/* Copyright (c) 2000-2009 Chih-Chung Chang and Chih-Jen Lin All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither name of copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Modified 2010: - Support for dense data by Ming-Fang Weng - Return indices for support vectors, Fabian Pedregosa - Fixes to avoid name collision, Fabian Pedregosa - Add support for instance weights, Fabian Pedregosa based on work by Ming-Wei Chang, Hsuan-Tien Lin, Ming-Hen Tsai, Chia-Hua Ho and Hsiang-Fu Yu, . - Make labels sorted in svm_group_classes, Fabian Pedregosa. Modified 2020: - Improved random number generator by using a mersenne twister + tweaked lemire postprocessor. This fixed a convergence issue on windows targets. Sylvain Marie, Schneider Electric see Modified 2021: - Exposed number of iterations run in optimization, Juan Martín Loyola. See */ #include #include #include #include #include #include #include #include #include #include "svm.h" #include "_svm_cython_blas_helpers.h" #include "../newrand/newrand.h" #ifndef _LIBSVM_CPP typedef float Qfloat; typedef signed char schar; #ifndef min template static inline T min(T x,T y) { return (x static inline T max(T x,T y) { return (x>y)?x:y; } #endif template static inline void swap(T& x, T& y) { T t=x; x=y; y=t; } template static inline void clone(T*& dst, S* src, int n) { dst = new T[n]; memcpy((void *)dst,(void *)src,sizeof(T)*n); } static inline double powi(double base, int times) { double tmp = base, ret = 1.0; for(int t=times; t>0; t/=2) { if(t%2==1) ret*=tmp; tmp = tmp * tmp; } return ret; } #define INF HUGE_VAL #define TAU 1e-12 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) static void print_string_stdout(const char *s) { fputs(s,stdout); fflush(stdout); } static void (*svm_print_string) (const char *) = &print_string_stdout; static void info(const char *fmt,...) { char buf[BUFSIZ]; va_list ap; va_start(ap,fmt); vsprintf(buf,fmt,ap); va_end(ap); (*svm_print_string)(buf); } #endif #define _LIBSVM_CPP /* yeah, this is ugly. It helps us to have unique names for both sparse and dense versions of this library */ #ifdef _DENSE_REP #ifdef PREFIX #undef PREFIX #endif #ifdef NAMESPACE #undef NAMESPACE #endif #define PREFIX(name) svm_##name #define NAMESPACE svm namespace svm { #else /* sparse representation */ #ifdef PREFIX #undef PREFIX #endif #ifdef NAMESPACE #undef NAMESPACE #endif #define PREFIX(name) svm_csr_##name #define NAMESPACE svm_csr namespace svm_csr { #endif // // Kernel Cache // // l is the number of total data items // size is the cache size limit in bytes // class Cache { public: Cache(int l,long int size); ~Cache(); // request data [0,len) // return some position p where [p,len) need to be filled // (p >= len if nothing needs to be filled) int get_data(const int index, Qfloat **data, int len); void swap_index(int i, int j); private: int l; long int size; struct head_t { head_t *prev, *next; // a circular list Qfloat *data; int len; // data[0,len) is cached in this entry }; head_t *head; head_t lru_head; void lru_delete(head_t *h); void lru_insert(head_t *h); }; Cache::Cache(int l_,long int size_):l(l_),size(size_) { head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 size /= sizeof(Qfloat); size -= l * sizeof(head_t) / sizeof(Qfloat); size = max(size, 2 * (long int) l); // cache must be large enough for two columns lru_head.next = lru_head.prev = &lru_head; } Cache::~Cache() { for(head_t *h = lru_head.next; h != &lru_head; h=h->next) free(h->data); free(head); } void Cache::lru_delete(head_t *h) { // delete from current location h->prev->next = h->next; h->next->prev = h->prev; } void Cache::lru_insert(head_t *h) { // insert to last position h->next = &lru_head; h->prev = lru_head.prev; h->prev->next = h; h->next->prev = h; } int Cache::get_data(const int index, Qfloat **data, int len) { head_t *h = &head[index]; if(h->len) lru_delete(h); int more = len - h->len; if(more > 0) { // free old space while(size < more) { head_t *old = lru_head.next; lru_delete(old); free(old->data); size += old->len; old->data = 0; old->len = 0; } // allocate new space h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); size -= more; swap(h->len,len); } lru_insert(h); *data = h->data; return len; } void Cache::swap_index(int i, int j) { if(i==j) return; if(head[i].len) lru_delete(&head[i]); if(head[j].len) lru_delete(&head[j]); swap(head[i].data,head[j].data); swap(head[i].len,head[j].len); if(head[i].len) lru_insert(&head[i]); if(head[j].len) lru_insert(&head[j]); if(i>j) swap(i,j); for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) { if(h->len > i) { if(h->len > j) swap(h->data[i],h->data[j]); else { // give up lru_delete(h); free(h->data); size += h->len; h->data = 0; h->len = 0; } } } } // // Kernel evaluation // // the static method k_function is for doing single kernel evaluation // the constructor of Kernel prepares to calculate the l*l kernel matrix // the member function get_Q is for getting one column from the Q Matrix // class QMatrix { public: virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const = 0; virtual ~QMatrix() {} }; class Kernel: public QMatrix { public: #ifdef _DENSE_REP Kernel(int l, PREFIX(node) * x, const svm_parameter& param, BlasFunctions *blas_functions); #else Kernel(int l, PREFIX(node) * const * x, const svm_parameter& param, BlasFunctions *blas_functions); #endif virtual ~Kernel(); static double k_function(const PREFIX(node) *x, const PREFIX(node) *y, const svm_parameter& param, BlasFunctions *blas_functions); virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const // no so const... { swap(x[i],x[j]); if(x_square) swap(x_square[i],x_square[j]); } protected: double (Kernel::*kernel_function)(int i, int j) const; private: #ifdef _DENSE_REP PREFIX(node) *x; #else const PREFIX(node) **x; #endif double *x_square; // scipy blas pointer BlasFunctions *m_blas; // svm_parameter const int kernel_type; const int degree; const double gamma; const double coef0; static double dot(const PREFIX(node) *px, const PREFIX(node) *py, BlasFunctions *blas_functions); #ifdef _DENSE_REP static double dot(const PREFIX(node) &px, const PREFIX(node) &py, BlasFunctions *blas_functions); #endif double kernel_linear(int i, int j) const { return dot(x[i],x[j],m_blas); } double kernel_poly(int i, int j) const { return powi(gamma*dot(x[i],x[j],m_blas)+coef0,degree); } double kernel_rbf(int i, int j) const { return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j],m_blas))); } double kernel_sigmoid(int i, int j) const { return tanh(gamma*dot(x[i],x[j],m_blas)+coef0); } double kernel_precomputed(int i, int j) const { #ifdef _DENSE_REP return (x+i)->values[x[j].ind]; #else return x[i][(int)(x[j][0].value)].value; #endif } }; #ifdef _DENSE_REP Kernel::Kernel(int l, PREFIX(node) * x_, const svm_parameter& param, BlasFunctions *blas_functions) #else Kernel::Kernel(int l, PREFIX(node) * const * x_, const svm_parameter& param, BlasFunctions *blas_functions) #endif :kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0) { m_blas = blas_functions; switch(kernel_type) { case LINEAR: kernel_function = &Kernel::kernel_linear; break; case POLY: kernel_function = &Kernel::kernel_poly; break; case RBF: kernel_function = &Kernel::kernel_rbf; break; case SIGMOID: kernel_function = &Kernel::kernel_sigmoid; break; case PRECOMPUTED: kernel_function = &Kernel::kernel_precomputed; break; } clone(x,x_,l); if(kernel_type == RBF) { x_square = new double[l]; for(int i=0;idim, py->dim); sum = blas_functions->dot(dim, px->values, 1, py->values, 1); return sum; } double Kernel::dot(const PREFIX(node) &px, const PREFIX(node) &py, BlasFunctions *blas_functions) { double sum = 0; int dim = min(px.dim, py.dim); sum = blas_functions->dot(dim, px.values, 1, py.values, 1); return sum; } #else double Kernel::dot(const PREFIX(node) *px, const PREFIX(node) *py, BlasFunctions *blas_functions) { double sum = 0; while(px->index != -1 && py->index != -1) { if(px->index == py->index) { sum += px->value * py->value; ++px; ++py; } else { if(px->index > py->index) ++py; else ++px; } } return sum; } #endif double Kernel::k_function(const PREFIX(node) *x, const PREFIX(node) *y, const svm_parameter& param, BlasFunctions *blas_functions) { switch(param.kernel_type) { case LINEAR: return dot(x,y,blas_functions); case POLY: return powi(param.gamma*dot(x,y,blas_functions)+param.coef0,param.degree); case RBF: { double sum = 0; #ifdef _DENSE_REP int dim = min(x->dim, y->dim), i; double* m_array = (double*)malloc(sizeof(double)*dim); for (i = 0; i < dim; i++) { m_array[i] = x->values[i] - y->values[i]; } sum = blas_functions->dot(dim, m_array, 1, m_array, 1); free(m_array); for (; i < x->dim; i++) sum += x->values[i] * x->values[i]; for (; i < y->dim; i++) sum += y->values[i] * y->values[i]; #else while(x->index != -1 && y->index !=-1) { if(x->index == y->index) { double d = x->value - y->value; sum += d*d; ++x; ++y; } else { if(x->index > y->index) { sum += y->value * y->value; ++y; } else { sum += x->value * x->value; ++x; } } } while(x->index != -1) { sum += x->value * x->value; ++x; } while(y->index != -1) { sum += y->value * y->value; ++y; } #endif return exp(-param.gamma*sum); } case SIGMOID: return tanh(param.gamma*dot(x,y,blas_functions)+param.coef0); case PRECOMPUTED: //x: test (validation), y: SV { #ifdef _DENSE_REP return x->values[y->ind]; #else return x[(int)(y->value)].value; #endif } default: return 0; // Unreachable } } // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 // Solves: // // min 0.5(\alpha^T Q \alpha) + p^T \alpha // // y^T \alpha = \delta // y_i = +1 or -1 // 0 <= alpha_i <= Cp for y_i = 1 // 0 <= alpha_i <= Cn for y_i = -1 // // Given: // // Q, p, y, Cp, Cn, and an initial feasible point \alpha // l is the size of vectors and matrices // eps is the stopping tolerance // // solution will be put in \alpha, objective value will be put in obj // class Solver { public: Solver() {}; virtual ~Solver() {}; struct SolutionInfo { double obj; double rho; double *upper_bound; double r; // for Solver_NU bool solve_timed_out; int n_iter; }; void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, double *alpha_, const double *C_, double eps, SolutionInfo* si, int shrinking, int max_iter); protected: int active_size; schar *y; double *G; // gradient of objective function enum { LOWER_BOUND, UPPER_BOUND, FREE }; char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE double *alpha; const QMatrix *Q; const double *QD; double eps; double Cp,Cn; double *C; double *p; int *active_set; double *G_bar; // gradient, if we treat free variables as 0 int l; bool unshrink; // XXX double get_C(int i) { return C[i]; } void update_alpha_status(int i) { if(alpha[i] >= get_C(i)) alpha_status[i] = UPPER_BOUND; else if(alpha[i] <= 0) alpha_status[i] = LOWER_BOUND; else alpha_status[i] = FREE; } bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } bool is_free(int i) { return alpha_status[i] == FREE; } void swap_index(int i, int j); void reconstruct_gradient(); virtual int select_working_set(int &i, int &j); virtual double calculate_rho(); virtual void do_shrinking(); private: bool be_shrunk(int i, double Gmax1, double Gmax2); }; void Solver::swap_index(int i, int j) { Q->swap_index(i,j); swap(y[i],y[j]); swap(G[i],G[j]); swap(alpha_status[i],alpha_status[j]); swap(alpha[i],alpha[j]); swap(p[i],p[j]); swap(active_set[i],active_set[j]); swap(G_bar[i],G_bar[j]); swap(C[i], C[j]); } void Solver::reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if(active_size == l) return; int i,j; int nr_free = 0; for(j=active_size;j 2*active_size*(l-active_size)) { for(i=active_size;iget_Q(i,active_size); for(j=0;jget_Q(i,l); double alpha_i = alpha[i]; for(j=active_size;jl = l; this->Q = &Q; QD=Q.get_QD(); clone(p, p_,l); clone(y, y_,l); clone(alpha,alpha_,l); clone(C, C_, l); this->eps = eps; unshrink = false; si->solve_timed_out = false; // initialize alpha_status { alpha_status = new char[l]; for(int i=0;i= max_iter)) { info("WARN: libsvm Solver reached max_iter"); si->solve_timed_out = true; break; } // show progress and do shrinking if(--counter == 0) { counter = min(l,1000); if(shrinking) do_shrinking(); info("."); } int i,j; if(select_working_set(i,j)!=0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check active_size = l; info("*"); if(select_working_set(i,j)!=0) break; else counter = 1; // do shrinking next iteration } ++iter; // update alpha[i] and alpha[j], handle bounds carefully const Qfloat *Q_i = Q.get_Q(i,active_size); const Qfloat *Q_j = Q.get_Q(j,active_size); double C_i = get_C(i); double C_j = get_C(j); double old_alpha_i = alpha[i]; double old_alpha_j = alpha[j]; if(y[i]!=y[j]) { double quad_coef = QD[i]+QD[j]+2*Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (-G[i]-G[j])/quad_coef; double diff = alpha[i] - alpha[j]; alpha[i] += delta; alpha[j] += delta; if(diff > 0) { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if(diff > C_i - C_j) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double quad_coef = QD[i]+QD[j]-2*Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (G[i]-G[j])/quad_coef; double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if(sum > C_i) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if(sum > C_j) { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for(int k=0;krho = calculate_rho(); // calculate objective value { double v = 0; int i; for(i=0;iobj = v/2; } // put back the solution { for(int i=0;iupper_bound[i] = C[i]; // store number of iterations si->n_iter = iter; info("\noptimization finished, #iter = %d\n",iter); delete[] p; delete[] y; delete[] alpha; delete[] alpha_status; delete[] active_set; delete[] G; delete[] G_bar; delete[] C; } // return 1 if already optimal, return 0 otherwise int Solver::select_working_set(int &out_i, int &out_j) { // return i,j such that // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficient <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmax = -INF; double Gmax2 = -INF; int Gmax_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t= Gmax) { Gmax = -G[t]; Gmax_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmax) { Gmax = G[t]; Gmax_idx = t; } } int i = Gmax_idx; const Qfloat *Q_i = NULL; if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 Q_i = Q->get_Q(i,active_size); for(int j=0;j= Gmax2) Gmax2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff= Gmax-G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Gmax+Gmax2 < eps || Gmin_idx == -1) return 1; out_i = Gmax_idx; out_j = Gmin_idx; return 0; } bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax2); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax1); } else return(false); } void Solver::do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for(i=0;i= Gmax1) Gmax1 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax2) Gmax2 = G[i]; } } else { if(!is_upper_bound(i)) { if(-G[i] >= Gmax2) Gmax2 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax1) Gmax1 = G[i]; } } } if(unshrink == false && Gmax1 + Gmax2 <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; info("*"); } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size--; } } } double Solver::calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for(int i=0;i0) r = sum_free/nr_free; else r = (ub+lb)/2; return r; } // // Solver for nu-svm classification and regression // // additional constraint: e^T \alpha = constant // class Solver_NU : public Solver { public: Solver_NU() {} void Solve(int l, const QMatrix& Q, const double *p, const schar *y, double *alpha, const double *C_, double eps, SolutionInfo* si, int shrinking, int max_iter) { this->si = si; Solver::Solve(l,Q,p,y,alpha,C_,eps,si,shrinking,max_iter); } private: SolutionInfo *si; int select_working_set(int &i, int &j); double calculate_rho(); bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); void do_shrinking(); }; // return 1 if already optimal, return 0 otherwise int Solver_NU::select_working_set(int &out_i, int &out_j) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficient <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; const Qfloat *Q_ip = NULL; const Qfloat *Q_in = NULL; if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q->get_Q(ip,active_size); if(in != -1) Q_in = Q->get_Q(in,active_size); for(int j=0;j= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff=Gmaxn-G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[in]+QD[j]-2*Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps || Gmin_idx == -1) return 1; if (y[Gmin_idx] == +1) out_i = Gmaxp_idx; else out_i = Gmaxn_idx; out_j = Gmin_idx; return 0; } bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax4); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax3); } else return(false); } void Solver_NU::do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for(i=0;i Gmax1) Gmax1 = -G[i]; } else if(-G[i] > Gmax4) Gmax4 = -G[i]; } if(!is_lower_bound(i)) { if(y[i]==+1) { if(G[i] > Gmax2) Gmax2 = G[i]; } else if(G[i] > Gmax3) Gmax3 = G[i]; } } if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size--; } } } double Solver_NU::calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si->r = (r1+r2)/2; return (r1-r2)/2; } // // Q matrices for various formulations // class SVC_Q: public Kernel { public: SVC_Q(const PREFIX(problem)& prob, const svm_parameter& param, const schar *y_, BlasFunctions *blas_functions) :Kernel(prob.l, prob.x, param, blas_functions) { clone(y,y_,prob.l); cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new double[prob.l]; for(int i=0;i*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j*kernel_function)(i,j)); } return data; } double *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(y[i],y[j]); swap(QD[i],QD[j]); } ~SVC_Q() { delete[] y; delete cache; delete[] QD; } private: schar *y; Cache *cache; double *QD; }; class ONE_CLASS_Q: public Kernel { public: ONE_CLASS_Q(const PREFIX(problem)& prob, const svm_parameter& param, BlasFunctions *blas_functions) :Kernel(prob.l, prob.x, param, blas_functions) { cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new double[prob.l]; for(int i=0;i*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j*kernel_function)(i,j); } return data; } double *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(QD[i],QD[j]); } ~ONE_CLASS_Q() { delete cache; delete[] QD; } private: Cache *cache; double *QD; }; class SVR_Q: public Kernel { public: SVR_Q(const PREFIX(problem)& prob, const svm_parameter& param, BlasFunctions *blas_functions) :Kernel(prob.l, prob.x, param, blas_functions) { l = prob.l; cache = new Cache(l,(long int)(param.cache_size*(1<<20))); QD = new double[2*l]; sign = new schar[2*l]; index = new int[2*l]; for(int k=0;k*kernel_function)(k,k); QD[k+l] = QD[k]; } buffer[0] = new Qfloat[2*l]; buffer[1] = new Qfloat[2*l]; next_buffer = 0; } void swap_index(int i, int j) const { swap(sign[i],sign[j]); swap(index[i],index[j]); swap(QD[i],QD[j]); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int j, real_i = index[i]; if(cache->get_data(real_i,&data,l) < l) { for(j=0;j*kernel_function)(real_i,j); } // reorder and copy Qfloat *buf = buffer[next_buffer]; next_buffer = 1 - next_buffer; schar si = sign[i]; for(j=0;jl; double *minus_ones = new double[l]; schar *y = new schar[l]; double *C = new double[l]; int i; for(i=0;iy[i] > 0) { y[i] = +1; C[i] = prob->W[i]*Cp; } else { y[i] = -1; C[i] = prob->W[i]*Cn; } } Solver s; s.Solve(l, SVC_Q(*prob,*param,y, blas_functions), minus_ones, y, alpha, C, param->eps, si, param->shrinking, param->max_iter); /* double sum_alpha=0; for(i=0;il)); */ for(i=0;il; double nu = param->nu; schar *y = new schar[l]; double *C = new double[l]; for(i=0;iy[i]>0) y[i] = +1; else y[i] = -1; C[i] = prob->W[i]; } double nu_l = 0; for(i=0;ieps, si, param->shrinking, param->max_iter); double r = si->r; info("C = %f\n",1/r); for(i=0;iupper_bound[i] /= r; } si->rho /= r; si->obj /= (r*r); delete[] C; delete[] y; delete[] zeros; } static void solve_one_class( const PREFIX(problem) *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si, BlasFunctions *blas_functions) { int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; double *C = new double[l]; int i; double nu_l = 0; for(i=0;iW[i]; nu_l += C[i] * param->nu; } i = 0; while(nu_l > 0) { alpha[i] = min(C[i],nu_l); nu_l -= alpha[i]; ++i; } for(;ieps, si, param->shrinking, param->max_iter); delete[] C; delete[] zeros; delete[] ones; } static void solve_epsilon_svr( const PREFIX(problem) *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si, BlasFunctions *blas_functions) { int l = prob->l; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; double *C = new double[2*l]; int i; for(i=0;ip - prob->y[i]; y[i] = 1; C[i] = prob->W[i]*param->C; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; C[i+l] = prob->W[i]*param->C; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param,blas_functions), linear_term, y, alpha2, C, param->eps, si, param->shrinking, param->max_iter); double sum_alpha = 0; for(i=0;il; double *C = new double[2*l]; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = 0; for(i=0;iW[i]*param->C; sum += C[i] * param->nu; } sum /= 2; for(i=0;iy[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param,blas_functions), linear_term, y, alpha2, C, param->eps, si, param->shrinking, param->max_iter); info("epsilon = %f\n",-si->r); for(i=0;il); Solver::SolutionInfo si; switch(param->svm_type) { case C_SVC: si.upper_bound = Malloc(double,prob->l); solve_c_svc(prob,param,alpha,&si,Cp,Cn,blas_functions); break; case NU_SVC: si.upper_bound = Malloc(double,prob->l); solve_nu_svc(prob,param,alpha,&si,blas_functions); break; case ONE_CLASS: si.upper_bound = Malloc(double,prob->l); solve_one_class(prob,param,alpha,&si,blas_functions); break; case EPSILON_SVR: si.upper_bound = Malloc(double,2*prob->l); solve_epsilon_svr(prob,param,alpha,&si,blas_functions); break; case NU_SVR: si.upper_bound = Malloc(double,2*prob->l); solve_nu_svr(prob,param,alpha,&si,blas_functions); break; } *status |= si.solve_timed_out; info("obj = %f, rho = %f\n",si.obj,si.rho); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;il;i++) { if(fabs(alpha[i]) > 0) { ++nSV; if(prob->y[i] > 0) { if(fabs(alpha[i]) >= si.upper_bound[i]) ++nBSV; } else { if(fabs(alpha[i]) >= si.upper_bound[i]) ++nBSV; } } } free(si.upper_bound); info("nSV = %d, nBSV = %d\n",nSV,nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; f.n_iter = si.n_iter; return f; } // Platt's binary SVM Probabilistic Output: an improvement from Lin et al. static void sigmoid_train( int l, const double *dec_values, const double *labels, double& A, double& B) { double prior1=0, prior0 = 0; int i; for (i=0;i 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-12; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double *t=Malloc(double,l); double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + log(1+exp(-fApB)); else fval += (t[i] - 1)*fApB +log(1+exp(fApB)); } for (iter=0;iter= 0) { p=exp(-fApB)/(1.0+exp(-fApB)); q=1.0/(1.0+exp(-fApB)); } else { p=1.0/(1.0+exp(fApB)); q=exp(fApB)/(1.0+exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (fabs(g1)= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i= 0) newf += t[i]*fApB + log(1+exp(-fApB)); else newf += (t[i] - 1)*fApB +log(1+exp(fApB)); } // Check sufficient decrease if (newf=max_iter) info("Reaching maximal iterations in two-class probability estimates\n"); free(t); } static double sigmoid_predict(double decision_value, double A, double B) { double fApB = decision_value*A+B; // 1-p used later; avoid catastrophic cancellation if (fApB >= 0) return exp(-fApB)/(1.0+exp(-fApB)); else return 1.0/(1+exp(fApB)) ; } // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng static void multiclass_probability(int k, double **r, double *p) { int t,j; int iter = 0, max_iter=max(100,k); double **Q=Malloc(double *,k); double *Qp=Malloc(double,k); double pQp, eps=0.005/k; for (t=0;tmax_error) max_error=error; } if (max_error=max_iter) info("Exceeds max_iter in multiclass_prob\n"); for(t=0;tl); double *dec_values = Malloc(double,prob->l); // random shuffle for(i=0;il;i++) perm[i]=i; for(i=0;il;i++) { int j = i+bounded_rand_int(prob->l-i); swap(perm[i],perm[j]); } for(i=0;il/nr_fold; int end = (i+1)*prob->l/nr_fold; int j,k; struct PREFIX(problem) subprob; subprob.l = prob->l-(end-begin); #ifdef _DENSE_REP subprob.x = Malloc(struct PREFIX(node),subprob.l); #else subprob.x = Malloc(struct PREFIX(node)*,subprob.l); #endif subprob.y = Malloc(double,subprob.l); subprob.W = Malloc(double,subprob.l); k=0; for(j=0;jx[perm[j]]; subprob.y[k] = prob->y[perm[j]]; subprob.W[k] = prob->W[perm[j]]; ++k; } for(j=end;jl;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; subprob.W[k] = prob->W[perm[j]]; ++k; } int p_count=0,n_count=0; for(j=0;j0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j 0 && n_count == 0) for(j=begin;j 0) for(j=begin;jx+perm[j]),&(dec_values[perm[j]]), blas_functions); #else PREFIX(predict_values)(submodel,prob->x[perm[j]],&(dec_values[perm[j]]), blas_functions); #endif // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel->label[0]; } PREFIX(free_and_destroy_model)(&submodel); PREFIX(destroy_param)(&subparam); } free(subprob.x); free(subprob.y); free(subprob.W); } sigmoid_train(prob->l,dec_values,prob->y,probA,probB); free(dec_values); free(perm); } // Return parameter of a Laplace distribution static double svm_svr_probability( const PREFIX(problem) *prob, const svm_parameter *param, BlasFunctions *blas_functions) { int i; int nr_fold = 5; double *ymv = Malloc(double,prob->l); double mae = 0; svm_parameter newparam = *param; newparam.probability = 0; newparam.random_seed = -1; // This is called from train, which already sets // the seed. PREFIX(cross_validation)(prob,&newparam,nr_fold,ymv, blas_functions); for(i=0;il;i++) { ymv[i]=prob->y[i]-ymv[i]; mae += fabs(ymv[i]); } mae /= prob->l; double std=sqrt(2*mae*mae); int count=0; mae=0; for(i=0;il;i++) if (fabs(ymv[i]) > 5*std) count=count+1; else mae+=fabs(ymv[i]); mae /= (prob->l-count); info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); free(ymv); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine static void svm_group_classes(const PREFIX(problem) *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int *data_label = Malloc(int,l); int i, j, this_label, this_count; for(i=0;iy[i]; for(j=0;j=0 && label[i] > this_label) { label[i+1] = label[i]; count[i+1] = count[i]; i--; } label[i+1] = this_label; count[i+1] = this_count; } for (i=0; iy[i]; while(this_label != label[j]){ j ++; } data_label[i] = j; } int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;i 0. // static void remove_zero_weight(PREFIX(problem) *newprob, const PREFIX(problem) *prob) { int i; int l = 0; for(i=0;il;i++) if(prob->W[i] > 0) l++; *newprob = *prob; newprob->l = l; #ifdef _DENSE_REP newprob->x = Malloc(PREFIX(node),l); #else newprob->x = Malloc(PREFIX(node) *,l); #endif newprob->y = Malloc(double,l); newprob->W = Malloc(double,l); int j = 0; for(i=0;il;i++) if(prob->W[i] > 0) { newprob->x[j] = prob->x[i]; newprob->y[j] = prob->y[i]; newprob->W[j] = prob->W[i]; j++; } } // // Interface functions // PREFIX(model) *PREFIX(train)(const PREFIX(problem) *prob, const svm_parameter *param, int *status, BlasFunctions *blas_functions) { PREFIX(problem) newprob; remove_zero_weight(&newprob, prob); prob = &newprob; PREFIX(model) *model = Malloc(PREFIX(model),1); model->param = *param; model->free_sv = 0; // XXX if(param->random_seed >= 0) { set_seed(param->random_seed); } if(param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR) { // regression or one-class-svm model->nr_class = 2; model->label = NULL; model->nSV = NULL; model->probA = NULL; model->probB = NULL; model->sv_coef = Malloc(double *,1); if(param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)) { model->probA = Malloc(double,1); model->probA[0] = NAMESPACE::svm_svr_probability(prob,param,blas_functions); } NAMESPACE::decision_function f = NAMESPACE::svm_train_one(prob,param,0,0, status,blas_functions); model->rho = Malloc(double,1); model->rho[0] = f.rho; model->n_iter = Malloc(int,1); model->n_iter[0] = f.n_iter; int nSV = 0; int i; for(i=0;il;i++) if(fabs(f.alpha[i]) > 0) ++nSV; model->l = nSV; #ifdef _DENSE_REP model->SV = Malloc(PREFIX(node),nSV); #else model->SV = Malloc(PREFIX(node) *,nSV); #endif model->sv_ind = Malloc(int, nSV); model->sv_coef[0] = Malloc(double, nSV); int j = 0; for(i=0;il;i++) if(fabs(f.alpha[i]) > 0) { model->SV[j] = prob->x[i]; model->sv_ind[j] = i; model->sv_coef[0][j] = f.alpha[i]; ++j; } free(f.alpha); } else { // classification int l = prob->l; int nr_class; int *label = NULL; int *start = NULL; int *count = NULL; int *perm = Malloc(int,l); // group training data of the same class NAMESPACE::svm_group_classes(prob,&nr_class,&label,&start,&count,perm); #ifdef _DENSE_REP PREFIX(node) *x = Malloc(PREFIX(node),l); #else PREFIX(node) **x = Malloc(PREFIX(node) *,l); #endif double *W = Malloc(double, l); int i; for(i=0;ix[perm[i]]; W[i] = prob->W[perm[i]]; } // calculate weighted C double *weighted_C = Malloc(double, nr_class); for(i=0;iC; for(i=0;inr_weight;i++) { int j; for(j=0;jweight_label[i] == label[j]) break; if(j == nr_class) fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); else weighted_C[j] *= param->weight[i]; } // train k*(k-1)/2 models bool *nonzero = Malloc(bool,l); for(i=0;iprobability) { probA=Malloc(double,nr_class*(nr_class-1)/2); probB=Malloc(double,nr_class*(nr_class-1)/2); } int p = 0; for(i=0;iprobability) NAMESPACE::svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p], status, blas_functions); f[p] = NAMESPACE::svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j], status, blas_functions); for(k=0;k 0) nonzero[si+k] = true; for(k=0;k 0) nonzero[sj+k] = true; free(sub_prob.x); free(sub_prob.y); free(sub_prob.W); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;ilabel[i] = label[i]; model->rho = Malloc(double,nr_class*(nr_class-1)/2); model->n_iter = Malloc(int,nr_class*(nr_class-1)/2); for(i=0;irho[i] = f[i].rho; model->n_iter[i] = f[i].n_iter; } if(param->probability) { model->probA = Malloc(double,nr_class*(nr_class-1)/2); model->probB = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;iprobA[i] = probA[i]; model->probB[i] = probB[i]; } } else { model->probA=NULL; model->probB=NULL; } int total_sv = 0; int *nz_count = Malloc(int,nr_class); model->nSV = Malloc(int,nr_class); for(i=0;inSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->sv_ind = Malloc(int, total_sv); #ifdef _DENSE_REP model->SV = Malloc(PREFIX(node),total_sv); #else model->SV = Malloc(PREFIX(node) *,total_sv); #endif p = 0; for(i=0;iSV[p] = x[i]; model->sv_ind[p] = perm[i]; ++p; } } int *nz_start = Malloc(int,nr_class); nz_start[0] = 0; for(i=1;isv_coef = Malloc(double *,nr_class-1); for(i=0;isv_coef[i] = Malloc(double,total_sv); p = 0; for(i=0;isv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;ksv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } free(label); free(probA); free(probB); free(count); free(perm); free(start); free(W); free(x); free(weighted_C); free(nonzero); for(i=0;il; int *perm = Malloc(int,l); int nr_class; if(param->random_seed >= 0) { set_seed(param->random_seed); } // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if((param->svm_type == C_SVC || param->svm_type == NU_SVC) && nr_fold < l) { int *start = NULL; int *label = NULL; int *count = NULL; NAMESPACE::svm_group_classes(prob,&nr_class,&label,&start,&count,perm); // random shuffle and then data grouped by fold using the array perm int *fold_count = Malloc(int,nr_fold); int c; int *index = Malloc(int,l); for(i=0;ix[perm[j]]; subprob.y[k] = prob->y[perm[j]]; subprob.W[k] = prob->W[perm[j]]; ++k; } for(j=end;jx[perm[j]]; subprob.y[k] = prob->y[perm[j]]; subprob.W[k] = prob->W[perm[j]]; ++k; } int dummy_status = 0; // IGNORES TIMEOUT ERRORS struct PREFIX(model) *submodel = PREFIX(train)(&subprob,param, &dummy_status, blas_functions); if(param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC)) { double *prob_estimates=Malloc(double, PREFIX(get_nr_class)(submodel)); for(j=begin;jx + perm[j]),prob_estimates, blas_functions); #else target[perm[j]] = PREFIX(predict_probability)(submodel,prob->x[perm[j]],prob_estimates, blas_functions); #endif free(prob_estimates); } else for(j=begin;jx+perm[j],blas_functions); #else target[perm[j]] = PREFIX(predict)(submodel,prob->x[perm[j]],blas_functions); #endif PREFIX(free_and_destroy_model)(&submodel); free(subprob.x); free(subprob.y); free(subprob.W); } free(fold_start); free(perm); } int PREFIX(get_svm_type)(const PREFIX(model) *model) { return model->param.svm_type; } int PREFIX(get_nr_class)(const PREFIX(model) *model) { return model->nr_class; } void PREFIX(get_labels)(const PREFIX(model) *model, int* label) { if (model->label != NULL) for(int i=0;inr_class;i++) label[i] = model->label[i]; } double PREFIX(get_svr_probability)(const PREFIX(model) *model) { if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL) return model->probA[0]; else { fprintf(stderr,"Model doesn't contain information for SVR probability inference\n"); return 0; } } double PREFIX(predict_values)(const PREFIX(model) *model, const PREFIX(node) *x, double* dec_values, BlasFunctions *blas_functions) { int i; if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double *sv_coef = model->sv_coef[0]; double sum = 0; for(i=0;il;i++) #ifdef _DENSE_REP sum += sv_coef[i] * NAMESPACE::Kernel::k_function(x,model->SV+i,model->param,blas_functions); #else sum += sv_coef[i] * NAMESPACE::Kernel::k_function(x,model->SV[i],model->param,blas_functions); #endif sum -= model->rho[0]; *dec_values = sum; if(model->param.svm_type == ONE_CLASS) return (sum>0)?1:-1; else return sum; } else { int nr_class = model->nr_class; int l = model->l; double *kvalue = Malloc(double,l); for(i=0;iSV+i,model->param,blas_functions); #else kvalue[i] = NAMESPACE::Kernel::k_function(x,model->SV[i],model->param,blas_functions); #endif int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;inSV[i-1]; int *vote = Malloc(int,nr_class); for(i=0;inSV[i]; int cj = model->nSV[j]; int k; double *coef1 = model->sv_coef[j-1]; double *coef2 = model->sv_coef[i]; for(k=0;krho[p]; dec_values[p] = sum; if(dec_values[p] > 0) ++vote[i]; else ++vote[j]; p++; } int vote_max_idx = 0; for(i=1;i vote[vote_max_idx]) vote_max_idx = i; free(kvalue); free(start); free(vote); return model->label[vote_max_idx]; } } double PREFIX(predict)(const PREFIX(model) *model, const PREFIX(node) *x, BlasFunctions *blas_functions) { int nr_class = model->nr_class; double *dec_values; if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) dec_values = Malloc(double, 1); else dec_values = Malloc(double, nr_class*(nr_class-1)/2); double pred_result = PREFIX(predict_values)(model, x, dec_values, blas_functions); free(dec_values); return pred_result; } double PREFIX(predict_probability)( const PREFIX(model) *model, const PREFIX(node) *x, double *prob_estimates, BlasFunctions *blas_functions) { if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); PREFIX(predict_values)(model, x, dec_values, blas_functions); double min_prob=1e-7; double **pairwise_prob=Malloc(double *,nr_class); for(i=0;iprobA[k],model->probB[k]),min_prob),1-min_prob); pairwise_prob[j][i]=1-pairwise_prob[i][j]; k++; } NAMESPACE::multiclass_probability(nr_class,pairwise_prob,prob_estimates); int prob_max_idx = 0; for(i=1;i prob_estimates[prob_max_idx]) prob_max_idx = i; for(i=0;ilabel[prob_max_idx]; } else return PREFIX(predict)(model, x, blas_functions); } void PREFIX(free_model_content)(PREFIX(model)* model_ptr) { if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL) #ifdef _DENSE_REP for (int i = 0; i < model_ptr->l; i++) free(model_ptr->SV[i].values); #else free((void *)(model_ptr->SV[0])); #endif if(model_ptr->sv_coef) { for(int i=0;inr_class-1;i++) free(model_ptr->sv_coef[i]); } free(model_ptr->SV); model_ptr->SV = NULL; free(model_ptr->sv_coef); model_ptr->sv_coef = NULL; free(model_ptr->sv_ind); model_ptr->sv_ind = NULL; free(model_ptr->rho); model_ptr->rho = NULL; free(model_ptr->label); model_ptr->label= NULL; free(model_ptr->probA); model_ptr->probA = NULL; free(model_ptr->probB); model_ptr->probB= NULL; free(model_ptr->nSV); model_ptr->nSV = NULL; free(model_ptr->n_iter); model_ptr->n_iter = NULL; } void PREFIX(free_and_destroy_model)(PREFIX(model)** model_ptr_ptr) { if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL) { PREFIX(free_model_content)(*model_ptr_ptr); free(*model_ptr_ptr); *model_ptr_ptr = NULL; } } void PREFIX(destroy_param)(svm_parameter* param) { free(param->weight_label); free(param->weight); } const char *PREFIX(check_parameter)(const PREFIX(problem) *prob, const svm_parameter *param) { // svm_type int svm_type = param->svm_type; if(svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) return "unknown svm type"; // kernel_type, degree int kernel_type = param->kernel_type; if(kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != PRECOMPUTED) return "unknown kernel type"; if(param->gamma < 0) return "gamma < 0"; if(param->degree < 0) return "degree of polynomial kernel < 0"; // cache_size,eps,C,nu,p,shrinking if(param->cache_size <= 0) return "cache_size <= 0"; if(param->eps <= 0) return "eps <= 0"; if(svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) if(param->C <= 0) return "C <= 0"; if(svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) if(param->nu <= 0 || param->nu > 1) return "nu <= 0 or nu > 1"; if(svm_type == EPSILON_SVR) if(param->p < 0) return "p < 0"; if(param->shrinking != 0 && param->shrinking != 1) return "shrinking != 0 and shrinking != 1"; if(param->probability != 0 && param->probability != 1) return "probability != 0 and probability != 1"; if(param->probability == 1 && svm_type == ONE_CLASS) return "one-class SVM probability output not supported yet"; // check whether nu-svc is feasible if(svm_type == NU_SVC) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); double *count = Malloc(double,max_nr_class); int i; for(i=0;iy[i]; int j; for(j=0;jW[i]; break; } if(j == nr_class) { if(nr_class == max_nr_class) { max_nr_class *= 2; label = (int *)realloc(label,max_nr_class*sizeof(int)); count = (double *)realloc(count,max_nr_class*sizeof(double)); } label[nr_class] = this_label; count[nr_class] = prob->W[i]; ++nr_class; } } for(i=0;inu*(n1+n2)/2 > min(n1,n2)) { free(label); free(count); return "specified nu is infeasible"; } } } free(label); free(count); } if(svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR || svm_type == ONE_CLASS) { PREFIX(problem) newprob; // filter samples with negative and null weights remove_zero_weight(&newprob, prob); // all samples were removed if(newprob.l == 0) { free(newprob.x); free(newprob.y); free(newprob.W); return "Invalid input - all samples have zero or negative weights."; } else if(prob->l != newprob.l && svm_type == C_SVC) { bool only_one_label = true; int first_label = newprob.y[0]; for(int i=1;i