File size: 26,548 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
"""
Python implementation of the fast ICA algorithms.

Reference: Tables 8.3 and 8.4 page 196 in the book:
Independent Component Analysis, by  Hyvarinen et al.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import warnings
from numbers import Integral, Real

import numpy as np
from scipy import linalg

from ..base import (
    BaseEstimator,
    ClassNamePrefixFeaturesOutMixin,
    TransformerMixin,
    _fit_context,
)
from ..exceptions import ConvergenceWarning
from ..utils import as_float_array, check_array, check_random_state
from ..utils._param_validation import Interval, Options, StrOptions, validate_params
from ..utils.validation import check_is_fitted, validate_data

__all__ = ["fastica", "FastICA"]


def _gs_decorrelation(w, W, j):
    """
    Orthonormalize w wrt the first j rows of W.

    Parameters
    ----------
    w : ndarray of shape (n,)
        Array to be orthogonalized

    W : ndarray of shape (p, n)
        Null space definition

    j : int < p
        The no of (from the first) rows of Null space W wrt which w is
        orthogonalized.

    Notes
    -----
    Assumes that W is orthogonal
    w changed in place
    """
    w -= np.linalg.multi_dot([w, W[:j].T, W[:j]])
    return w


def _sym_decorrelation(W):
    """Symmetric decorrelation
    i.e. W <- (W * W.T) ^{-1/2} * W
    """
    s, u = linalg.eigh(np.dot(W, W.T))
    # Avoid sqrt of negative values because of rounding errors. Note that
    # np.sqrt(tiny) is larger than tiny and therefore this clipping also
    # prevents division by zero in the next step.
    s = np.clip(s, a_min=np.finfo(W.dtype).tiny, a_max=None)

    # u (resp. s) contains the eigenvectors (resp. square roots of
    # the eigenvalues) of W * W.T
    return np.linalg.multi_dot([u * (1.0 / np.sqrt(s)), u.T, W])


def _ica_def(X, tol, g, fun_args, max_iter, w_init):
    """Deflationary FastICA using fun approx to neg-entropy function

    Used internally by FastICA.
    """

    n_components = w_init.shape[0]
    W = np.zeros((n_components, n_components), dtype=X.dtype)
    n_iter = []

    # j is the index of the extracted component
    for j in range(n_components):
        w = w_init[j, :].copy()
        w /= np.sqrt((w**2).sum())

        for i in range(max_iter):
            gwtx, g_wtx = g(np.dot(w.T, X), fun_args)

            w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w

            _gs_decorrelation(w1, W, j)

            w1 /= np.sqrt((w1**2).sum())

            lim = np.abs(np.abs((w1 * w).sum()) - 1)
            w = w1
            if lim < tol:
                break

        n_iter.append(i + 1)
        W[j, :] = w

    return W, max(n_iter)


def _ica_par(X, tol, g, fun_args, max_iter, w_init):
    """Parallel FastICA.

    Used internally by FastICA --main loop

    """
    W = _sym_decorrelation(w_init)
    del w_init
    p_ = float(X.shape[1])
    for ii in range(max_iter):
        gwtx, g_wtx = g(np.dot(W, X), fun_args)
        W1 = _sym_decorrelation(np.dot(gwtx, X.T) / p_ - g_wtx[:, np.newaxis] * W)
        del gwtx, g_wtx
        # builtin max, abs are faster than numpy counter parts.
        # np.einsum allows having the lowest memory footprint.
        # It is faster than np.diag(np.dot(W1, W.T)).
        lim = max(abs(abs(np.einsum("ij,ij->i", W1, W)) - 1))
        W = W1
        if lim < tol:
            break
    else:
        warnings.warn(
            (
                "FastICA did not converge. Consider increasing "
                "tolerance or the maximum number of iterations."
            ),
            ConvergenceWarning,
        )

    return W, ii + 1


# Some standard non-linear functions.
# XXX: these should be optimized, as they can be a bottleneck.
def _logcosh(x, fun_args=None):
    alpha = fun_args.get("alpha", 1.0)  # comment it out?

    x *= alpha
    gx = np.tanh(x, x)  # apply the tanh inplace
    g_x = np.empty(x.shape[0], dtype=x.dtype)
    # XXX compute in chunks to avoid extra allocation
    for i, gx_i in enumerate(gx):  # please don't vectorize.
        g_x[i] = (alpha * (1 - gx_i**2)).mean()
    return gx, g_x


def _exp(x, fun_args):
    exp = np.exp(-(x**2) / 2)
    gx = x * exp
    g_x = (1 - x**2) * exp
    return gx, g_x.mean(axis=-1)


def _cube(x, fun_args):
    return x**3, (3 * x**2).mean(axis=-1)


@validate_params(
    {
        "X": ["array-like"],
        "return_X_mean": ["boolean"],
        "compute_sources": ["boolean"],
        "return_n_iter": ["boolean"],
    },
    prefer_skip_nested_validation=False,
)
def fastica(
    X,
    n_components=None,
    *,
    algorithm="parallel",
    whiten="unit-variance",
    fun="logcosh",
    fun_args=None,
    max_iter=200,
    tol=1e-04,
    w_init=None,
    whiten_solver="svd",
    random_state=None,
    return_X_mean=False,
    compute_sources=True,
    return_n_iter=False,
):
    """Perform Fast Independent Component Analysis.

    The implementation is based on [1]_.

    Read more in the :ref:`User Guide <ICA>`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Training vector, where `n_samples` is the number of samples and
        `n_features` is the number of features.

    n_components : int, default=None
        Number of components to use. If None is passed, all are used.

    algorithm : {'parallel', 'deflation'}, default='parallel'
        Specify which algorithm to use for FastICA.

    whiten : str or bool, default='unit-variance'
        Specify the whitening strategy to use.

        - If 'arbitrary-variance', a whitening with variance
          arbitrary is used.
        - If 'unit-variance', the whitening matrix is rescaled to ensure that
          each recovered source has unit variance.
        - If False, the data is already considered to be whitened, and no
          whitening is performed.

        .. versionchanged:: 1.3
            The default value of `whiten` changed to 'unit-variance' in 1.3.

    fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh'
        The functional form of the G function used in the
        approximation to neg-entropy. Could be either 'logcosh', 'exp',
        or 'cube'.
        You can also provide your own function. It should return a tuple
        containing the value of the function, and of its derivative, in the
        point. The derivative should be averaged along its last dimension.
        Example::

            def my_g(x):
                return x ** 3, (3 * x ** 2).mean(axis=-1)

    fun_args : dict, default=None
        Arguments to send to the functional form.
        If empty or None and if fun='logcosh', fun_args will take value
        {'alpha' : 1.0}.

    max_iter : int, default=200
        Maximum number of iterations to perform.

    tol : float, default=1e-4
        A positive scalar giving the tolerance at which the
        un-mixing matrix is considered to have converged.

    w_init : ndarray of shape (n_components, n_components), default=None
        Initial un-mixing array. If `w_init=None`, then an array of values
        drawn from a normal distribution is used.

    whiten_solver : {"eigh", "svd"}, default="svd"
        The solver to use for whitening.

        - "svd" is more stable numerically if the problem is degenerate, and
          often faster when `n_samples <= n_features`.

        - "eigh" is generally more memory efficient when
          `n_samples >= n_features`, and can be faster when
          `n_samples >= 50 * n_features`.

        .. versionadded:: 1.2

    random_state : int, RandomState instance or None, default=None
        Used to initialize ``w_init`` when not specified, with a
        normal distribution. Pass an int, for reproducible results
        across multiple function calls.
        See :term:`Glossary <random_state>`.

    return_X_mean : bool, default=False
        If True, X_mean is returned too.

    compute_sources : bool, default=True
        If False, sources are not computed, but only the rotation matrix.
        This can save memory when working with big data. Defaults to True.

    return_n_iter : bool, default=False
        Whether or not to return the number of iterations.

    Returns
    -------
    K : ndarray of shape (n_components, n_features) or None
        If whiten is 'True', K is the pre-whitening matrix that projects data
        onto the first n_components principal components. If whiten is 'False',
        K is 'None'.

    W : ndarray of shape (n_components, n_components)
        The square matrix that unmixes the data after whitening.
        The mixing matrix is the pseudo-inverse of matrix ``W K``
        if K is not None, else it is the inverse of W.

    S : ndarray of shape (n_samples, n_components) or None
        Estimated source matrix.

    X_mean : ndarray of shape (n_features,)
        The mean over features. Returned only if return_X_mean is True.

    n_iter : int
        If the algorithm is "deflation", n_iter is the
        maximum number of iterations run across all components. Else
        they are just the number of iterations taken to converge. This is
        returned only when return_n_iter is set to `True`.

    Notes
    -----
    The data matrix X is considered to be a linear combination of
    non-Gaussian (independent) components i.e. X = AS where columns of S
    contain the independent components and A is a linear mixing
    matrix. In short ICA attempts to `un-mix' the data by estimating an
    un-mixing matrix W where ``S = W K X.``
    While FastICA was proposed to estimate as many sources
    as features, it is possible to estimate less by setting
    n_components < n_features. It this case K is not a square matrix
    and the estimated A is the pseudo-inverse of ``W K``.

    This implementation was originally made for data of shape
    [n_features, n_samples]. Now the input is transposed
    before the algorithm is applied. This makes it slightly
    faster for Fortran-ordered input.

    References
    ----------
    .. [1] A. Hyvarinen and E. Oja, "Fast Independent Component Analysis",
           Algorithms and Applications, Neural Networks, 13(4-5), 2000,
           pp. 411-430.

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.decomposition import fastica
    >>> X, _ = load_digits(return_X_y=True)
    >>> K, W, S = fastica(X, n_components=7, random_state=0, whiten='unit-variance')
    >>> K.shape
    (7, 64)
    >>> W.shape
    (7, 7)
    >>> S.shape
    (1797, 7)
    """
    est = FastICA(
        n_components=n_components,
        algorithm=algorithm,
        whiten=whiten,
        fun=fun,
        fun_args=fun_args,
        max_iter=max_iter,
        tol=tol,
        w_init=w_init,
        whiten_solver=whiten_solver,
        random_state=random_state,
    )
    est._validate_params()
    S = est._fit_transform(X, compute_sources=compute_sources)

    if est.whiten in ["unit-variance", "arbitrary-variance"]:
        K = est.whitening_
        X_mean = est.mean_
    else:
        K = None
        X_mean = None

    returned_values = [K, est._unmixing, S]
    if return_X_mean:
        returned_values.append(X_mean)
    if return_n_iter:
        returned_values.append(est.n_iter_)

    return returned_values


class FastICA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
    """FastICA: a fast algorithm for Independent Component Analysis.

    The implementation is based on [1]_.

    Read more in the :ref:`User Guide <ICA>`.

    Parameters
    ----------
    n_components : int, default=None
        Number of components to use. If None is passed, all are used.

    algorithm : {'parallel', 'deflation'}, default='parallel'
        Specify which algorithm to use for FastICA.

    whiten : str or bool, default='unit-variance'
        Specify the whitening strategy to use.

        - If 'arbitrary-variance', a whitening with variance
          arbitrary is used.
        - If 'unit-variance', the whitening matrix is rescaled to ensure that
          each recovered source has unit variance.
        - If False, the data is already considered to be whitened, and no
          whitening is performed.

        .. versionchanged:: 1.3
            The default value of `whiten` changed to 'unit-variance' in 1.3.

    fun : {'logcosh', 'exp', 'cube'} or callable, default='logcosh'
        The functional form of the G function used in the
        approximation to neg-entropy. Could be either 'logcosh', 'exp',
        or 'cube'.
        You can also provide your own function. It should return a tuple
        containing the value of the function, and of its derivative, in the
        point. The derivative should be averaged along its last dimension.
        Example::

            def my_g(x):
                return x ** 3, (3 * x ** 2).mean(axis=-1)

    fun_args : dict, default=None
        Arguments to send to the functional form.
        If empty or None and if fun='logcosh', fun_args will take value
        {'alpha' : 1.0}.

    max_iter : int, default=200
        Maximum number of iterations during fit.

    tol : float, default=1e-4
        A positive scalar giving the tolerance at which the
        un-mixing matrix is considered to have converged.

    w_init : array-like of shape (n_components, n_components), default=None
        Initial un-mixing array. If `w_init=None`, then an array of values
        drawn from a normal distribution is used.

    whiten_solver : {"eigh", "svd"}, default="svd"
        The solver to use for whitening.

        - "svd" is more stable numerically if the problem is degenerate, and
          often faster when `n_samples <= n_features`.

        - "eigh" is generally more memory efficient when
          `n_samples >= n_features`, and can be faster when
          `n_samples >= 50 * n_features`.

        .. versionadded:: 1.2

    random_state : int, RandomState instance or None, default=None
        Used to initialize ``w_init`` when not specified, with a
        normal distribution. Pass an int, for reproducible results
        across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    components_ : ndarray of shape (n_components, n_features)
        The linear operator to apply to the data to get the independent
        sources. This is equal to the unmixing matrix when ``whiten`` is
        False, and equal to ``np.dot(unmixing_matrix, self.whitening_)`` when
        ``whiten`` is True.

    mixing_ : ndarray of shape (n_features, n_components)
        The pseudo-inverse of ``components_``. It is the linear operator
        that maps independent sources to the data.

    mean_ : ndarray of shape(n_features,)
        The mean over features. Only set if `self.whiten` is True.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        If the algorithm is "deflation", n_iter is the
        maximum number of iterations run across all components. Else
        they are just the number of iterations taken to converge.

    whitening_ : ndarray of shape (n_components, n_features)
        Only set if whiten is 'True'. This is the pre-whitening matrix
        that projects data onto the first `n_components` principal components.

    See Also
    --------
    PCA : Principal component analysis (PCA).
    IncrementalPCA : Incremental principal components analysis (IPCA).
    KernelPCA : Kernel Principal component analysis (KPCA).
    MiniBatchSparsePCA : Mini-batch Sparse Principal Components Analysis.
    SparsePCA : Sparse Principal Components Analysis (SparsePCA).

    References
    ----------
    .. [1] A. Hyvarinen and E. Oja, Independent Component Analysis:
           Algorithms and Applications, Neural Networks, 13(4-5), 2000,
           pp. 411-430.

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.decomposition import FastICA
    >>> X, _ = load_digits(return_X_y=True)
    >>> transformer = FastICA(n_components=7,
    ...         random_state=0,
    ...         whiten='unit-variance')
    >>> X_transformed = transformer.fit_transform(X)
    >>> X_transformed.shape
    (1797, 7)
    """

    _parameter_constraints: dict = {
        "n_components": [Interval(Integral, 1, None, closed="left"), None],
        "algorithm": [StrOptions({"parallel", "deflation"})],
        "whiten": [
            StrOptions({"arbitrary-variance", "unit-variance"}),
            Options(bool, {False}),
        ],
        "fun": [StrOptions({"logcosh", "exp", "cube"}), callable],
        "fun_args": [dict, None],
        "max_iter": [Interval(Integral, 1, None, closed="left")],
        "tol": [Interval(Real, 0.0, None, closed="left")],
        "w_init": ["array-like", None],
        "whiten_solver": [StrOptions({"eigh", "svd"})],
        "random_state": ["random_state"],
    }

    def __init__(
        self,
        n_components=None,
        *,
        algorithm="parallel",
        whiten="unit-variance",
        fun="logcosh",
        fun_args=None,
        max_iter=200,
        tol=1e-4,
        w_init=None,
        whiten_solver="svd",
        random_state=None,
    ):
        super().__init__()
        self.n_components = n_components
        self.algorithm = algorithm
        self.whiten = whiten
        self.fun = fun
        self.fun_args = fun_args
        self.max_iter = max_iter
        self.tol = tol
        self.w_init = w_init
        self.whiten_solver = whiten_solver
        self.random_state = random_state

    def _fit_transform(self, X, compute_sources=False):
        """Fit the model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        compute_sources : bool, default=False
            If False, sources are not computes but only the rotation matrix.
            This can save memory when working with big data. Defaults to False.

        Returns
        -------
        S : ndarray of shape (n_samples, n_components) or None
            Sources matrix. `None` if `compute_sources` is `False`.
        """
        XT = validate_data(
            self,
            X,
            copy=self.whiten,
            dtype=[np.float64, np.float32],
            ensure_min_samples=2,
        ).T
        fun_args = {} if self.fun_args is None else self.fun_args
        random_state = check_random_state(self.random_state)

        alpha = fun_args.get("alpha", 1.0)
        if not 1 <= alpha <= 2:
            raise ValueError("alpha must be in [1,2]")

        if self.fun == "logcosh":
            g = _logcosh
        elif self.fun == "exp":
            g = _exp
        elif self.fun == "cube":
            g = _cube
        elif callable(self.fun):

            def g(x, fun_args):
                return self.fun(x, **fun_args)

        n_features, n_samples = XT.shape
        n_components = self.n_components
        if not self.whiten and n_components is not None:
            n_components = None
            warnings.warn("Ignoring n_components with whiten=False.")

        if n_components is None:
            n_components = min(n_samples, n_features)
        if n_components > min(n_samples, n_features):
            n_components = min(n_samples, n_features)
            warnings.warn(
                "n_components is too large: it will be set to %s" % n_components
            )

        if self.whiten:
            # Centering the features of X
            X_mean = XT.mean(axis=-1)
            XT -= X_mean[:, np.newaxis]

            # Whitening and preprocessing by PCA
            if self.whiten_solver == "eigh":
                # Faster when num_samples >> n_features
                d, u = linalg.eigh(XT.dot(X))
                sort_indices = np.argsort(d)[::-1]
                eps = np.finfo(d.dtype).eps * 10
                degenerate_idx = d < eps
                if np.any(degenerate_idx):
                    warnings.warn(
                        "There are some small singular values, using "
                        "whiten_solver = 'svd' might lead to more "
                        "accurate results."
                    )
                d[degenerate_idx] = eps  # For numerical issues
                np.sqrt(d, out=d)
                d, u = d[sort_indices], u[:, sort_indices]
            elif self.whiten_solver == "svd":
                u, d = linalg.svd(XT, full_matrices=False, check_finite=False)[:2]

            # Give consistent eigenvectors for both svd solvers
            u *= np.sign(u[0])

            K = (u / d).T[:n_components]  # see (6.33) p.140
            del u, d
            X1 = np.dot(K, XT)
            # see (13.6) p.267 Here X1 is white and data
            # in X has been projected onto a subspace by PCA
            X1 *= np.sqrt(n_samples)
        else:
            # X must be casted to floats to avoid typing issues with numpy
            # 2.0 and the line below
            X1 = as_float_array(XT, copy=False)  # copy has been taken care of

        w_init = self.w_init
        if w_init is None:
            w_init = np.asarray(
                random_state.normal(size=(n_components, n_components)), dtype=X1.dtype
            )

        else:
            w_init = np.asarray(w_init)
            if w_init.shape != (n_components, n_components):
                raise ValueError(
                    "w_init has invalid shape -- should be %(shape)s"
                    % {"shape": (n_components, n_components)}
                )

        kwargs = {
            "tol": self.tol,
            "g": g,
            "fun_args": fun_args,
            "max_iter": self.max_iter,
            "w_init": w_init,
        }

        if self.algorithm == "parallel":
            W, n_iter = _ica_par(X1, **kwargs)
        elif self.algorithm == "deflation":
            W, n_iter = _ica_def(X1, **kwargs)
        del X1

        self.n_iter_ = n_iter

        if compute_sources:
            if self.whiten:
                S = np.linalg.multi_dot([W, K, XT]).T
            else:
                S = np.dot(W, XT).T
        else:
            S = None

        if self.whiten:
            if self.whiten == "unit-variance":
                if not compute_sources:
                    S = np.linalg.multi_dot([W, K, XT]).T
                S_std = np.std(S, axis=0, keepdims=True)
                S /= S_std
                W /= S_std.T

            self.components_ = np.dot(W, K)
            self.mean_ = X_mean
            self.whitening_ = K
        else:
            self.components_ = W

        self.mixing_ = linalg.pinv(self.components_, check_finite=False)
        self._unmixing = W

        return S

    @_fit_context(prefer_skip_nested_validation=True)
    def fit_transform(self, X, y=None):
        """Fit the model and recover the sources from X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        X_new : ndarray of shape (n_samples, n_components)
            Estimated sources obtained by transforming the data with the
            estimated unmixing matrix.
        """
        return self._fit_transform(X, compute_sources=True)

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y=None):
        """Fit the model to X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        self._fit_transform(X, compute_sources=False)
        return self

    def transform(self, X, copy=True):
        """Recover the sources from X (apply the unmixing matrix).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to transform, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        copy : bool, default=True
            If False, data passed to fit can be overwritten. Defaults to True.

        Returns
        -------
        X_new : ndarray of shape (n_samples, n_components)
            Estimated sources obtained by transforming the data with the
            estimated unmixing matrix.
        """
        check_is_fitted(self)

        X = validate_data(
            self,
            X,
            copy=(copy and self.whiten),
            dtype=[np.float64, np.float32],
            reset=False,
        )
        if self.whiten:
            X -= self.mean_

        return np.dot(X, self.components_.T)

    def inverse_transform(self, X, copy=True):
        """Transform the sources back to the mixed data (apply mixing matrix).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_components)
            Sources, where `n_samples` is the number of samples
            and `n_components` is the number of components.
        copy : bool, default=True
            If False, data passed to fit are overwritten. Defaults to True.

        Returns
        -------
        X_new : ndarray of shape (n_samples, n_features)
            Reconstructed data obtained with the mixing matrix.
        """
        check_is_fitted(self)

        X = check_array(X, copy=(copy and self.whiten), dtype=[np.float64, np.float32])
        X = np.dot(X, self.mixing_.T)
        if self.whiten:
            X += self.mean_

        return X

    @property
    def _n_features_out(self):
        """Number of transformed output features."""
        return self.components_.shape[0]

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.transformer_tags.preserves_dtype = ["float64", "float32"]
        return tags