|
""" |
|
Python implementation of the fast ICA algorithms. |
|
|
|
Reference: Tables 8.3 and 8.4 page 196 in the book: |
|
Independent Component Analysis, by Hyvarinen et al. |
|
""" |
|
|
|
|
|
|
|
|
|
import warnings |
|
from numbers import Integral, Real |
|
|
|
import numpy as np |
|
from scipy import linalg |
|
|
|
from ..base import ( |
|
BaseEstimator, |
|
ClassNamePrefixFeaturesOutMixin, |
|
TransformerMixin, |
|
_fit_context, |
|
) |
|
from ..exceptions import ConvergenceWarning |
|
from ..utils import as_float_array, check_array, check_random_state |
|
from ..utils._param_validation import Interval, Options, StrOptions, validate_params |
|
from ..utils.validation import check_is_fitted, validate_data |
|
|
|
__all__ = ["fastica", "FastICA"] |
|
|
|
|
|
def _gs_decorrelation(w, W, j): |
|
""" |
|
Orthonormalize w wrt the first j rows of W. |
|
|
|
Parameters |
|
---------- |
|
w : ndarray of shape (n,) |
|
Array to be orthogonalized |
|
|
|
W : ndarray of shape (p, n) |
|
Null space definition |
|
|
|
j : int < p |
|
The no of (from the first) rows of Null space W wrt which w is |
|
orthogonalized. |
|
|
|
Notes |
|
----- |
|
Assumes that W is orthogonal |
|
w changed in place |
|
""" |
|
w -= np.linalg.multi_dot([w, W[:j].T, W[:j]]) |
|
return w |
|
|
|
|
|
def _sym_decorrelation(W): |
|
"""Symmetric decorrelation |
|
i.e. W <- (W * W.T) ^{-1/2} * W |
|
""" |
|
s, u = linalg.eigh(np.dot(W, W.T)) |
|
|
|
|
|
|
|
s = np.clip(s, a_min=np.finfo(W.dtype).tiny, a_max=None) |
|
|
|
|
|
|
|
return np.linalg.multi_dot([u * (1.0 / np.sqrt(s)), u.T, W]) |
|
|
|
|
|
def _ica_def(X, tol, g, fun_args, max_iter, w_init): |
|
"""Deflationary FastICA using fun approx to neg-entropy function |
|
|
|
Used internally by FastICA. |
|
""" |
|
|
|
n_components = w_init.shape[0] |
|
W = np.zeros((n_components, n_components), dtype=X.dtype) |
|
n_iter = [] |
|
|
|
|
|
for j in range(n_components): |
|
w = w_init[j, :].copy() |
|
w /= np.sqrt((w**2).sum()) |
|
|
|
for i in range(max_iter): |
|
gwtx, g_wtx = g(np.dot(w.T, X), fun_args) |
|
|
|
w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w |
|
|
|
_gs_decorrelation(w1, W, j) |
|
|
|
w1 /= np.sqrt((w1**2).sum()) |
|
|
|
lim = np.abs(np.abs((w1 * w).sum()) - 1) |
|
w = w1 |
|
if lim < tol: |
|
break |
|
|
|
n_iter.append(i + 1) |
|
W[j, :] = w |
|
|
|
return W, max(n_iter) |
|
|
|
|
|
def _ica_par(X, tol, g, fun_args, max_iter, w_init): |
|
"""Parallel FastICA. |
|
|
|
Used internally by FastICA --main loop |
|
|
|
""" |
|
W = _sym_decorrelation(w_init) |
|
del w_init |
|
p_ = float(X.shape[1]) |
|
for ii in range(max_iter): |
|
gwtx, g_wtx = g(np.dot(W, X), fun_args) |
|
W1 = _sym_decorrelation(np.dot(gwtx, X.T) / p_ - g_wtx[:, np.newaxis] * W) |
|
del gwtx, g_wtx |
|
|
|
|
|
|
|
lim = max(abs(abs(np.einsum("ij,ij->i", W1, W)) - 1)) |
|
W = W1 |
|
if lim < tol: |
|
break |
|
else: |
|
warnings.warn( |
|
( |
|
"FastICA did not converge. Consider increasing " |
|
"tolerance or the maximum number of iterations." |
|
), |
|
ConvergenceWarning, |
|
) |
|
|
|
return W, ii + 1 |
|
|
|
|
|
|
|
|
|
def _logcosh(x, fun_args=None): |
|
alpha = fun_args.get("alpha", 1.0) |
|
|
|
x *= alpha |
|
gx = np.tanh(x, x) |
|
g_x = np.empty(x.shape[0], dtype=x.dtype) |
|
|
|
for i, gx_i in enumerate(gx): |
|
g_x[i] = (alpha * (1 - gx_i**2)).mean() |
|
return gx, g_x |
|
|
|
|
|
def _exp(x, fun_args): |
|
exp = np.exp(-(x**2) / 2) |
|
gx = x * exp |
|
g_x = (1 - x**2) * exp |
|
return gx, g_x.mean(axis=-1) |
|
|
|
|
|
def _cube(x, fun_args): |
|
return x**3, (3 * x**2).mean(axis=-1) |
|
|
|
|
|
@validate_params( |
|
{ |
|
"X": ["array-like"], |
|
"return_X_mean": ["boolean"], |
|
"compute_sources": ["boolean"], |
|
"return_n_iter": ["boolean"], |
|
}, |
|
prefer_skip_nested_validation=False, |
|
) |
|
def fastica( |
|
X, |
|
n_components=None, |
|
*, |
|
algorithm="parallel", |
|
whiten="unit-variance", |
|
fun="logcosh", |
|
fun_args=None, |
|
max_iter=200, |
|
tol=1e-04, |
|
w_init=None, |
|
whiten_solver="svd", |
|
random_state=None, |
|
return_X_mean=False, |
|
compute_sources=True, |
|
return_n_iter=False, |
|
): |
|
"""Perform Fast Independent Component Analysis. |
|
|
|
The implementation is based on [1]_. |
|
|
|
Read more in the :ref:`User Guide <ICA>`. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training vector, where `n_samples` is the number of samples and |
|
`n_features` is the number of features. |
|
|
|
n_components : int, default=None |
|
Number of components to use. If None is passed, all are used. |
|
|
|
algorithm : {'parallel', 'deflation'}, default='parallel' |
|
Specify which algorithm to use for FastICA. |
|
|
|
whiten : str or bool, default='unit-variance' |
|
Specify the whitening strategy to use. |
|
|
|
- If 'arbitrary-variance', a whitening with variance |
|
arbitrary is used. |
|
- If 'unit-variance', the whitening matrix is rescaled to ensure that |
|
each recovered source has unit variance. |
|
- If False, the data is already considered to be whitened, and no |
|
whitening is performed. |
|
|
|
.. versionchanged:: 1.3 |
|
The default value of `whiten` changed to 'unit-variance' in 1.3. |
|
|
|
fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh' |
|
The functional form of the G function used in the |
|
approximation to neg-entropy. Could be either 'logcosh', 'exp', |
|
or 'cube'. |
|
You can also provide your own function. It should return a tuple |
|
containing the value of the function, and of its derivative, in the |
|
point. The derivative should be averaged along its last dimension. |
|
Example:: |
|
|
|
def my_g(x): |
|
return x ** 3, (3 * x ** 2).mean(axis=-1) |
|
|
|
fun_args : dict, default=None |
|
Arguments to send to the functional form. |
|
If empty or None and if fun='logcosh', fun_args will take value |
|
{'alpha' : 1.0}. |
|
|
|
max_iter : int, default=200 |
|
Maximum number of iterations to perform. |
|
|
|
tol : float, default=1e-4 |
|
A positive scalar giving the tolerance at which the |
|
un-mixing matrix is considered to have converged. |
|
|
|
w_init : ndarray of shape (n_components, n_components), default=None |
|
Initial un-mixing array. If `w_init=None`, then an array of values |
|
drawn from a normal distribution is used. |
|
|
|
whiten_solver : {"eigh", "svd"}, default="svd" |
|
The solver to use for whitening. |
|
|
|
- "svd" is more stable numerically if the problem is degenerate, and |
|
often faster when `n_samples <= n_features`. |
|
|
|
- "eigh" is generally more memory efficient when |
|
`n_samples >= n_features`, and can be faster when |
|
`n_samples >= 50 * n_features`. |
|
|
|
.. versionadded:: 1.2 |
|
|
|
random_state : int, RandomState instance or None, default=None |
|
Used to initialize ``w_init`` when not specified, with a |
|
normal distribution. Pass an int, for reproducible results |
|
across multiple function calls. |
|
See :term:`Glossary <random_state>`. |
|
|
|
return_X_mean : bool, default=False |
|
If True, X_mean is returned too. |
|
|
|
compute_sources : bool, default=True |
|
If False, sources are not computed, but only the rotation matrix. |
|
This can save memory when working with big data. Defaults to True. |
|
|
|
return_n_iter : bool, default=False |
|
Whether or not to return the number of iterations. |
|
|
|
Returns |
|
------- |
|
K : ndarray of shape (n_components, n_features) or None |
|
If whiten is 'True', K is the pre-whitening matrix that projects data |
|
onto the first n_components principal components. If whiten is 'False', |
|
K is 'None'. |
|
|
|
W : ndarray of shape (n_components, n_components) |
|
The square matrix that unmixes the data after whitening. |
|
The mixing matrix is the pseudo-inverse of matrix ``W K`` |
|
if K is not None, else it is the inverse of W. |
|
|
|
S : ndarray of shape (n_samples, n_components) or None |
|
Estimated source matrix. |
|
|
|
X_mean : ndarray of shape (n_features,) |
|
The mean over features. Returned only if return_X_mean is True. |
|
|
|
n_iter : int |
|
If the algorithm is "deflation", n_iter is the |
|
maximum number of iterations run across all components. Else |
|
they are just the number of iterations taken to converge. This is |
|
returned only when return_n_iter is set to `True`. |
|
|
|
Notes |
|
----- |
|
The data matrix X is considered to be a linear combination of |
|
non-Gaussian (independent) components i.e. X = AS where columns of S |
|
contain the independent components and A is a linear mixing |
|
matrix. In short ICA attempts to `un-mix' the data by estimating an |
|
un-mixing matrix W where ``S = W K X.`` |
|
While FastICA was proposed to estimate as many sources |
|
as features, it is possible to estimate less by setting |
|
n_components < n_features. It this case K is not a square matrix |
|
and the estimated A is the pseudo-inverse of ``W K``. |
|
|
|
This implementation was originally made for data of shape |
|
[n_features, n_samples]. Now the input is transposed |
|
before the algorithm is applied. This makes it slightly |
|
faster for Fortran-ordered input. |
|
|
|
References |
|
---------- |
|
.. [1] A. Hyvarinen and E. Oja, "Fast Independent Component Analysis", |
|
Algorithms and Applications, Neural Networks, 13(4-5), 2000, |
|
pp. 411-430. |
|
|
|
Examples |
|
-------- |
|
>>> from sklearn.datasets import load_digits |
|
>>> from sklearn.decomposition import fastica |
|
>>> X, _ = load_digits(return_X_y=True) |
|
>>> K, W, S = fastica(X, n_components=7, random_state=0, whiten='unit-variance') |
|
>>> K.shape |
|
(7, 64) |
|
>>> W.shape |
|
(7, 7) |
|
>>> S.shape |
|
(1797, 7) |
|
""" |
|
est = FastICA( |
|
n_components=n_components, |
|
algorithm=algorithm, |
|
whiten=whiten, |
|
fun=fun, |
|
fun_args=fun_args, |
|
max_iter=max_iter, |
|
tol=tol, |
|
w_init=w_init, |
|
whiten_solver=whiten_solver, |
|
random_state=random_state, |
|
) |
|
est._validate_params() |
|
S = est._fit_transform(X, compute_sources=compute_sources) |
|
|
|
if est.whiten in ["unit-variance", "arbitrary-variance"]: |
|
K = est.whitening_ |
|
X_mean = est.mean_ |
|
else: |
|
K = None |
|
X_mean = None |
|
|
|
returned_values = [K, est._unmixing, S] |
|
if return_X_mean: |
|
returned_values.append(X_mean) |
|
if return_n_iter: |
|
returned_values.append(est.n_iter_) |
|
|
|
return returned_values |
|
|
|
|
|
class FastICA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): |
|
"""FastICA: a fast algorithm for Independent Component Analysis. |
|
|
|
The implementation is based on [1]_. |
|
|
|
Read more in the :ref:`User Guide <ICA>`. |
|
|
|
Parameters |
|
---------- |
|
n_components : int, default=None |
|
Number of components to use. If None is passed, all are used. |
|
|
|
algorithm : {'parallel', 'deflation'}, default='parallel' |
|
Specify which algorithm to use for FastICA. |
|
|
|
whiten : str or bool, default='unit-variance' |
|
Specify the whitening strategy to use. |
|
|
|
- If 'arbitrary-variance', a whitening with variance |
|
arbitrary is used. |
|
- If 'unit-variance', the whitening matrix is rescaled to ensure that |
|
each recovered source has unit variance. |
|
- If False, the data is already considered to be whitened, and no |
|
whitening is performed. |
|
|
|
.. versionchanged:: 1.3 |
|
The default value of `whiten` changed to 'unit-variance' in 1.3. |
|
|
|
fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh' |
|
The functional form of the G function used in the |
|
approximation to neg-entropy. Could be either 'logcosh', 'exp', |
|
or 'cube'. |
|
You can also provide your own function. It should return a tuple |
|
containing the value of the function, and of its derivative, in the |
|
point. The derivative should be averaged along its last dimension. |
|
Example:: |
|
|
|
def my_g(x): |
|
return x ** 3, (3 * x ** 2).mean(axis=-1) |
|
|
|
fun_args : dict, default=None |
|
Arguments to send to the functional form. |
|
If empty or None and if fun='logcosh', fun_args will take value |
|
{'alpha' : 1.0}. |
|
|
|
max_iter : int, default=200 |
|
Maximum number of iterations during fit. |
|
|
|
tol : float, default=1e-4 |
|
A positive scalar giving the tolerance at which the |
|
un-mixing matrix is considered to have converged. |
|
|
|
w_init : array-like of shape (n_components, n_components), default=None |
|
Initial un-mixing array. If `w_init=None`, then an array of values |
|
drawn from a normal distribution is used. |
|
|
|
whiten_solver : {"eigh", "svd"}, default="svd" |
|
The solver to use for whitening. |
|
|
|
- "svd" is more stable numerically if the problem is degenerate, and |
|
often faster when `n_samples <= n_features`. |
|
|
|
- "eigh" is generally more memory efficient when |
|
`n_samples >= n_features`, and can be faster when |
|
`n_samples >= 50 * n_features`. |
|
|
|
.. versionadded:: 1.2 |
|
|
|
random_state : int, RandomState instance or None, default=None |
|
Used to initialize ``w_init`` when not specified, with a |
|
normal distribution. Pass an int, for reproducible results |
|
across multiple function calls. |
|
See :term:`Glossary <random_state>`. |
|
|
|
Attributes |
|
---------- |
|
components_ : ndarray of shape (n_components, n_features) |
|
The linear operator to apply to the data to get the independent |
|
sources. This is equal to the unmixing matrix when ``whiten`` is |
|
False, and equal to ``np.dot(unmixing_matrix, self.whitening_)`` when |
|
``whiten`` is True. |
|
|
|
mixing_ : ndarray of shape (n_features, n_components) |
|
The pseudo-inverse of ``components_``. It is the linear operator |
|
that maps independent sources to the data. |
|
|
|
mean_ : ndarray of shape(n_features,) |
|
The mean over features. Only set if `self.whiten` is True. |
|
|
|
n_features_in_ : int |
|
Number of features seen during :term:`fit`. |
|
|
|
.. versionadded:: 0.24 |
|
|
|
feature_names_in_ : ndarray of shape (`n_features_in_`,) |
|
Names of features seen during :term:`fit`. Defined only when `X` |
|
has feature names that are all strings. |
|
|
|
.. versionadded:: 1.0 |
|
|
|
n_iter_ : int |
|
If the algorithm is "deflation", n_iter is the |
|
maximum number of iterations run across all components. Else |
|
they are just the number of iterations taken to converge. |
|
|
|
whitening_ : ndarray of shape (n_components, n_features) |
|
Only set if whiten is 'True'. This is the pre-whitening matrix |
|
that projects data onto the first `n_components` principal components. |
|
|
|
See Also |
|
-------- |
|
PCA : Principal component analysis (PCA). |
|
IncrementalPCA : Incremental principal components analysis (IPCA). |
|
KernelPCA : Kernel Principal component analysis (KPCA). |
|
MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis. |
|
SparsePCA : Sparse Principal Components Analysis (SparsePCA). |
|
|
|
References |
|
---------- |
|
.. [1] A. Hyvarinen and E. Oja, Independent Component Analysis: |
|
Algorithms and Applications, Neural Networks, 13(4-5), 2000, |
|
pp. 411-430. |
|
|
|
Examples |
|
-------- |
|
>>> from sklearn.datasets import load_digits |
|
>>> from sklearn.decomposition import FastICA |
|
>>> X, _ = load_digits(return_X_y=True) |
|
>>> transformer = FastICA(n_components=7, |
|
... random_state=0, |
|
... whiten='unit-variance') |
|
>>> X_transformed = transformer.fit_transform(X) |
|
>>> X_transformed.shape |
|
(1797, 7) |
|
""" |
|
|
|
_parameter_constraints: dict = { |
|
"n_components": [Interval(Integral, 1, None, closed="left"), None], |
|
"algorithm": [StrOptions({"parallel", "deflation"})], |
|
"whiten": [ |
|
StrOptions({"arbitrary-variance", "unit-variance"}), |
|
Options(bool, {False}), |
|
], |
|
"fun": [StrOptions({"logcosh", "exp", "cube"}), callable], |
|
"fun_args": [dict, None], |
|
"max_iter": [Interval(Integral, 1, None, closed="left")], |
|
"tol": [Interval(Real, 0.0, None, closed="left")], |
|
"w_init": ["array-like", None], |
|
"whiten_solver": [StrOptions({"eigh", "svd"})], |
|
"random_state": ["random_state"], |
|
} |
|
|
|
def __init__( |
|
self, |
|
n_components=None, |
|
*, |
|
algorithm="parallel", |
|
whiten="unit-variance", |
|
fun="logcosh", |
|
fun_args=None, |
|
max_iter=200, |
|
tol=1e-4, |
|
w_init=None, |
|
whiten_solver="svd", |
|
random_state=None, |
|
): |
|
super().__init__() |
|
self.n_components = n_components |
|
self.algorithm = algorithm |
|
self.whiten = whiten |
|
self.fun = fun |
|
self.fun_args = fun_args |
|
self.max_iter = max_iter |
|
self.tol = tol |
|
self.w_init = w_init |
|
self.whiten_solver = whiten_solver |
|
self.random_state = random_state |
|
|
|
def _fit_transform(self, X, compute_sources=False): |
|
"""Fit the model. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training data, where `n_samples` is the number of samples |
|
and `n_features` is the number of features. |
|
|
|
compute_sources : bool, default=False |
|
If False, sources are not computes but only the rotation matrix. |
|
This can save memory when working with big data. Defaults to False. |
|
|
|
Returns |
|
------- |
|
S : ndarray of shape (n_samples, n_components) or None |
|
Sources matrix. `None` if `compute_sources` is `False`. |
|
""" |
|
XT = validate_data( |
|
self, |
|
X, |
|
copy=self.whiten, |
|
dtype=[np.float64, np.float32], |
|
ensure_min_samples=2, |
|
).T |
|
fun_args = {} if self.fun_args is None else self.fun_args |
|
random_state = check_random_state(self.random_state) |
|
|
|
alpha = fun_args.get("alpha", 1.0) |
|
if not 1 <= alpha <= 2: |
|
raise ValueError("alpha must be in [1,2]") |
|
|
|
if self.fun == "logcosh": |
|
g = _logcosh |
|
elif self.fun == "exp": |
|
g = _exp |
|
elif self.fun == "cube": |
|
g = _cube |
|
elif callable(self.fun): |
|
|
|
def g(x, fun_args): |
|
return self.fun(x, **fun_args) |
|
|
|
n_features, n_samples = XT.shape |
|
n_components = self.n_components |
|
if not self.whiten and n_components is not None: |
|
n_components = None |
|
warnings.warn("Ignoring n_components with whiten=False.") |
|
|
|
if n_components is None: |
|
n_components = min(n_samples, n_features) |
|
if n_components > min(n_samples, n_features): |
|
n_components = min(n_samples, n_features) |
|
warnings.warn( |
|
"n_components is too large: it will be set to %s" % n_components |
|
) |
|
|
|
if self.whiten: |
|
|
|
X_mean = XT.mean(axis=-1) |
|
XT -= X_mean[:, np.newaxis] |
|
|
|
|
|
if self.whiten_solver == "eigh": |
|
|
|
d, u = linalg.eigh(XT.dot(X)) |
|
sort_indices = np.argsort(d)[::-1] |
|
eps = np.finfo(d.dtype).eps * 10 |
|
degenerate_idx = d < eps |
|
if np.any(degenerate_idx): |
|
warnings.warn( |
|
"There are some small singular values, using " |
|
"whiten_solver = 'svd' might lead to more " |
|
"accurate results." |
|
) |
|
d[degenerate_idx] = eps |
|
np.sqrt(d, out=d) |
|
d, u = d[sort_indices], u[:, sort_indices] |
|
elif self.whiten_solver == "svd": |
|
u, d = linalg.svd(XT, full_matrices=False, check_finite=False)[:2] |
|
|
|
|
|
u *= np.sign(u[0]) |
|
|
|
K = (u / d).T[:n_components] |
|
del u, d |
|
X1 = np.dot(K, XT) |
|
|
|
|
|
X1 *= np.sqrt(n_samples) |
|
else: |
|
|
|
|
|
X1 = as_float_array(XT, copy=False) |
|
|
|
w_init = self.w_init |
|
if w_init is None: |
|
w_init = np.asarray( |
|
random_state.normal(size=(n_components, n_components)), dtype=X1.dtype |
|
) |
|
|
|
else: |
|
w_init = np.asarray(w_init) |
|
if w_init.shape != (n_components, n_components): |
|
raise ValueError( |
|
"w_init has invalid shape -- should be %(shape)s" |
|
% {"shape": (n_components, n_components)} |
|
) |
|
|
|
kwargs = { |
|
"tol": self.tol, |
|
"g": g, |
|
"fun_args": fun_args, |
|
"max_iter": self.max_iter, |
|
"w_init": w_init, |
|
} |
|
|
|
if self.algorithm == "parallel": |
|
W, n_iter = _ica_par(X1, **kwargs) |
|
elif self.algorithm == "deflation": |
|
W, n_iter = _ica_def(X1, **kwargs) |
|
del X1 |
|
|
|
self.n_iter_ = n_iter |
|
|
|
if compute_sources: |
|
if self.whiten: |
|
S = np.linalg.multi_dot([W, K, XT]).T |
|
else: |
|
S = np.dot(W, XT).T |
|
else: |
|
S = None |
|
|
|
if self.whiten: |
|
if self.whiten == "unit-variance": |
|
if not compute_sources: |
|
S = np.linalg.multi_dot([W, K, XT]).T |
|
S_std = np.std(S, axis=0, keepdims=True) |
|
S /= S_std |
|
W /= S_std.T |
|
|
|
self.components_ = np.dot(W, K) |
|
self.mean_ = X_mean |
|
self.whitening_ = K |
|
else: |
|
self.components_ = W |
|
|
|
self.mixing_ = linalg.pinv(self.components_, check_finite=False) |
|
self._unmixing = W |
|
|
|
return S |
|
|
|
@_fit_context(prefer_skip_nested_validation=True) |
|
def fit_transform(self, X, y=None): |
|
"""Fit the model and recover the sources from X. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training data, where `n_samples` is the number of samples |
|
and `n_features` is the number of features. |
|
|
|
y : Ignored |
|
Not used, present for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
X_new : ndarray of shape (n_samples, n_components) |
|
Estimated sources obtained by transforming the data with the |
|
estimated unmixing matrix. |
|
""" |
|
return self._fit_transform(X, compute_sources=True) |
|
|
|
@_fit_context(prefer_skip_nested_validation=True) |
|
def fit(self, X, y=None): |
|
"""Fit the model to X. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training data, where `n_samples` is the number of samples |
|
and `n_features` is the number of features. |
|
|
|
y : Ignored |
|
Not used, present for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
self : object |
|
Returns the instance itself. |
|
""" |
|
self._fit_transform(X, compute_sources=False) |
|
return self |
|
|
|
def transform(self, X, copy=True): |
|
"""Recover the sources from X (apply the unmixing matrix). |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Data to transform, where `n_samples` is the number of samples |
|
and `n_features` is the number of features. |
|
|
|
copy : bool, default=True |
|
If False, data passed to fit can be overwritten. Defaults to True. |
|
|
|
Returns |
|
------- |
|
X_new : ndarray of shape (n_samples, n_components) |
|
Estimated sources obtained by transforming the data with the |
|
estimated unmixing matrix. |
|
""" |
|
check_is_fitted(self) |
|
|
|
X = validate_data( |
|
self, |
|
X, |
|
copy=(copy and self.whiten), |
|
dtype=[np.float64, np.float32], |
|
reset=False, |
|
) |
|
if self.whiten: |
|
X -= self.mean_ |
|
|
|
return np.dot(X, self.components_.T) |
|
|
|
def inverse_transform(self, X, copy=True): |
|
"""Transform the sources back to the mixed data (apply mixing matrix). |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_components) |
|
Sources, where `n_samples` is the number of samples |
|
and `n_components` is the number of components. |
|
copy : bool, default=True |
|
If False, data passed to fit are overwritten. Defaults to True. |
|
|
|
Returns |
|
------- |
|
X_new : ndarray of shape (n_samples, n_features) |
|
Reconstructed data obtained with the mixing matrix. |
|
""" |
|
check_is_fitted(self) |
|
|
|
X = check_array(X, copy=(copy and self.whiten), dtype=[np.float64, np.float32]) |
|
X = np.dot(X, self.mixing_.T) |
|
if self.whiten: |
|
X += self.mean_ |
|
|
|
return X |
|
|
|
@property |
|
def _n_features_out(self): |
|
"""Number of transformed output features.""" |
|
return self.components_.shape[0] |
|
|
|
def __sklearn_tags__(self): |
|
tags = super().__sklearn_tags__() |
|
tags.transformer_tags.preserves_dtype = ["float64", "float32"] |
|
return tags |
|
|