(i=0;i<active_size;i++) |
|
if(is_free(i)) |
|
{ |
|
const Qfloat *Q_i = Q->get_Q(i,l); |
|
double alpha_i = alpha[i]; |
|
for(j=active_size;j<l;j++) |
|
G[j] += alpha_i * Q_i[j]; |
|
} |
|
} |
|
} |
|
|
|
void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, |
|
double *alpha_, const double *C_, double eps, |
|
SolutionInfo* si, int shrinking, int max_iter) |
|
{ |
|
this->l = l; |
|
this->Q = &Q; |
|
QD=Q.get_QD(); |
|
clone(p, p_,l); |
|
clone(y, y_,l); |
|
clone(alpha,alpha_,l); |
|
clone(C, C_, l); |
|
this->eps = eps; |
|
unshrink = false; |
|
si->solve_timed_out = false; |
|
|
|
|
|
{ |
|
alpha_status = new char[l]; |
|
for(int i=0;i<l;i++) |
|
update_alpha_status(i); |
|
} |
|
|
|
|
|
{ |
|
active_set = new int[l]; |
|
for(int i=0;i<l;i++) |
|
active_set[i] = i; |
|
active_size = l; |
|
} |
|
|
|
|
|
{ |
|
G = new double[l]; |
|
G_bar = new double[l]; |
|
int i; |
|
for(i=0;i<l;i++) |
|
{ |
|
G[i] = p[i]; |
|
G_bar[i] = 0; |
|
} |
|
for(i=0;i<l;i++) |
|
if(!is_lower_bound(i)) |
|
{ |
|
const Qfloat *Q_i = Q.get_Q(i,l); |
|
double alpha_i = alpha[i]; |
|
int j; |
|
for(j=0;j<l;j++) |
|
G[j] += alpha_i*Q_i[j]; |
|
if(is_upper_bound(i)) |
|
for(j=0;j<l;j++) |
|
G_bar[j] += get_C(i) * Q_i[j]; |
|
} |
|
} |
|
|
|
|
|
|
|
int iter = 0; |
|
int counter = min(l,1000)+1; |
|
|
|
while(1) |
|
{ |
|
|
|
if ((max_iter != -1) && (iter >= max_iter)) { |
|
info("WARN: libsvm Solver reached max_iter"); |
|
si->solve_timed_out = true; |
|
break; |
|
} |
|
|
|
|
|
|
|
if(--counter == 0) |
|
{ |
|
counter = min(l,1000); |
|
if(shrinking) do_shrinking(); |
|
info("."); |
|
} |
|
|
|
int i,j; |
|
if(select_working_set(i,j)!=0) |
|
{ |
|
|
|
reconstruct_gradient(); |
|
|
|
active_size = l; |
|
info("*"); |
|
if(select_working_set(i,j)!=0) |
|
break; |
|
else |
|
counter = 1; |
|
} |
|
|
|
++iter; |
|
|
|
|
|
|
|
const Qfloat *Q_i = Q.get_Q(i,active_size); |
|
const Qfloat *Q_j = Q.get_Q(j,active_size); |
|
|
|
double C_i = get_C(i); |
|
double C_j = get_C(j); |
|
|
|
double old_alpha_i = alpha[i]; |
|
double old_alpha_j = alpha[j]; |
|
|
|
if(y[i]!=y[j]) |
|
{ |
|
double quad_coef = QD[i]+QD[j]+2*Q_i[j]; |
|
if (quad_coef <= 0) |
|
quad_coef = TAU; |
|
double delta = (-G[i]-G[j])/quad_coef; |
|
double diff = alpha[i] - alpha[j]; |
|
alpha[i] += delta; |
|
alpha[j] += delta; |
|
|
|
if(diff > 0) |
|
{ |
|
if(alpha[j] < 0) |
|
{ |
|
alpha[j] = 0; |
|
alpha[i] = diff; |
|
} |
|
} |
|
else |
|
{ |
|
if(alpha[i] < 0) |
|
{ |
|
alpha[i] = 0; |
|
alpha[j] = -diff; |
|
} |
|
} |
|
if(diff > C_i - C_j) |
|
{ |
|
if(alpha[i] > C_i) |
|
{ |
|
alpha[i] = C_i; |
|
alpha[j] = C_i - diff; |
|
} |
|
} |
|
else |
|
{ |
|
if(alpha[j] > C_j) |
|
{ |
|
alpha[j] = C_j; |
|
alpha[i] = C_j + diff; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
double quad_coef = QD[i]+QD[j]-2*Q_i[j]; |
|
if (quad_coef <= 0) |
|
quad_coef = TAU; |
|
double delta = (G[i]-G[j])/quad_coef; |
|
double sum = alpha[i] + alpha[j]; |
|
alpha[i] -= delta; |
|
alpha[j] += delta; |
|
|
|
if(sum > C_i) |
|
{ |
|
if(alpha[i] > C_i) |
|
{ |
|
alpha[i] = C_i; |
|
alpha[j] = sum - C_i; |
|
} |
|
} |
|
else |
|
{ |
|
if(alpha[j] < 0) |
|
{ |
|
alpha[j] = 0; |
|
alpha[i] = sum; |
|
} |
|
} |
|
if(sum > C_j) |
|
{ |
|
if(alpha[j] > C_j) |
|
{ |
|
alpha[j] = C_j; |
|
alpha[i] = sum - C_j; |
|
} |
|
} |
|
else |
|
{ |
|
if(alpha[i] < 0) |
|
{ |
|
alpha[i] = 0; |
|
alpha[j] = sum; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
double delta_alpha_i = alpha[i] - old_alpha_i; |
|
double delta_alpha_j = alpha[j] - old_alpha_j; |
|
|
|
for(int k=0;k<active_size;k++) |
|
{ |
|
G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; |
|
} |
|
|
|
|
|
|
|
{ |
|
bool ui = is_upper_bound(i); |
|
bool uj = is_upper_bound(j); |
|
update_alpha_status(i); |
|
update_alpha_status(j); |
|
int k; |
|
if(ui != is_upper_bound(i)) |
|
{ |
|
Q_i = Q.get_Q(i,l); |
|
if(ui) |
|
for(k=0;k<l;k++) |
|
G_bar[k] -= C_i * Q_i[k]; |
|
else |
|
for(k=0;k<l;k++) |
|
G_bar[k] += C_i * Q_i[k]; |
|
} |
|
|
|
if(uj != is_upper_bound(j)) |
|
{ |
|
Q_j = Q.get_Q(j,l); |
|
if(uj) |
|
for(k=0;k<l;k++) |
|
G_bar[k] -= C_j * Q_j[k]; |
|
else |
|
for(k=0;k<l;k++) |
|
G_bar[k] += C_j * Q_j[k]; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
si->rho = calculate_rho(); |
|
|
|
|
|
{ |
|
double v = 0; |
|
int i; |
|
for(i=0;i<l;i++) |
|
v += alpha[i] * (G[i] + p[i]); |
|
|
|
si->obj = v/2; |
|
} |
|
|
|
|
|
{ |
|
for(int i=0;i<l;i++) |
|
alpha_[active_set[i]] = alpha[i]; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for(int i=0;i<l;i++) |
|
si->upper_bound[i] = C[i]; |
|
|
|
|
|
si->n_iter = iter; |
|
|
|
info("\noptimization finished, #iter = %d\n",iter); |
|
|
|
delete[] p; |
|
delete[] y; |
|
delete[] alpha; |
|
delete[] alpha_status; |
|
delete[] active_set; |
|
delete[] G; |
|
delete[] G_bar; |
|
delete[] C; |
|
} |
|
|
|
|
|
int Solver::select_working_set(int &out_i, int &out_j) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
double Gmax = -INF; |
|
double Gmax2 = -INF; |
|
int Gmax_idx = -1; |
|
int Gmin_idx = -1; |
|
double obj_diff_min = INF; |
|
|
|
for(int t=0;t<active_size;t++) |
|
if(y[t]==+1) |
|
{ |
|
if(!is_upper_bound(t)) |
|
if(-G[t] >= Gmax) |
|
{ |
|
Gmax = -G[t]; |
|
Gmax_idx = t; |
|
} |
|
} |
|
else |
|
{ |
|
if(!is_lower_bound(t)) |
|
if(G[t] >= Gmax) |
|
{ |
|
Gmax = G[t]; |
|
Gmax_idx = t; |
|
} |
|
} |
|
|
|
int i = Gmax_idx; |
|
const Qfloat *Q_i = NULL; |
|
if(i != -1) |
|
Q_i = Q->get_Q(i,active_size); |
|
|
|
for(int j=0;j<active_size;j++) |
|
{ |
|
if(y[j]==+1) |
|
{ |
|
if (!is_lower_bound(j)) |
|
{ |
|
double grad_diff=Gmax+G[j]; |
|
if (G[j] >= Gmax2) |
|
Gmax2 = G[j]; |
|
if (grad_diff > 0) |
|
{ |
|
double obj_diff; |
|
double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; |
|
if (quad_coef > 0) |
|
obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
else |
|
obj_diff = -(grad_diff*grad_diff)/TAU; |
|
|
|
if (obj_diff <= obj_diff_min) |
|
{ |
|
Gmin_idx=j; |
|
obj_diff_min = obj_diff; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
if (!is_upper_bound(j)) |
|
{ |
|
double grad_diff= Gmax-G[j]; |
|
if (-G[j] >= Gmax2) |
|
Gmax2 = -G[j]; |
|
if (grad_diff > 0) |
|
{ |
|
double obj_diff; |
|
double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; |
|
if (quad_coef > 0) |
|
obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
else |
|
obj_diff = -(grad_diff*grad_diff)/TAU; |
|
|
|
if (obj_diff <= obj_diff_min) |
|
{ |
|
Gmin_idx=j; |
|
obj_diff_min = obj_diff; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if(Gmax+Gmax2 < eps || Gmin_idx == -1) |
|
return 1; |
|
|
|
out_i = Gmax_idx; |
|
out_j = Gmin_idx; |
|
return 0; |
|
} |
|
|
|
bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) |
|
{ |
|
if(is_upper_bound(i)) |
|
{ |
|
if(y[i]==+1) |
|
return(-G[i] > Gmax1); |
|
else |
|
return(-G[i] > Gmax2); |
|
} |
|
else if(is_lower_bound(i)) |
|
{ |
|
if(y[i]==+1) |
|
return(G[i] > Gmax2); |
|
else |
|
return(G[i] > Gmax1); |
|
} |
|
else |
|
return(false); |
|
} |
|
|
|
void Solver::do_shrinking() |
|
{ |
|
int i; |
|
double Gmax1 = -INF; |
|
double Gmax2 = -INF; |
|
|
|
|
|
for(i=0;i<active_size;i++) |
|
{ |
|
if(y[i]==+1) |
|
{ |
|
if(!is_upper_bound(i)) |
|
{ |
|
if(-G[i] >= Gmax1) |
|
Gmax1 = -G[i]; |
|
} |
|
if(!is_lower_bound(i)) |
|
{ |
|
if(G[i] >= Gmax2) |
|
Gmax2 = G[i]; |
|
} |
|
} |
|
else |
|
{ |
|
if(!is_upper_bound(i)) |
|
{ |
|
if(-G[i] >= Gmax2) |
|
Gmax2 = -G[i]; |
|
} |
|
if(!is_lower_bound(i)) |
|
{ |
|
if(G[i] >= Gmax1) |
|
Gmax1 = G[i]; |
|
} |
|
} |
|
} |
|
|
|
if(unshrink == false && Gmax1 + Gmax2 <= eps*10) |
|
{ |
|
unshrink = true; |
|
reconstruct_gradient(); |
|
active_size = l; |
|
info("*"); |
|
} |
|
|
|
for(i=0;i<active_size;i++) |
|
if (be_shrunk(i, Gmax1, Gmax2)) |
|
{ |
|
active_size--; |
|
while (active_size > i) |
|
{ |
|
if (!be_shrunk(active_size, Gmax1, Gmax2)) |
|
{ |
|
swap_index(i,active_size); |
|
break; |
|
} |
|
active_size--; |
|
} |
|
} |
|
} |
|
|
|
double Solver::calculate_rho() |
|
{ |
|
double r; |
|
int nr_free = 0; |
|
double ub = INF, lb = -INF, sum_free = 0; |
|
for(int i=0;i<active_size;i++) |
|
{ |
|
double yG = y[i]*G[i]; |
|
|
|
if(is_upper_bound(i)) |
|
{ |
|
if(y[i]==-1) |
|
ub = min(ub,yG); |
|
else |
|
lb = max(lb,yG); |
|
} |
|
else if(is_lower_bound(i)) |
|
{ |
|
if(y[i]==+1) |
|
ub = min(ub,yG); |
|
else |
|
lb = max(lb,yG); |
|
} |
|
else |
|
{ |
|
++nr_free; |
|
sum_free += yG; |
|
} |
|
} |
|
|
|
if(nr_free>0) |
|
r = sum_free/nr_free; |
|
else |
|
r = (ub+lb)/2; |
|
|
|
return r; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Solver_NU : public Solver |
|
{ |
|
public: |
|
Solver_NU() {} |
|
void Solve(int l, const QMatrix& Q, const double *p, const schar *y, |
|
double *alpha, const double *C_, double eps, |
|
SolutionInfo* si, int shrinking, int max_iter) |
|
{ |
|
this->si = si; |
|
Solver::Solve(l,Q,p,y,alpha,C_,eps,si,shrinking,max_iter); |
|
} |
|
private: |
|
SolutionInfo *si; |
|
int select_working_set(int &i, int &j); |
|
double calculate_rho(); |
|
bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); |
|
void do_shrinking(); |
|
}; |
|
|
|
|
|
int Solver_NU::select_working_set(int &out_i, int &out_j) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
double Gmaxp = -INF; |
|
double Gmaxp2 = -INF; |
|
int Gmaxp_idx = -1; |
|
|
|
double Gmaxn = -INF; |
|
double Gmaxn2 = -INF; |
|
int Gmaxn_idx = -1; |
|
|
|
int Gmin_idx = -1; |
|
double obj_diff_min = INF; |
|
|
|
for(int t=0;t<active_size;t++) |
|
if(y[t]==+1) |
|
{ |
|
if(!is_upper_bound(t)) |
|
if(-G[t] >= Gmaxp) |
|
{ |
|
Gmaxp = -G[t]; |
|
Gmaxp_idx = t; |
|
} |
|
} |
|
else |
|
{ |
|
if(!is_lower_bound(t)) |
|
if(G[t] >= Gmaxn) |
|
{ |
|
Gmaxn = G[t]; |
|
Gmaxn_idx = t; |
|
} |
|
} |
|
|
|
int ip = Gmaxp_idx; |
|
int in = Gmaxn_idx; |
|
const Qfloat *Q_ip = NULL; |
|
const Qfloat *Q_in = NULL; |
|
if(ip != -1) |
|
Q_ip = Q->get_Q(ip,active_size); |
|
if(in != -1) |
|
Q_in = Q->get_Q(in,active_size); |
|
|
|
for(int j=0;j<active_size;j++) |
|
{ |
|
if(y[j]==+1) |
|
{ |
|
if (!is_lower_bound(j)) |
|
{ |
|
double grad_diff=Gmaxp+G[j]; |
|
if (G[j] >= Gmaxp2) |
|
Gmaxp2 = G[j]; |
|
if (grad_diff > 0) |
|
{ |
|
double obj_diff; |
|
double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; |
|
if (quad_coef > 0) |
|
obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
else |
|
obj_diff = -(grad_diff*grad_diff)/TAU; |
|
|
|
if (obj_diff <= obj_diff_min) |
|
{ |
|
Gmin_idx=j; |
|
obj_diff_min = obj_diff; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
if (!is_upper_bound(j)) |
|
{ |
|
double grad_diff=Gmaxn-G[j]; |
|
if (-G[j] >= Gmaxn2) |
|
Gmaxn2 = -G[j]; |
|
if (grad_diff > 0) |
|
{ |
|
double obj_diff; |
|
double quad_coef = QD[in]+QD[j]-2*Q_in[j]; |
|
if (quad_coef > 0) |
|
obj_diff = -(grad_diff*grad_diff)/quad_coef; |
|
else |
|
obj_diff = -(grad_diff*grad_diff)/TAU; |
|
|
|
if (obj_diff <= obj_diff_min) |
|
{ |
|
Gmin_idx=j; |
|
obj_diff_min = obj_diff; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps || Gmin_idx == -1) |
|
return 1; |
|
|
|
if (y[Gmin_idx] == +1) |
|
out_i = Gmaxp_idx; |
|
else |
|
out_i = Gmaxn_idx; |
|
out_j = Gmin_idx; |
|
|
|
return 0; |
|
} |
|
|
|
bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) |
|
{ |
|
if(is_upper_bound(i)) |
|
{ |
|
if(y[i]==+1) |
|
return(-G[i] > Gmax1); |
|
else |
|
return(-G[i] > Gmax4); |
|
} |
|
else if(is_lower_bound(i)) |
|
{ |
|
if(y[i]==+1) |
|
return(G[i] > Gmax2); |
|
else |
|
return(G[i] > Gmax3); |
|
} |
|
else |
|
return(false); |
|
} |
|
|
|
void Solver_NU::do_shrinking() |
|
{ |
|
double Gmax1 = -INF; |
|
double Gmax2 = -INF; |
|
double Gmax3 = -INF; |
|
double Gmax4 = -INF; |
|
|
|
|
|
int i; |
|
for(i=0;i<active_size;i++) |
|
{ |
|
if(!is_upper_bound(i)) |
|
{ |
|
if(y[i]==+1) |
|
{ |
|
if(-G[i] > Gmax1) Gmax1 = -G[i]; |
|
} |
|
else if(-G[i] > Gmax4) Gmax4 = -G[i]; |
|
} |
|
if(!is_lower_bound(i)) |
|
{ |
|
if(y[i]==+1) |
|
{ |
|
if(G[i] > Gmax2) Gmax2 = G[i]; |
|
} |
|
else if(G[i] > Gmax3) Gmax3 = G[i]; |
|
} |
|
} |
|
|
|
if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) |
|
{ |
|
unshrink = true; |
|
reconstruct_gradient(); |
|
active_size = l; |
|
} |
|
|
|
for(i=0;i<active_size;i++) |
|
if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) |
|
{ |
|
active_size--; |
|
while (active_size > i) |
|
{ |
|
if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) |
|
{ |
|
swap_index(i,active_size); |
|
break; |
|
} |
|
active_size--; |
|
} |
|
} |
|
} |
|
|
|
double Solver_NU::calculate_rho() |
|
{ |
|
int nr_free1 = 0,nr_free2 = 0; |
|
double ub1 = INF, ub2 = INF; |
|
double lb1 = -INF, lb2 = -INF; |
|
double sum_free1 = 0, sum_free2 = 0; |
|
|
|
for(int i=0;i<active_size;i++) |
|
{ |
|
if(y[i]==+1) |
|
{ |
|
if(is_upper_bound(i)) |
|
lb1 = max(lb1,G[i]); |
|
else if(is_lower_bound(i)) |
|
ub1 = min(ub1,G[i]); |
|
else |
|
{ |
|
++nr_free1; |
|
sum_free1 += G[i]; |
|
} |
|
} |
|
else |
|
{ |
|
if(is_upper_bound(i)) |
|
lb2 = max(lb2,G[i]); |
|
else if(is_lower_bound(i)) |
|
ub2 = min(ub2,G[i]); |
|
else |
|
{ |
|
++nr_free2; |
|
sum_free2 += G[i]; |
|
} |
|
} |
|
} |
|
|
|
double r1,r2; |
|
if(nr_free1 > 0) |
|
r1 = sum_free1/nr_free1; |
|
else |
|
r1 = (ub1+lb1)/2; |
|
|
|
if(nr_free2 > 0) |
|
r2 = sum_free2/nr_free2; |
|
else |
|
r2 = (ub2+lb2)/2; |
|
|
|
si->r = (r1+r2)/2; |
|
return (r1-r2)/2; |
|
} |
|
|
|
|
|
|
|
|
|
class SVC_Q: public Kernel |
|
{ |
|
public: |
|
SVC_Q(const PREFIX(problem)& prob, const svm_parameter& param, const schar *y_, BlasFunctions *blas_functions) |
|
:Kernel(prob.l, prob.x, param, blas_functions) |
|
{ |
|
clone(y,y_,prob.l); |
|
cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); |
|
QD = new double[prob.l]; |
|
for(int i=0;i<prob.l;i++) |
|
QD[i] = (this->*kernel_function)(i,i); |
|
} |
|
|
|
Qfloat *get_Q(int i, int len) const |
|
{ |
|
Qfloat *data; |
|
int start, j; |
|
if((start = cache->get_data(i,&data,len)) < len) |
|
{ |
|
for(j=start;j<len;j++) |
|
data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j)); |
|
} |
|
return data; |
|
} |
|
|
|
double *get_QD() const |
|
{ |
|
return QD; |
|
} |
|
|
|
void swap_index(int i, int j) const |
|
{ |
|
cache->swap_index(i,j); |
|
Kernel::swap_index(i,j); |
|
swap(y[i],y[j]); |
|
swap(QD[i],QD[j]); |
|
} |
|
|
|
~SVC_Q() |
|
{ |
|
delete[] y; |
|
delete cache; |
|
delete[] QD; |
|
} |
|
private: |
|
schar *y; |
|
Cache *cache; |
|
double *QD; |
|
}; |
|
|
|
class ONE_CLASS_Q: public Kernel |
|
{ |
|
public: |
|
ONE_CLASS_Q(const PREFIX(problem)& prob, const svm_parameter& param, BlasFunctions *blas_functions) |
|
:Kernel(prob.l, prob.x, param, blas_functions) |
|
{ |
|
cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); |
|
QD = new double[prob.l]; |
|
for(int i=0;i<prob.l;i++) |
|
QD[i] = (this->*kernel_function)(i,i); |
|
} |
|
|
|
Qfloat *get_Q(int i, int len) const |
|
{ |
|
Qfloat *data; |
|
int start, j; |
|
if((start = cache->get_data(i,&data,len)) < len) |
|
{ |
|
for(j=start;j<len;j++) |
|
data[j] = (Qfloat)(this->*kernel_function)(i,j); |
|
} |
|
return data; |
|
} |
|
|
|
double *get_QD() const |
|
{ |
|
return QD; |
|
} |
|
|
|
void swap_index(int i, int j) const |
|
{ |
|
cache->swap_index(i,j); |
|
Kernel::swap_index(i,j); |
|
swap(QD[i],QD[j]); |
|
} |
|
|
|
~ONE_CLASS_Q() |
|
{ |
|
delete cache; |
|
delete[] QD; |
|
} |
|
private: |
|
Cache *cache; |
|
double *QD; |
|
}; |
|
|
|
class SVR_Q: public Kernel |
|
{ |
|
public: |
|
SVR_Q(const PREFIX(problem)& prob, const svm_parameter& param, BlasFunctions *blas_functions) |
|
:Kernel(prob.l, prob.x, param, blas_functions) |
|
{ |
|
l = prob.l; |
|
cache = new Cache(l,(long int)(param.cache_size*(1<<20))); |
|
QD = new double[2*l]; |
|
sign = new schar[2*l]; |
|
index = new int[2*l]; |
|
for(int k=0;k<l;k++) |
|
{ |
|
sign[k] = 1; |
|
sign[k+l] = -1; |
|
index[k] = k; |
|
index[k+l] = k; |
|
QD[k] = (this->*kernel_function)(k,k); |
|
QD[k+l] = QD[k]; |
|
} |
|
buffer[0] = new Qfloat[2*l]; |
|
buffer[1] = new Qfloat[2*l]; |
|
next_buffer = 0; |
|
} |
|
|
|
void swap_index(int i, int j) const |
|
{ |
|
swap(sign[i],sign[j]); |
|
swap(index[i],index[j]); |
|
swap(QD[i],QD[j]); |
|
} |
|
|
|
Qfloat *get_Q(int i, int len) const |
|
{ |
|
Qfloat *data; |
|
int j, real_i = index[i]; |
|
if(cache->get_data(real_i,&data,l) < l) |
|
{ |
|
for(j=0;j<l;j++) |
|
data[j] = (Qfloat)(this->*kernel_function)(real_i,j); |
|
} |
|
|
|
|
|
Qfloat *buf = buffer[next_buffer]; |
|
next_buffer = 1 - next_buffer; |
|
schar si = sign[i]; |
|
for(j=0;j<len;j++) |
|
buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]]; |
|
return buf; |
|
} |
|
|
|
double *get_QD() const |
|
{ |
|
return QD; |
|
} |
|
|
|
~SVR_Q() |
|
{ |
|
delete cache; |
|
delete[] sign; |
|
delete[] index; |
|
delete[] buffer[0]; |
|
delete[] buffer[1]; |
|
delete[] QD; |
|
} |
|
private: |
|
int l; |
|
Cache *cache; |
|
schar *sign; |
|
int *index; |
|
mutable int next_buffer; |
|
Qfloat *buffer[2]; |
|
double *QD; |
|
}; |
|
|
|
|
|
|
|
|
|
static void solve_c_svc( |
|
const PREFIX(problem) *prob, const svm_parameter* param, |
|
double *alpha, Solver::SolutionInfo* si, double Cp, double Cn, BlasFunctions *blas_functions) |
|
{ |
|
int l = prob->l; |
|
double *minus_ones = new double[l]; |
|
schar *y = new schar[l]; |
|
double *C = new double[l]; |
|
|
|
int i; |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
alpha[i] = 0; |
|
minus_ones[i] = -1; |
|
if(prob->y[i] > 0) |
|
{ |
|
y[i] = +1; |
|
C[i] = prob->W[i]*Cp; |
|
} |
|
else |
|
{ |
|
y[i] = -1; |
|
C[i] = prob->W[i]*Cn; |
|
} |
|
} |
|
|
|
Solver s; |
|
s.Solve(l, SVC_Q(*prob,*param,y, blas_functions), minus_ones, y, |
|
alpha, C, param->eps, si, param->shrinking, |
|
param->max_iter); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for(i=0;i<l;i++) |
|
alpha[i] *= y[i]; |
|
|
|
delete[] C; |
|
delete[] minus_ones; |
|
delete[] y; |
|
} |
|
|
|
static void solve_nu_svc( |
|
const PREFIX(problem) *prob, const svm_parameter *param, |
|
double *alpha, Solver::SolutionInfo* si, BlasFunctions *blas_functions) |
|
{ |
|
int i; |
|
int l = prob->l; |
|
double nu = param->nu; |
|
|
|
schar *y = new schar[l]; |
|
double *C = new double[l]; |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
if(prob->y[i]>0) |
|
y[i] = +1; |
|
else |
|
y[i] = -1; |
|
|
|
C[i] = prob->W[i]; |
|
} |
|
|
|
double nu_l = 0; |
|
for(i=0;i<l;i++) nu_l += nu*C[i]; |
|
double sum_pos = nu_l/2; |
|
double sum_neg = nu_l/2; |
|
|
|
for(i=0;i<l;i++) |
|
if(y[i] == +1) |
|
{ |
|
alpha[i] = min(C[i],sum_pos); |
|
sum_pos -= alpha[i]; |
|
} |
|
else |
|
{ |
|
alpha[i] = min(C[i],sum_neg); |
|
sum_neg -= alpha[i]; |
|
} |
|
|
|
double *zeros = new double[l]; |
|
|
|
for(i=0;i<l;i++) |
|
zeros[i] = 0; |
|
|
|
Solver_NU s; |
|
s.Solve(l, SVC_Q(*prob,*param,y,blas_functions), zeros, y, |
|
alpha, C, param->eps, si, param->shrinking, param->max_iter); |
|
double r = si->r; |
|
|
|
info("C = %f\n",1/r); |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
alpha[i] *= y[i]/r; |
|
si->upper_bound[i] /= r; |
|
} |
|
|
|
si->rho /= r; |
|
si->obj /= (r*r); |
|
|
|
delete[] C; |
|
delete[] y; |
|
delete[] zeros; |
|
} |
|
|
|
static void solve_one_class( |
|
const PREFIX(problem) *prob, const svm_parameter *param, |
|
double *alpha, Solver::SolutionInfo* si, BlasFunctions *blas_functions) |
|
{ |
|
int l = prob->l; |
|
double *zeros = new double[l]; |
|
schar *ones = new schar[l]; |
|
double *C = new double[l]; |
|
int i; |
|
|
|
double nu_l = 0; |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
C[i] = prob->W[i]; |
|
nu_l += C[i] * param->nu; |
|
} |
|
|
|
i = 0; |
|
while(nu_l > 0) |
|
{ |
|
alpha[i] = min(C[i],nu_l); |
|
nu_l -= alpha[i]; |
|
++i; |
|
} |
|
for(;i<l;i++) |
|
alpha[i] = 0; |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
zeros[i] = 0; |
|
ones[i] = 1; |
|
} |
|
|
|
Solver s; |
|
s.Solve(l, ONE_CLASS_Q(*prob,*param,blas_functions), zeros, ones, |
|
alpha, C, param->eps, si, param->shrinking, param->max_iter); |
|
|
|
delete[] C; |
|
delete[] zeros; |
|
delete[] ones; |
|
} |
|
|
|
static void solve_epsilon_svr( |
|
const PREFIX(problem) *prob, const svm_parameter *param, |
|
double *alpha, Solver::SolutionInfo* si, BlasFunctions *blas_functions) |
|
{ |
|
int l = prob->l; |
|
double *alpha2 = new double[2*l]; |
|
double *linear_term = new double[2*l]; |
|
schar *y = new schar[2*l]; |
|
double *C = new double[2*l]; |
|
int i; |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
alpha2[i] = 0; |
|
linear_term[i] = param->p - prob->y[i]; |
|
y[i] = 1; |
|
C[i] = prob->W[i]*param->C; |
|
|
|
alpha2[i+l] = 0; |
|
linear_term[i+l] = param->p + prob->y[i]; |
|
y[i+l] = -1; |
|
C[i+l] = prob->W[i]*param->C; |
|
} |
|
|
|
Solver s; |
|
s.Solve(2*l, SVR_Q(*prob,*param,blas_functions), linear_term, y, |
|
alpha2, C, param->eps, si, param->shrinking, param->max_iter); |
|
|
|
double sum_alpha = 0; |
|
for(i=0;i<l;i++) |
|
{ |
|
alpha[i] = alpha2[i] - alpha2[i+l]; |
|
sum_alpha += fabs(alpha[i]); |
|
} |
|
|
|
|
|
delete[] alpha2; |
|
delete[] linear_term; |
|
delete[] C; |
|
delete[] y; |
|
} |
|
|
|
static void solve_nu_svr( |
|
const PREFIX(problem) *prob, const svm_parameter *param, |
|
double *alpha, Solver::SolutionInfo* si, BlasFunctions *blas_functions) |
|
{ |
|
int l = prob->l; |
|
double *C = new double[2*l]; |
|
double *alpha2 = new double[2*l]; |
|
double *linear_term = new double[2*l]; |
|
schar *y = new schar[2*l]; |
|
int i; |
|
|
|
double sum = 0; |
|
for(i=0;i<l;i++) |
|
{ |
|
C[i] = C[i+l] = prob->W[i]*param->C; |
|
sum += C[i] * param->nu; |
|
} |
|
sum /= 2; |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
alpha2[i] = alpha2[i+l] = min(sum,C[i]); |
|
sum -= alpha2[i]; |
|
|
|
linear_term[i] = - prob->y[i]; |
|
y[i] = 1; |
|
|
|
linear_term[i+l] = prob->y[i]; |
|
y[i+l] = -1; |
|
} |
|
|
|
Solver_NU s; |
|
s.Solve(2*l, SVR_Q(*prob,*param,blas_functions), linear_term, y, |
|
alpha2, C, param->eps, si, param->shrinking, param->max_iter); |
|
|
|
info("epsilon = %f\n",-si->r); |
|
|
|
for(i=0;i<l;i++) |
|
alpha[i] = alpha2[i] - alpha2[i+l]; |
|
|
|
delete[] alpha2; |
|
delete[] linear_term; |
|
delete[] C; |
|
delete[] y; |
|
} |
|
|
|
|
|
|
|
|
|
struct decision_function |
|
{ |
|
double *alpha; |
|
double rho; |
|
int n_iter; |
|
}; |
|
|
|
static decision_function svm_train_one( |
|
const PREFIX(problem) *prob, const svm_parameter *param, |
|
double Cp, double Cn, int *status, BlasFunctions *blas_functions) |
|
{ |
|
double *alpha = Malloc(double,prob->l); |
|
Solver::SolutionInfo si; |
|
switch(param->svm_type) |
|
{ |
|
case C_SVC: |
|
si.upper_bound = Malloc(double,prob->l); |
|
solve_c_svc(prob,param,alpha,&si,Cp,Cn,blas_functions); |
|
break; |
|
case NU_SVC: |
|
si.upper_bound = Malloc(double,prob->l); |
|
solve_nu_svc(prob,param,alpha,&si,blas_functions); |
|
break; |
|
case ONE_CLASS: |
|
si.upper_bound = Malloc(double,prob->l); |
|
solve_one_class(prob,param,alpha,&si,blas_functions); |
|
break; |
|
case EPSILON_SVR: |
|
si.upper_bound = Malloc(double,2*prob->l); |
|
solve_epsilon_svr(prob,param,alpha,&si,blas_functions); |
|
break; |
|
case NU_SVR: |
|
si.upper_bound = Malloc(double,2*prob->l); |
|
solve_nu_svr(prob,param,alpha,&si,blas_functions); |
|
break; |
|
} |
|
|
|
*status |= si.solve_timed_out; |
|
|
|
info("obj = %f, rho = %f\n",si.obj,si.rho); |
|
|
|
|
|
|
|
int nSV = 0; |
|
int nBSV = 0; |
|
for(int i=0;i<prob->l;i++) |
|
{ |
|
if(fabs(alpha[i]) > 0) |
|
{ |
|
++nSV; |
|
if(prob->y[i] > 0) |
|
{ |
|
if(fabs(alpha[i]) >= si.upper_bound[i]) |
|
++nBSV; |
|
} |
|
else |
|
{ |
|
if(fabs(alpha[i]) >= si.upper_bound[i]) |
|
++nBSV; |
|
} |
|
} |
|
} |
|
|
|
free(si.upper_bound); |
|
|
|
info("nSV = %d, nBSV = %d\n",nSV,nBSV); |
|
|
|
decision_function f; |
|
f.alpha = alpha; |
|
f.rho = si.rho; |
|
f.n_iter = si.n_iter; |
|
return f; |
|
} |
|
|
|
|
|
static void sigmoid_train( |
|
int l, const double *dec_values, const double *labels, |
|
double& A, double& B) |
|
{ |
|
double prior1=0, prior0 = 0; |
|
int i; |
|
|
|
for (i=0;i<l;i++) |
|
if (labels[i] > 0) prior1+=1; |
|
else prior0+=1; |
|
|
|
int max_iter=100; |
|
double min_step=1e-10; |
|
double sigma=1e-12; |
|
double eps=1e-5; |
|
double hiTarget=(prior1+1.0)/(prior1+2.0); |
|
double loTarget=1/(prior0+2.0); |
|
double *t=Malloc(double,l); |
|
double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; |
|
double newA,newB,newf,d1,d2; |
|
int iter; |
|
|
|
|
|
A=0.0; B=log((prior0+1.0)/(prior1+1.0)); |
|
double fval = 0.0; |
|
|
|
for (i=0;i<l;i++) |
|
{ |
|
if (labels[i]>0) t[i]=hiTarget; |
|
else t[i]=loTarget; |
|
fApB = dec_values[i]*A+B; |
|
if (fApB>=0) |
|
fval += t[i]*fApB + log(1+exp(-fApB)); |
|
else |
|
fval += (t[i] - 1)*fApB +log(1+exp(fApB)); |
|
} |
|
for (iter=0;iter<max_iter;iter++) |
|
{ |
|
|
|
h11=sigma; |
|
h22=sigma; |
|
h21=0.0;g1=0.0;g2=0.0; |
|
for (i=0;i<l;i++) |
|
{ |
|
fApB = dec_values[i]*A+B; |
|
if (fApB >= 0) |
|
{ |
|
p=exp(-fApB)/(1.0+exp(-fApB)); |
|
q=1.0/(1.0+exp(-fApB)); |
|
} |
|
else |
|
{ |
|
p=1.0/(1.0+exp(fApB)); |
|
q=exp(fApB)/(1.0+exp(fApB)); |
|
} |
|
d2=p*q; |
|
h11+=dec_values[i]*dec_values[i]*d2; |
|
h22+=d2; |
|
h21+=dec_values[i]*d2; |
|
d1=t[i]-p; |
|
g1+=dec_values[i]*d1; |
|
g2+=d1; |
|
} |
|
|
|
|
|
if (fabs(g1)<eps && fabs(g2)<eps) |
|
break; |
|
|
|
|
|
det=h11*h22-h21*h21; |
|
dA=-(h22*g1 - h21 * g2) / det; |
|
dB=-(-h21*g1+ h11 * g2) / det; |
|
gd=g1*dA+g2*dB; |
|
|
|
|
|
stepsize = 1; |
|
while (stepsize >= min_step) |
|
{ |
|
newA = A + stepsize * dA; |
|
newB = B + stepsize * dB; |
|
|
|
|
|
newf = 0.0; |
|
for (i=0;i<l;i++) |
|
{ |
|
fApB = dec_values[i]*newA+newB; |
|
if (fApB >= 0) |
|
newf += t[i]*fApB + log(1+exp(-fApB)); |
|
else |
|
newf += (t[i] - 1)*fApB +log(1+exp(fApB)); |
|
} |
|
|
|
if (newf<fval+0.0001*stepsize*gd) |
|
{ |
|
A=newA;B=newB;fval=newf; |
|
break; |
|
} |
|
else |
|
stepsize = stepsize / 2.0; |
|
} |
|
|
|
if (stepsize < min_step) |
|
{ |
|
info("Line search fails in two-class probability estimates\n"); |
|
break; |
|
} |
|
} |
|
|
|
if (iter>=max_iter) |
|
info("Reaching maximal iterations in two-class probability estimates\n"); |
|
free(t); |
|
} |
|
|
|
static double sigmoid_predict(double decision_value, double A, double B) |
|
{ |
|
double fApB = decision_value*A+B; |
|
|
|
if (fApB >= 0) |
|
return exp(-fApB)/(1.0+exp(-fApB)); |
|
else |
|
return 1.0/(1+exp(fApB)) ; |
|
} |
|
|
|
|
|
static void multiclass_probability(int k, double **r, double *p) |
|
{ |
|
int t,j; |
|
int iter = 0, max_iter=max(100,k); |
|
double **Q=Malloc(double *,k); |
|
double *Qp=Malloc(double,k); |
|
double pQp, eps=0.005/k; |
|
|
|
for (t=0;t<k;t++) |
|
{ |
|
p[t]=1.0/k; |
|
Q[t]=Malloc(double,k); |
|
Q[t][t]=0; |
|
for (j=0;j<t;j++) |
|
{ |
|
Q[t][t]+=r[j][t]*r[j][t]; |
|
Q[t][j]=Q[j][t]; |
|
} |
|
for (j=t+1;j<k;j++) |
|
{ |
|
Q[t][t]+=r[j][t]*r[j][t]; |
|
Q[t][j]=-r[j][t]*r[t][j]; |
|
} |
|
} |
|
for (iter=0;iter<max_iter;iter++) |
|
{ |
|
|
|
pQp=0; |
|
for (t=0;t<k;t++) |
|
{ |
|
Qp[t]=0; |
|
for (j=0;j<k;j++) |
|
Qp[t]+=Q[t][j]*p[j]; |
|
pQp+=p[t]*Qp[t]; |
|
} |
|
double max_error=0; |
|
for (t=0;t<k;t++) |
|
{ |
|
double error=fabs(Qp[t]-pQp); |
|
if (error>max_error) |
|
max_error=error; |
|
} |
|
if (max_error<eps) break; |
|
|
|
for (t=0;t<k;t++) |
|
{ |
|
double diff=(-Qp[t]+pQp)/Q[t][t]; |
|
p[t]+=diff; |
|
pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); |
|
for (j=0;j<k;j++) |
|
{ |
|
Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); |
|
p[j]/=(1+diff); |
|
} |
|
} |
|
} |
|
if (iter>=max_iter) |
|
info("Exceeds max_iter in multiclass_prob\n"); |
|
for(t=0;t<k;t++) free(Q[t]); |
|
free(Q); |
|
free(Qp); |
|
} |
|
|
|
|
|
static void svm_binary_svc_probability( |
|
const PREFIX(problem) *prob, const svm_parameter *param, |
|
double Cp, double Cn, double& probA, double& probB, int * status, BlasFunctions *blas_functions) |
|
{ |
|
int i; |
|
int nr_fold = 5; |
|
int *perm = Malloc(int,prob->l); |
|
double *dec_values = Malloc(double,prob->l); |
|
|
|
|
|
for(i=0;i<prob->l;i++) perm[i]=i; |
|
for(i=0;i<prob->l;i++) |
|
{ |
|
int j = i+bounded_rand_int(prob->l-i); |
|
swap(perm[i],perm[j]); |
|
} |
|
for(i=0;i<nr_fold;i++) |
|
{ |
|
int begin = i*prob->l/nr_fold; |
|
int end = (i+1)*prob->l/nr_fold; |
|
int j,k; |
|
struct PREFIX(problem) subprob; |
|
|
|
subprob.l = prob->l-(end-begin); |
|
#ifdef _DENSE_REP |
|
subprob.x = Malloc(struct PREFIX(node),subprob.l); |
|
#else |
|
subprob.x = Malloc(struct PREFIX(node)*,subprob.l); |
|
#endif |
|
subprob.y = Malloc(double,subprob.l); |
|
subprob.W = Malloc(double,subprob.l); |
|
|
|
k=0; |
|
for(j=0;j<begin;j++) |
|
{ |
|
subprob.x[k] = prob->x[perm[j]]; |
|
subprob.y[k] = prob->y[perm[j]]; |
|
subprob.W[k] = prob->W[perm[j]]; |
|
++k; |
|
} |
|
for(j=end;j<prob->l;j++) |
|
{ |
|
subprob.x[k] = prob->x[perm[j]]; |
|
subprob.y[k] = prob->y[perm[j]]; |
|
subprob.W[k] = prob->W[perm[j]]; |
|
++k; |
|
} |
|
int p_count=0,n_count=0; |
|
for(j=0;j<k;j++) |
|
if(subprob.y[j]>0) |
|
p_count++; |
|
else |
|
n_count++; |
|
|
|
if(p_count==0 && n_count==0) |
|
for(j=begin;j<end;j++) |
|
dec_values[perm[j]] = 0; |
|
else if(p_count > 0 && n_count == 0) |
|
for(j=begin;j<end;j++) |
|
dec_values[perm[j]] = 1; |
|
else if(p_count == 0 && n_count > 0) |
|
for(j=begin;j<end;j++) |
|
dec_values[perm[j]] = -1; |
|
else |
|
{ |
|
svm_parameter subparam = *param; |
|
subparam.probability=0; |
|
subparam.C=1.0; |
|
subparam.nr_weight=2; |
|
subparam.weight_label = Malloc(int,2); |
|
subparam.weight = Malloc(double,2); |
|
subparam.weight_label[0]=+1; |
|
subparam.weight_label[1]=-1; |
|
subparam.weight[0]=Cp; |
|
subparam.weight[1]=Cn; |
|
struct PREFIX(model) *submodel = PREFIX(train)(&subprob,&subparam, status, blas_functions); |
|
for(j=begin;j<end;j++) |
|
{ |
|
#ifdef _DENSE_REP |
|
PREFIX(predict_values)(submodel,(prob->x+perm[j]),&(dec_values[perm[j]]), blas_functions); |
|
#else |
|
PREFIX(predict_values)(submodel,prob->x[perm[j]],&(dec_values[perm[j]]), blas_functions); |
|
#endif |
|
|
|
dec_values[perm[j]] *= submodel->label[0]; |
|
} |
|
PREFIX(free_and_destroy_model)(&submodel); |
|
PREFIX(destroy_param)(&subparam); |
|
} |
|
free(subprob.x); |
|
free(subprob.y); |
|
free(subprob.W); |
|
} |
|
sigmoid_train(prob->l,dec_values,prob->y,probA,probB); |
|
free(dec_values); |
|
free(perm); |
|
} |
|
|
|
|
|
static double svm_svr_probability( |
|
const PREFIX(problem) *prob, const svm_parameter *param, BlasFunctions *blas_functions) |
|
{ |
|
int i; |
|
int nr_fold = 5; |
|
double *ymv = Malloc(double,prob->l); |
|
double mae = 0; |
|
|
|
svm_parameter newparam = *param; |
|
newparam.probability = 0; |
|
newparam.random_seed = -1; |
|
|
|
PREFIX(cross_validation)(prob,&newparam,nr_fold,ymv, blas_functions); |
|
for(i=0;i<prob->l;i++) |
|
{ |
|
ymv[i]=prob->y[i]-ymv[i]; |
|
mae += fabs(ymv[i]); |
|
} |
|
mae /= prob->l; |
|
double std=sqrt(2*mae*mae); |
|
int count=0; |
|
mae=0; |
|
for(i=0;i<prob->l;i++) |
|
if (fabs(ymv[i]) > 5*std) |
|
count=count+1; |
|
else |
|
mae+=fabs(ymv[i]); |
|
mae /= (prob->l-count); |
|
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); |
|
free(ymv); |
|
return mae; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void svm_group_classes(const PREFIX(problem) *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) |
|
{ |
|
int l = prob->l; |
|
int max_nr_class = 16; |
|
int nr_class = 0; |
|
int *label = Malloc(int,max_nr_class); |
|
int *count = Malloc(int,max_nr_class); |
|
int *data_label = Malloc(int,l); |
|
int i, j, this_label, this_count; |
|
|
|
for(i=0;i<l;i++) |
|
{ |
|
this_label = (int)prob->y[i]; |
|
for(j=0;j<nr_class;j++) |
|
{ |
|
if(this_label == label[j]) |
|
{ |
|
++count[j]; |
|
break; |
|
} |
|
} |
|
if(j == nr_class) |
|
{ |
|
if(nr_class == max_nr_class) |
|
{ |
|
max_nr_class *= 2; |
|
label = (int *)realloc(label,max_nr_class*sizeof(int)); |
|
count = (int *)realloc(count,max_nr_class*sizeof(int)); |
|
} |
|
label[nr_class] = this_label; |
|
count[nr_class] = 1; |
|
++nr_class; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
for(j=1; j<nr_class; j++) |
|
{ |
|
i = j-1; |
|
this_label = label[j]; |
|
this_count = count[j]; |
|
while(i>=0 && label[i] > this_label) |
|
{ |
|
label[i+1] = label[i]; |
|
count[i+1] = count[i]; |
|
i--; |
|
} |
|
label[i+1] = this_label; |
|
count[i+1] = this_count; |
|
} |
|
|
|
for (i=0; i<l; i++) |
|
{ |
|
j = 0; |
|
this_label = (int)prob->y[i]; |
|
while(this_label != label[j]){ |
|
j ++; |
|
} |
|
data_label[i] = j; |
|
} |
|
|
|
int *start = Malloc(int,nr_class); |
|
start[0] = 0; |
|
for(i=1;i<nr_class;i++) |
|
start[i] = start[i-1]+count[i-1]; |
|
for(i=0;i<l;i++) |
|
{ |
|
perm[start[data_label[i]]] = i; |
|
++start[data_label[i]]; |
|
} |
|
|
|
start[0] = 0; |
|
for(i=1;i<nr_class;i++) |
|
start[i] = start[i-1]+count[i-1]; |
|
|
|
*nr_class_ret = nr_class; |
|
*label_ret = label; |
|
*start_ret = start; |
|
*count_ret = count; |
|
free(data_label); |
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static void remove_zero_weight(PREFIX(problem) *newprob, const PREFIX(problem) *prob) |
|
{ |
|
int i; |
|
int l = 0; |
|
for(i=0;i<prob->l;i++) |
|
if(prob->W[i] > 0) l++; |
|
*newprob = *prob; |
|
newprob->l = l; |
|
#ifdef _DENSE_REP |
|
newprob->x = Malloc(PREFIX(node),l); |
|
#else |
|
newprob->x = Malloc(PREFIX(node) *,l); |
|
#endif |
|
newprob->y = Malloc(double,l); |
|
newprob->W = Malloc(double,l); |
|
|
|
int j = 0; |
|
for(i=0;i<prob->l;i++) |
|
if(prob->W[i] > 0) |
|
{ |
|
newprob->x[j] = prob->x[i]; |
|
newprob->y[j] = prob->y[i]; |
|
newprob->W[j] = prob->W[i]; |
|
j++; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
PREFIX(model) *PREFIX(train)(const PREFIX(problem) *prob, const svm_parameter *param, |
|
int *status, BlasFunctions *blas_functions) |
|
{ |
|
PREFIX(problem) newprob; |
|
remove_zero_weight(&newprob, prob); |
|
prob = &newprob; |
|
|
|
PREFIX(model) *model = Malloc(PREFIX(model),1); |
|
model->param = *param; |
|
model->free_sv = 0; |
|
|
|
if(param->random_seed >= 0) |
|
{ |
|
set_seed(param->random_seed); |
|
} |
|
|
|
if(param->svm_type == ONE_CLASS || |
|
param->svm_type == EPSILON_SVR || |
|
param->svm_type == NU_SVR) |
|
{ |
|
|
|
model->nr_class = 2; |
|
model->label = NULL; |
|
model->nSV = NULL; |
|
model->probA = NULL; model->probB = NULL; |
|
model->sv_coef = Malloc(double *,1); |
|
|
|
if(param->probability && |
|
(param->svm_type == EPSILON_SVR || |
|
param->svm_type == NU_SVR)) |
|
{ |
|
model->probA = Malloc(double,1); |
|
model->probA[0] = NAMESPACE::svm_svr_probability(prob,param,blas_functions); |
|
} |
|
|
|
NAMESPACE::decision_function f = NAMESPACE::svm_train_one(prob,param,0,0, status,blas_functions); |
|
model->rho = Malloc(double,1); |
|
model->rho[0] = f.rho; |
|
model->n_iter = Malloc(int,1); |
|
model->n_iter[0] = f.n_iter; |
|
|
|
int nSV = 0; |
|
int i; |
|
for(i=0;i<prob->l;i++) |
|
if(fabs(f.alpha[i]) > 0) ++nSV; |
|
model->l = nSV; |
|
#ifdef _DENSE_REP |
|
model->SV = Malloc(PREFIX(node),nSV); |
|
#else |
|
model->SV = Malloc(PREFIX(node) *,nSV); |
|
#endif |
|
model->sv_ind = Malloc(int, nSV); |
|
model->sv_coef[0] = Malloc(double, nSV); |
|
int j = 0; |
|
for(i=0;i<prob->l;i++) |
|
if(fabs(f.alpha[i]) > 0) |
|
{ |
|
model->SV[j] = prob->x[i]; |
|
model->sv_ind[j] = i; |
|
model->sv_coef[0][j] = f.alpha[i]; |
|
++j; |
|
} |
|
|
|
free(f.alpha); |
|
} |
|
else |
|
{ |
|
|
|
int l = prob->l; |
|
int nr_class; |
|
int *label = NULL; |
|
int *start = NULL; |
|
int *count = NULL; |
|
int *perm = Malloc(int,l); |
|
|
|
|
|
NAMESPACE::svm_group_classes(prob,&nr_class,&label,&start,&count,perm); |
|
#ifdef _DENSE_REP |
|
PREFIX(node) *x = Malloc(PREFIX(node),l); |
|
#else |
|
PREFIX(node) **x = Malloc(PREFIX(node) *,l); |
|
#endif |
|
double *W = Malloc(double, l); |
|
|
|
int i; |
|
for(i=0;i<l;i++) |
|
{ |
|
x[i] = prob->x[perm[i]]; |
|
W[i] = prob->W[perm[i]]; |
|
} |
|
|
|
|
|
|
|
double *weighted_C = Malloc(double, nr_class); |
|
for(i=0;i<nr_class;i++) |
|
weighted_C[i] = param->C; |
|
for(i=0;i<param->nr_weight;i++) |
|
{ |
|
int j; |
|
for(j=0;j<nr_class;j++) |
|
if(param->weight_label[i] == label[j]) |
|
break; |
|
if(j == nr_class) |
|
fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); |
|
else |
|
weighted_C[j] *= param->weight[i]; |
|
} |
|
|
|
|
|
|
|
bool *nonzero = Malloc(bool,l); |
|
for(i=0;i<l;i++) |
|
nonzero[i] = false; |
|
NAMESPACE::decision_function *f = Malloc(NAMESPACE::decision_function,nr_class*(nr_class-1)/2); |
|
|
|
double *probA=NULL,*probB=NULL; |
|
if (param->probability) |
|
{ |
|
probA=Malloc(double,nr_class*(nr_class-1)/2); |
|
probB=Malloc(double,nr_class*(nr_class-1)/2); |
|
} |
|
|
|
int p = 0; |
|
for(i=0;i<nr_class;i++) |
|
for(int j=i+1;j<nr_class;j++) |
|
{ |
|
PREFIX(problem) sub_prob; |
|
int si = start[i], sj = start[j]; |
|
int ci = count[i], cj = count[j]; |
|
sub_prob.l = ci+cj; |
|
#ifdef _DENSE_REP |
|
sub_prob.x = Malloc(PREFIX(node),sub_prob.l); |
|
#else |
|
sub_prob.x = Malloc(PREFIX(node) *,sub_prob.l); |
|
#endif |
|
sub_prob.W = Malloc(double,sub_prob.l); |
|
sub_prob.y = Malloc(double,sub_prob.l); |
|
int k; |
|
for(k=0;k<ci;k++) |
|
{ |
|
sub_prob.x[k] = x[si+k]; |
|
sub_prob.y[k] = +1; |
|
sub_prob.W[k] = W[si+k]; |
|
} |
|
for(k=0;k<cj;k++) |
|
{ |
|
sub_prob.x[ci+k] = x[sj+k]; |
|
sub_prob.y[ci+k] = -1; |
|
sub_prob.W[ci+k] = W[sj+k]; |
|
} |
|
|
|
if(param->probability) |
|
NAMESPACE::svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p], status, blas_functions); |
|
|
|
f[p] = NAMESPACE::svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j], status, blas_functions); |
|
for(k=0;k<ci;k++) |
|
if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) |
|
nonzero[si+k] = true; |
|
for(k=0;k<cj;k++) |
|
if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) |
|
nonzero[sj+k] = true; |
|
free(sub_prob.x); |
|
free(sub_prob.y); |
|
free(sub_prob.W); |
|
++p; |
|
} |
|
|
|
|
|
|
|
model->nr_class = nr_class; |
|
|
|
model->label = Malloc(int,nr_class); |
|
for(i=0;i<nr_class;i++) |
|
model->label[i] = label[i]; |
|
|
|
model->rho = Malloc(double,nr_class*(nr_class-1)/2); |
|
model->n_iter = Malloc(int,nr_class*(nr_class-1)/2); |
|
for(i=0;i<nr_class*(nr_class-1)/2;i++) |
|
{ |
|
model->rho[i] = f[i].rho; |
|
model->n_iter[i] = f[i].n_iter; |
|
} |
|
|
|
if(param->probability) |
|
{ |
|
model->probA = Malloc(double,nr_class*(nr_class-1)/2); |
|
model->probB = Malloc(double,nr_class*(nr_class-1)/2); |
|
for(i=0;i<nr_class*(nr_class-1)/2;i++) |
|
{ |
|
model->probA[i] = probA[i]; |
|
model->probB[i] = probB[i]; |
|
} |
|
} |
|
else |
|
{ |
|
model->probA=NULL; |
|
model->probB=NULL; |
|
} |
|
|
|
int total_sv = 0; |
|
int *nz_count = Malloc(int,nr_class); |
|
model->nSV = Malloc(int,nr_class); |
|
for(i=0;i<nr_class;i++) |
|
{ |
|
int nSV = 0; |
|
for(int j=0;j<count[i];j++) |
|
if(nonzero[start[i]+j]) |
|
{ |
|
++nSV; |
|
++total_sv; |
|
} |
|
model->nSV[i] = nSV; |
|
nz_count[i] = nSV; |
|
} |
|
|
|
info("Total nSV = %d\n",total_sv); |
|
|
|
model->l = total_sv; |
|
model->sv_ind = Malloc(int, total_sv); |
|
#ifdef _DENSE_REP |
|
model->SV = Malloc(PREFIX(node),total_sv); |
|
#else |
|
model->SV = Malloc(PREFIX(node) *,total_sv); |
|
#endif |
|
p = 0; |
|
for(i=0;i<l;i++) { |
|
if(nonzero[i]) { |
|
model->SV[p] = x[i]; |
|
model->sv_ind[p] = perm[i]; |
|
++p; |
|
} |
|
} |
|
|
|
int *nz_start = Malloc(int,nr_class); |
|
nz_start[0] = 0; |
|
for(i=1;i<nr_class;i++) |
|
nz_start[i] = nz_start[i-1]+nz_count[i-1]; |
|
|
|
model->sv_coef = Malloc(double *,nr_class-1); |
|
for(i=0;i<nr_class-1;i++) |
|
model->sv_coef[i] = Malloc(double,total_sv); |
|
|
|
p = 0; |
|
for(i=0;i<nr_class;i++) |
|
for(int j=i+1;j<nr_class;j++) |
|
{ |
|
|
|
|
|
|
|
|
|
int si = start[i]; |
|
int sj = start[j]; |
|
int ci = count[i]; |
|
int cj = count[j]; |
|
|
|
int q = nz_start[i]; |
|
int k; |
|
for(k=0;k<ci;k++) |
|
if(nonzero[si+k]) |
|
model->sv_coef[j-1][q++] = f[p].alpha[k]; |
|
q = nz_start[j]; |
|
for(k=0;k<cj;k++) |
|
if(nonzero[sj+k]) |
|
model->sv_coef[i][q++] = f[p].alpha[ci+k]; |
|
++p; |
|
} |
|
|
|
free(label); |
|
free(probA); |
|
free(probB); |
|
free(count); |
|
free(perm); |
|
free(start); |
|
free(W); |
|
free(x); |
|
free(weighted_C); |
|
free(nonzero); |
|
for(i=0;i<nr_class*(nr_class-1)/2;i++) |
|
free(f[i].alpha); |
|
free(f); |
|
free(nz_count); |
|
free(nz_start); |
|
} |
|
free(newprob.x); |
|
free(newprob.y); |
|
free(newprob.W); |
|
return model; |
|
} |
|
|
|
|
|
void PREFIX(cross_validation)(const PREFIX(problem) *prob, const svm_parameter *param, int nr_fold, double *target, BlasFunctions *blas_functions) |
|
{ |
|
int i; |
|
int *fold_start = Malloc(int,nr_fold+1); |
|
int l = prob->l; |
|
int *perm = Malloc(int,l); |
|
int nr_class; |
|
if(param->random_seed >= 0) |
|
{ |
|
set_seed(param->random_seed); |
|
} |
|
|
|
|
|
|
|
if((param->svm_type == C_SVC || |
|
param->svm_type == NU_SVC) && nr_fold < l) |
|
{ |
|
int *start = NULL; |
|
int *label = NULL; |
|
int *count = NULL; |
|
NAMESPACE::svm_group_classes(prob,&nr_class,&label,&start,&count,perm); |
|
|
|
|
|
int *fold_count = Malloc(int,nr_fold); |
|
int c; |
|
int *index = Malloc(int,l); |
|
for(i=0;i<l;i++) |
|
index[i]=perm[i]; |
|
for (c=0; c<nr_class; c++) |
|
for(i=0;i<count[c];i++) |
|
{ |
|
int j = i+bounded_rand_int(count[c]-i); |
|
swap(index[start[c]+j],index[start[c]+i]); |
|
} |
|
for(i=0;i<nr_fold;i++) |
|
{ |
|
fold_count[i] = 0; |
|
for (c=0; c<nr_class;c++) |
|
fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; |
|
} |
|
fold_start[0]=0; |
|
for (i=1;i<=nr_fold;i++) |
|
fold_start[i] = fold_start[i-1]+fold_count[i-1]; |
|
for (c=0; c<nr_class;c++) |
|
for(i=0;i<nr_fold;i++) |
|
{ |
|
int begin = start[c]+i*count[c]/nr_fold; |
|
int end = start[c]+(i+1)*count[c]/nr_fold; |
|
for(int j=begin;j<end;j++) |
|
{ |
|
perm[fold_start[i]] = index[j]; |
|
fold_start[i]++; |
|
} |
|
} |
|
fold_start[0]=0; |
|
for (i=1;i<=nr_fold;i++) |
|
fold_start[i] = fold_start[i-1]+fold_count[i-1]; |
|
free(start); |
|
free(label); |
|
free(count); |
|
free(index); |
|
free(fold_count); |
|
} |
|
else |
|
{ |
|
for(i=0;i<l;i++) perm[i]=i; |
|
for(i=0;i<l;i++) |
|
{ |
|
int j = i+bounded_rand_int(l-i); |
|
swap(perm[i],perm[j]); |
|
} |
|
for(i=0;i<=nr_fold;i++) |
|
fold_start[i]=i*l/nr_fold; |
|
} |
|
|
|
for(i=0;i<nr_fold;i++) |
|
{ |
|
int begin = fold_start[i]; |
|
int end = fold_start[i+1]; |
|
int j,k; |
|
struct PREFIX(problem) subprob; |
|
|
|
subprob.l = l-(end-begin); |
|
#ifdef _DENSE_REP |
|
subprob.x = Malloc(struct PREFIX(node),subprob.l); |
|
#else |
|
subprob.x = Malloc(struct PREFIX(node)*,subprob.l); |
|
#endif |
|
subprob.y = Malloc(double,subprob.l); |
|
subprob.W = Malloc(double,subprob.l); |
|
|
|
k=0; |
|
for(j=0;j<begin;j++) |
|
{ |
|
subprob.x[k] = prob->x[perm[j]]; |
|
subprob.y[k] = prob->y[perm[j]]; |
|
subprob.W[k] = prob->W[perm[j]]; |
|
++k; |
|
} |
|
for(j=end;j<l;j++) |
|
{ |
|
subprob.x[k] = prob->x[perm[j]]; |
|
subprob.y[k] = prob->y[perm[j]]; |
|
subprob.W[k] = prob->W[perm[j]]; |
|
++k; |
|
} |
|
int dummy_status = 0; |
|
struct PREFIX(model) *submodel = PREFIX(train)(&subprob,param, &dummy_status, blas_functions); |
|
if(param->probability && |
|
(param->svm_type == C_SVC || param->svm_type == NU_SVC)) |
|
{ |
|
double *prob_estimates=Malloc(double, PREFIX(get_nr_class)(submodel)); |
|
for(j=begin;j<end;j++) |
|
#ifdef _DENSE_REP |
|
target[perm[j]] = PREFIX(predict_probability)(submodel,(prob->x + perm[j]),prob_estimates, blas_functions); |
|
#else |
|
target[perm[j]] = PREFIX(predict_probability)(submodel,prob->x[perm[j]],prob_estimates, blas_functions); |
|
#endif |
|
free(prob_estimates); |
|
} |
|
else |
|
for(j=begin;j<end;j++) |
|
#ifdef _DENSE_REP |
|
target[perm[j]] = PREFIX(predict)(submodel,prob->x+perm[j],blas_functions); |
|
#else |
|
target[perm[j]] = PREFIX(predict)(submodel,prob->x[perm[j]],blas_functions); |
|
#endif |
|
PREFIX(free_and_destroy_model)(&submodel); |
|
free(subprob.x); |
|
free(subprob.y); |
|
free(subprob.W); |
|
} |
|
free(fold_start); |
|
free(perm); |
|
} |
|
|
|
|
|
int PREFIX(get_svm_type)(const PREFIX(model) *model) |
|
{ |
|
return model->param.svm_type; |
|
} |
|
|
|
int PREFIX(get_nr_class)(const PREFIX(model) *model) |
|
{ |
|
return model->nr_class; |
|
} |
|
|
|
void PREFIX(get_labels)(const PREFIX(model) *model, int* label) |
|
{ |
|
if (model->label != NULL) |
|
for(int i=0;i<model->nr_class;i++) |
|
label[i] = model->label[i]; |
|
} |
|
|
|
double PREFIX(get_svr_probability)(const PREFIX(model) *model) |
|
{ |
|
if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && |
|
model->probA!=NULL) |
|
return model->probA[0]; |
|
else |
|
{ |
|
fprintf(stderr,"Model doesn't contain information for SVR probability inference\n"); |
|
return 0; |
|
} |
|
} |
|
|
|
double PREFIX(predict_values)(const PREFIX(model) *model, const PREFIX(node) *x, double* dec_values, BlasFunctions *blas_functions) |
|
{ |
|
int i; |
|
if(model->param.svm_type == ONE_CLASS || |
|
model->param.svm_type == EPSILON_SVR || |
|
model->param.svm_type == NU_SVR) |
|
{ |
|
double *sv_coef = model->sv_coef[0]; |
|
double sum = 0; |
|
|
|
for(i=0;i<model->l;i++) |
|
#ifdef _DENSE_REP |
|
sum += sv_coef[i] * NAMESPACE::Kernel::k_function(x,model->SV+i,model->param,blas_functions); |
|
#else |
|
sum += sv_coef[i] * NAMESPACE::Kernel::k_function(x,model->SV[i],model->param,blas_functions); |
|
#endif |
|
sum -= model->rho[0]; |
|
*dec_values = sum; |
|
|
|
if(model->param.svm_type == ONE_CLASS) |
|
return (sum>0)?1:-1; |
|
else |
|
return sum; |
|
} |
|
else |
|
{ |
|
int nr_class = model->nr_class; |
|
int l = model->l; |
|
|
|
double *kvalue = Malloc(double,l); |
|
for(i=0;i<l;i++) |
|
#ifdef _DENSE_REP |
|
kvalue[i] = NAMESPACE::Kernel::k_function(x,model->SV+i,model->param,blas_functions); |
|
#else |
|
kvalue[i] = NAMESPACE::Kernel::k_function(x,model->SV[i],model->param,blas_functions); |
|
#endif |
|
|
|
int *start = Malloc(int,nr_class); |
|
start[0] = 0; |
|
for(i=1;i<nr_class;i++) |
|
start[i] = start[i-1]+model->nSV[i-1]; |
|
|
|
int *vote = Malloc(int,nr_class); |
|
for(i=0;i<nr_class;i++) |
|
vote[i] = 0; |
|
|
|
int p=0; |
|
for(i=0;i<nr_class;i++) |
|
for(int j=i+1;j<nr_class;j++) |
|
{ |
|
double sum = 0; |
|
int si = start[i]; |
|
int sj = start[j]; |
|
int ci = model->nSV[i]; |
|
int cj = model->nSV[j]; |
|
|
|
int k; |
|
double *coef1 = model->sv_coef[j-1]; |
|
double *coef2 = model->sv_coef[i]; |
|
for(k=0;k<ci;k++) |
|
sum += coef1[si+k] * kvalue[si+k]; |
|
for(k=0;k<cj;k++) |
|
sum += coef2[sj+k] * kvalue[sj+k]; |
|
sum -= model->rho[p]; |
|
dec_values[p] = sum; |
|
|
|
if(dec_values[p] > 0) |
|
++vote[i]; |
|
else |
|
++vote[j]; |
|
p++; |
|
} |
|
|
|
int vote_max_idx = 0; |
|
for(i=1;i<nr_class;i++) |
|
if(vote[i] > vote[vote_max_idx]) |
|
vote_max_idx = i; |
|
|
|
free(kvalue); |
|
free(start); |
|
free(vote); |
|
return model->label[vote_max_idx]; |
|
} |
|
} |
|
|
|
double PREFIX(predict)(const PREFIX(model) *model, const PREFIX(node) *x, BlasFunctions *blas_functions) |
|
{ |
|
int nr_class = model->nr_class; |
|
double *dec_values; |
|
if(model->param.svm_type == ONE_CLASS || |
|
model->param.svm_type == EPSILON_SVR || |
|
model->param.svm_type == NU_SVR) |
|
dec_values = Malloc(double, 1); |
|
else |
|
dec_values = Malloc(double, nr_class*(nr_class-1)/2); |
|
double pred_result = PREFIX(predict_values)(model, x, dec_values, blas_functions); |
|
free(dec_values); |
|
return pred_result; |
|
} |
|
|
|
double PREFIX(predict_probability)( |
|
const PREFIX(model) *model, const PREFIX(node) *x, double *prob_estimates, BlasFunctions *blas_functions) |
|
{ |
|
if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && |
|
model->probA!=NULL && model->probB!=NULL) |
|
{ |
|
int i; |
|
int nr_class = model->nr_class; |
|
double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); |
|
PREFIX(predict_values)(model, x, dec_values, blas_functions); |
|
|
|
double min_prob=1e-7; |
|
double **pairwise_prob=Malloc(double *,nr_class); |
|
for(i=0;i<nr_class;i++) |
|
pairwise_prob[i]=Malloc(double,nr_class); |
|
int k=0; |
|
for(i=0;i<nr_class;i++) |
|
for(int j=i+1;j<nr_class;j++) |
|
{ |
|
pairwise_prob[i][j]=min(max(NAMESPACE::sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); |
|
pairwise_prob[j][i]=1-pairwise_prob[i][j]; |
|
k++; |
|
} |
|
NAMESPACE::multiclass_probability(nr_class,pairwise_prob,prob_estimates); |
|
|
|
int prob_max_idx = 0; |
|
for(i=1;i<nr_class;i++) |
|
if(prob_estimates[i] > prob_estimates[prob_max_idx]) |
|
prob_max_idx = i; |
|
for(i=0;i<nr_class;i++) |
|
free(pairwise_prob[i]); |
|
free(dec_values); |
|
free(pairwise_prob); |
|
return model->label[prob_max_idx]; |
|
} |
|
else |
|
return PREFIX(predict)(model, x, blas_functions); |
|
} |
|
|
|
|
|
void PREFIX(free_model_content)(PREFIX(model)* model_ptr) |
|
{ |
|
if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL) |
|
#ifdef _DENSE_REP |
|
for (int i = 0; i < model_ptr->l; i++) |
|
free(model_ptr->SV[i].values); |
|
#else |
|
free((void *)(model_ptr->SV[0])); |
|
#endif |
|
|
|
if(model_ptr->sv_coef) |
|
{ |
|
for(int i=0;i<model_ptr->nr_class-1;i++) |
|
free(model_ptr->sv_coef[i]); |
|
} |
|
|
|
free(model_ptr->SV); |
|
model_ptr->SV = NULL; |
|
|
|
free(model_ptr->sv_coef); |
|
model_ptr->sv_coef = NULL; |
|
|
|
free(model_ptr->sv_ind); |
|
model_ptr->sv_ind = NULL; |
|
|
|
free(model_ptr->rho); |
|
model_ptr->rho = NULL; |
|
|
|
free(model_ptr->label); |
|
model_ptr->label= NULL; |
|
|
|
free(model_ptr->probA); |
|
model_ptr->probA = NULL; |
|
|
|
free(model_ptr->probB); |
|
model_ptr->probB= NULL; |
|
|
|
free(model_ptr->nSV); |
|
model_ptr->nSV = NULL; |
|
|
|
free(model_ptr->n_iter); |
|
model_ptr->n_iter = NULL; |
|
} |
|
|
|
void PREFIX(free_and_destroy_model)(PREFIX(model)** model_ptr_ptr) |
|
{ |
|
if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL) |
|
{ |
|
PREFIX(free_model_content)(*model_ptr_ptr); |
|
free(*model_ptr_ptr); |
|
*model_ptr_ptr = NULL; |
|
} |
|
} |
|
|
|
void PREFIX(destroy_param)(svm_parameter* param) |
|
{ |
|
free(param->weight_label); |
|
free(param->weight); |
|
} |
|
|
|
const char *PREFIX(check_parameter)(const PREFIX(problem) *prob, const svm_parameter *param) |
|
{ |
|
|
|
|
|
int svm_type = param->svm_type; |
|
if(svm_type != C_SVC && |
|
svm_type != NU_SVC && |
|
svm_type != ONE_CLASS && |
|
svm_type != EPSILON_SVR && |
|
svm_type != NU_SVR) |
|
return "unknown svm type"; |
|
|
|
|
|
|
|
int kernel_type = param->kernel_type; |
|
if(kernel_type != LINEAR && |
|
kernel_type != POLY && |
|
kernel_type != RBF && |
|
kernel_type != SIGMOID && |
|
kernel_type != PRECOMPUTED) |
|
return "unknown kernel type"; |
|
|
|
if(param->gamma < 0) |
|
return "gamma < 0"; |
|
|
|
if(param->degree < 0) |
|
return "degree of polynomial kernel < 0"; |
|
|
|
|
|
|
|
if(param->cache_size <= 0) |
|
return "cache_size <= 0"; |
|
|
|
if(param->eps <= 0) |
|
return "eps <= 0"; |
|
|
|
if(svm_type == C_SVC || |
|
svm_type == EPSILON_SVR || |
|
svm_type == NU_SVR) |
|
if(param->C <= 0) |
|
return "C <= 0"; |
|
|
|
if(svm_type == NU_SVC || |
|
svm_type == ONE_CLASS || |
|
svm_type == NU_SVR) |
|
if(param->nu <= 0 || param->nu > 1) |
|
return "nu <= 0 or nu > 1"; |
|
|
|
if(svm_type == EPSILON_SVR) |
|
if(param->p < 0) |
|
return "p < 0"; |
|
|
|
if(param->shrinking != 0 && |
|
param->shrinking != 1) |
|
return "shrinking != 0 and shrinking != 1"; |
|
|
|
if(param->probability != 0 && |
|
param->probability != 1) |
|
return "probability != 0 and probability != 1"; |
|
|
|
if(param->probability == 1 && |
|
svm_type == ONE_CLASS) |
|
return "one-class SVM probability output not supported yet"; |
|
|
|
|
|
|
|
|
|
if(svm_type == NU_SVC) |
|
{ |
|
int l = prob->l; |
|
int max_nr_class = 16; |
|
int nr_class = 0; |
|
int *label = Malloc(int,max_nr_class); |
|
double *count = Malloc(double,max_nr_class); |
|
|
|
int i; |
|
for(i=0;i<l;i++) |
|
{ |
|
int this_label = (int)prob->y[i]; |
|
int j; |
|
for(j=0;j<nr_class;j++) |
|
if(this_label == label[j]) |
|
{ |
|
count[j] += prob->W[i]; |
|
break; |
|
} |
|
if(j == nr_class) |
|
{ |
|
if(nr_class == max_nr_class) |
|
{ |
|
max_nr_class *= 2; |
|
label = (int *)realloc(label,max_nr_class*sizeof(int)); |
|
count = (double *)realloc(count,max_nr_class*sizeof(double)); |
|
|
|
} |
|
label[nr_class] = this_label; |
|
count[nr_class] = prob->W[i]; |
|
++nr_class; |
|
} |
|
} |
|
|
|
for(i=0;i<nr_class;i++) |
|
{ |
|
double n1 = count[i]; |
|
for(int j=i+1;j<nr_class;j++) |
|
{ |
|
double n2 = count[j]; |
|
if(param->nu*(n1+n2)/2 > min(n1,n2)) |
|
{ |
|
free(label); |
|
free(count); |
|
return "specified nu is infeasible"; |
|
} |
|
} |
|
} |
|
free(label); |
|
free(count); |
|
} |
|
|
|
if(svm_type == C_SVC || |
|
svm_type == EPSILON_SVR || |
|
svm_type == NU_SVR || |
|
svm_type == ONE_CLASS) |
|
{ |
|
PREFIX(problem) newprob; |
|
|
|
remove_zero_weight(&newprob, prob); |
|
|
|
|
|
if(newprob.l == 0) { |
|
free(newprob.x); |
|
free(newprob.y); |
|
free(newprob.W); |
|
return "Invalid input - all samples have zero or negative weights."; |
|
} |
|
else if(prob->l != newprob.l && |
|
svm_type == C_SVC) |
|
{ |
|
bool only_one_label = true; |
|
int first_label = newprob.y[0]; |
|
for(int i=1;i<newprob.l;i++) |
|
{ |
|
if(newprob.y[i] != first_label) |
|
{ |
|
only_one_label = false; |
|
break; |
|
} |
|
} |
|
if(only_one_label) { |
|
free(newprob.x); |
|
free(newprob.y); |
|
free(newprob.W); |
|
return "Invalid input - all samples with positive weights belong to the same class."; |
|
} |
|
} |
|
|
|
free(newprob.x); |
|
free(newprob.y); |
|
free(newprob.W); |
|
} |
|
return NULL; |
|
} |
|
|
|
void PREFIX(set_print_string_function)(void (*print_func)(const char *)) |
|
{ |
|
if(print_func == NULL) |
|
svm_print_string = &print_string_stdout; |
|
else |
|
svm_print_string = print_func; |
|
} |
|
|