|
from itertools import product |
|
|
|
import numpy as np |
|
import pytest |
|
from numpy.testing import assert_allclose |
|
from scipy import optimize |
|
from scipy.special import factorial, xlogy |
|
|
|
from sklearn.dummy import DummyRegressor |
|
from sklearn.exceptions import UndefinedMetricWarning |
|
from sklearn.metrics import ( |
|
d2_absolute_error_score, |
|
d2_pinball_score, |
|
d2_tweedie_score, |
|
explained_variance_score, |
|
make_scorer, |
|
max_error, |
|
mean_absolute_error, |
|
mean_absolute_percentage_error, |
|
mean_pinball_loss, |
|
mean_squared_error, |
|
mean_squared_log_error, |
|
mean_tweedie_deviance, |
|
median_absolute_error, |
|
r2_score, |
|
root_mean_squared_error, |
|
root_mean_squared_log_error, |
|
) |
|
from sklearn.metrics._regression import _check_reg_targets |
|
from sklearn.model_selection import GridSearchCV |
|
from sklearn.utils._testing import ( |
|
assert_almost_equal, |
|
assert_array_almost_equal, |
|
assert_array_equal, |
|
) |
|
|
|
|
|
def test_regression_metrics(n_samples=50): |
|
y_true = np.arange(n_samples) |
|
y_pred = y_true + 1 |
|
y_pred_2 = y_true - 1 |
|
|
|
assert_almost_equal(mean_squared_error(y_true, y_pred), 1.0) |
|
assert_almost_equal( |
|
mean_squared_log_error(y_true, y_pred), |
|
mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred)), |
|
) |
|
assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.0) |
|
assert_almost_equal(mean_pinball_loss(y_true, y_pred), 0.5) |
|
assert_almost_equal(mean_pinball_loss(y_true, y_pred_2), 0.5) |
|
assert_almost_equal(mean_pinball_loss(y_true, y_pred, alpha=0.4), 0.6) |
|
assert_almost_equal(mean_pinball_loss(y_true, y_pred_2, alpha=0.4), 0.4) |
|
assert_almost_equal(median_absolute_error(y_true, y_pred), 1.0) |
|
mape = mean_absolute_percentage_error(y_true, y_pred) |
|
assert np.isfinite(mape) |
|
assert mape > 1e6 |
|
assert_almost_equal(max_error(y_true, y_pred), 1.0) |
|
assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) |
|
assert_almost_equal(r2_score(y_true, y_pred, force_finite=False), 0.995, 2) |
|
assert_almost_equal(explained_variance_score(y_true, y_pred), 1.0) |
|
assert_almost_equal( |
|
explained_variance_score(y_true, y_pred, force_finite=False), 1.0 |
|
) |
|
assert_almost_equal( |
|
mean_tweedie_deviance(y_true, y_pred, power=0), |
|
mean_squared_error(y_true, y_pred), |
|
) |
|
assert_almost_equal( |
|
d2_tweedie_score(y_true, y_pred, power=0), r2_score(y_true, y_pred) |
|
) |
|
dev_median = np.abs(y_true - np.median(y_true)).sum() |
|
assert_array_almost_equal( |
|
d2_absolute_error_score(y_true, y_pred), |
|
1 - np.abs(y_true - y_pred).sum() / dev_median, |
|
) |
|
alpha = 0.2 |
|
pinball_loss = lambda y_true, y_pred, alpha: alpha * np.maximum( |
|
y_true - y_pred, 0 |
|
) + (1 - alpha) * np.maximum(y_pred - y_true, 0) |
|
y_quantile = np.percentile(y_true, q=alpha * 100) |
|
assert_almost_equal( |
|
d2_pinball_score(y_true, y_pred, alpha=alpha), |
|
1 |
|
- pinball_loss(y_true, y_pred, alpha).sum() |
|
/ pinball_loss(y_true, y_quantile, alpha).sum(), |
|
) |
|
assert_almost_equal( |
|
d2_absolute_error_score(y_true, y_pred), |
|
d2_pinball_score(y_true, y_pred, alpha=0.5), |
|
) |
|
|
|
|
|
|
|
|
|
y_true = np.arange(1, 1 + n_samples) |
|
y_pred = 2 * y_true |
|
n = n_samples |
|
assert_almost_equal( |
|
mean_tweedie_deviance(y_true, y_pred, power=-1), |
|
5 / 12 * n * (n**2 + 2 * n + 1), |
|
) |
|
assert_almost_equal( |
|
mean_tweedie_deviance(y_true, y_pred, power=1), (n + 1) * (1 - np.log(2)) |
|
) |
|
assert_almost_equal( |
|
mean_tweedie_deviance(y_true, y_pred, power=2), 2 * np.log(2) - 1 |
|
) |
|
assert_almost_equal( |
|
mean_tweedie_deviance(y_true, y_pred, power=3 / 2), |
|
((6 * np.sqrt(2) - 8) / n) * np.sqrt(y_true).sum(), |
|
) |
|
assert_almost_equal( |
|
mean_tweedie_deviance(y_true, y_pred, power=3), np.sum(1 / y_true) / (4 * n) |
|
) |
|
|
|
dev_mean = 2 * np.mean(xlogy(y_true, 2 * y_true / (n + 1))) |
|
assert_almost_equal( |
|
d2_tweedie_score(y_true, y_pred, power=1), |
|
1 - (n + 1) * (1 - np.log(2)) / dev_mean, |
|
) |
|
|
|
dev_mean = 2 * np.log((n + 1) / 2) - 2 / n * np.log(factorial(n)) |
|
assert_almost_equal( |
|
d2_tweedie_score(y_true, y_pred, power=2), 1 - (2 * np.log(2) - 1) / dev_mean |
|
) |
|
|
|
|
|
def test_root_mean_squared_error_multioutput_raw_value(): |
|
|
|
|
|
mse = mean_squared_error([[1]], [[10]], multioutput="raw_values") |
|
rmse = root_mean_squared_error([[1]], [[10]], multioutput="raw_values") |
|
assert np.sqrt(mse) == pytest.approx(rmse) |
|
|
|
|
|
def test_multioutput_regression(): |
|
y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) |
|
y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) |
|
|
|
error = mean_squared_error(y_true, y_pred) |
|
assert_almost_equal(error, (1.0 / 3 + 2.0 / 3 + 2.0 / 3) / 4.0) |
|
|
|
error = root_mean_squared_error(y_true, y_pred) |
|
assert_almost_equal(error, 0.454, decimal=2) |
|
|
|
error = mean_squared_log_error(y_true, y_pred) |
|
assert_almost_equal(error, 0.200, decimal=2) |
|
|
|
error = root_mean_squared_log_error(y_true, y_pred) |
|
assert_almost_equal(error, 0.315, decimal=2) |
|
|
|
|
|
|
|
error = mean_absolute_error(y_true, y_pred) |
|
assert_almost_equal(error, (1.0 + 2.0 / 3) / 4.0) |
|
|
|
error = mean_pinball_loss(y_true, y_pred) |
|
assert_almost_equal(error, (1.0 + 2.0 / 3) / 8.0) |
|
|
|
error = np.around(mean_absolute_percentage_error(y_true, y_pred), decimals=2) |
|
assert np.isfinite(error) |
|
assert error > 1e6 |
|
error = median_absolute_error(y_true, y_pred) |
|
assert_almost_equal(error, (1.0 + 1.0) / 4.0) |
|
|
|
error = r2_score(y_true, y_pred, multioutput="variance_weighted") |
|
assert_almost_equal(error, 1.0 - 5.0 / 2) |
|
error = r2_score(y_true, y_pred, multioutput="uniform_average") |
|
assert_almost_equal(error, -0.875) |
|
|
|
score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values") |
|
raw_expected_score = [ |
|
1 |
|
- np.abs(y_true[:, i] - y_pred[:, i]).sum() |
|
/ np.abs(y_true[:, i] - np.median(y_true[:, i])).sum() |
|
for i in range(y_true.shape[1]) |
|
] |
|
|
|
|
|
raw_expected_score = np.where(np.isnan(raw_expected_score), 1, raw_expected_score) |
|
assert_array_almost_equal(score, raw_expected_score) |
|
|
|
score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="uniform_average") |
|
assert_almost_equal(score, raw_expected_score.mean()) |
|
|
|
yc = [5.0, 5.0] |
|
error = r2_score(yc, [5.0, 5.0], multioutput="variance_weighted") |
|
assert_almost_equal(error, 1.0) |
|
error = r2_score(yc, [5.0, 5.1], multioutput="variance_weighted") |
|
assert_almost_equal(error, 0.0) |
|
|
|
|
|
error = r2_score( |
|
y_true, y_pred, multioutput="variance_weighted", force_finite=False |
|
) |
|
assert_almost_equal(error, np.nan) |
|
error = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False) |
|
assert_almost_equal(error, np.nan) |
|
|
|
|
|
y_true = y_true[:, :-1] |
|
y_pred = y_pred[:, :-1] |
|
error = r2_score(y_true, y_pred, multioutput="variance_weighted") |
|
error2 = r2_score( |
|
y_true, y_pred, multioutput="variance_weighted", force_finite=False |
|
) |
|
assert_almost_equal(error, error2) |
|
error = r2_score(y_true, y_pred, multioutput="uniform_average") |
|
error2 = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False) |
|
assert_almost_equal(error, error2) |
|
|
|
|
|
error = r2_score( |
|
yc, [5.0, 5.0], multioutput="variance_weighted", force_finite=False |
|
) |
|
assert_almost_equal(error, np.nan) |
|
error = r2_score( |
|
yc, [5.0, 6.0], multioutput="variance_weighted", force_finite=False |
|
) |
|
assert_almost_equal(error, -np.inf) |
|
|
|
|
|
def test_regression_metrics_at_limits(): |
|
|
|
|
|
assert_almost_equal(mean_squared_error([0.0], [0.0]), 0.0) |
|
assert_almost_equal(root_mean_squared_error([0.0], [0.0]), 0.0) |
|
assert_almost_equal(mean_squared_log_error([0.0], [0.0]), 0.0) |
|
assert_almost_equal(mean_absolute_error([0.0], [0.0]), 0.0) |
|
assert_almost_equal(mean_pinball_loss([0.0], [0.0]), 0.0) |
|
assert_almost_equal(mean_absolute_percentage_error([0.0], [0.0]), 0.0) |
|
assert_almost_equal(median_absolute_error([0.0], [0.0]), 0.0) |
|
assert_almost_equal(max_error([0.0], [0.0]), 0.0) |
|
assert_almost_equal(explained_variance_score([0.0], [0.0]), 1.0) |
|
|
|
|
|
assert_almost_equal(r2_score([0.0, 1], [0.0, 1]), 1.0) |
|
assert_almost_equal(d2_pinball_score([0.0, 1], [0.0, 1]), 1.0) |
|
|
|
|
|
|
|
for s in (r2_score, explained_variance_score): |
|
assert_almost_equal(s([0, 0], [1, -1]), 0.0) |
|
assert_almost_equal(s([0, 0], [1, -1], force_finite=False), -np.inf) |
|
assert_almost_equal(s([1, 1], [1, 1]), 1.0) |
|
assert_almost_equal(s([1, 1], [1, 1], force_finite=False), np.nan) |
|
msg = ( |
|
"Mean Squared Logarithmic Error cannot be used when " |
|
"targets contain values less than or equal to -1." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
mean_squared_log_error([-1.0], [-1.0]) |
|
msg = ( |
|
"Mean Squared Logarithmic Error cannot be used when " |
|
"targets contain values less than or equal to -1." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
mean_squared_log_error([1.0, 2.0, 3.0], [1.0, -2.0, 3.0]) |
|
msg = ( |
|
"Mean Squared Logarithmic Error cannot be used when " |
|
"targets contain values less than or equal to -1." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
mean_squared_log_error([1.0, -2.0, 3.0], [1.0, 2.0, 3.0]) |
|
msg = ( |
|
"Mean Squared Logarithmic Error cannot be used when " |
|
"targets contain values less than or equal to -1." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
root_mean_squared_log_error([1.0, -2.0, 3.0], [1.0, 2.0, 3.0]) |
|
msg = ( |
|
"Root Mean Squared Logarithmic Error cannot be used when " |
|
"targets contain values less than or equal to -1." |
|
) |
|
|
|
|
|
power = -1.2 |
|
assert_allclose( |
|
mean_tweedie_deviance([0], [1.0], power=power), 2 / (2 - power), rtol=1e-3 |
|
) |
|
msg = "can only be used on strictly positive y_pred." |
|
with pytest.raises(ValueError, match=msg): |
|
mean_tweedie_deviance([0.0], [0.0], power=power) |
|
with pytest.raises(ValueError, match=msg): |
|
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) |
|
|
|
assert_almost_equal(mean_tweedie_deviance([0.0], [0.0], power=0), 0.0, 2) |
|
|
|
power = 1.0 |
|
msg = "only be used on non-negative y and strictly positive y_pred." |
|
with pytest.raises(ValueError, match=msg): |
|
mean_tweedie_deviance([0.0], [0.0], power=power) |
|
with pytest.raises(ValueError, match=msg): |
|
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) |
|
|
|
power = 1.5 |
|
assert_allclose(mean_tweedie_deviance([0.0], [1.0], power=power), 2 / (2 - power)) |
|
msg = "only be used on non-negative y and strictly positive y_pred." |
|
with pytest.raises(ValueError, match=msg): |
|
mean_tweedie_deviance([0.0], [0.0], power=power) |
|
with pytest.raises(ValueError, match=msg): |
|
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) |
|
|
|
power = 2.0 |
|
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8) |
|
msg = "can only be used on strictly positive y and y_pred." |
|
with pytest.raises(ValueError, match=msg): |
|
mean_tweedie_deviance([0.0], [0.0], power=power) |
|
with pytest.raises(ValueError, match=msg): |
|
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) |
|
|
|
power = 3.0 |
|
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8) |
|
msg = "can only be used on strictly positive y and y_pred." |
|
with pytest.raises(ValueError, match=msg): |
|
mean_tweedie_deviance([0.0], [0.0], power=power) |
|
with pytest.raises(ValueError, match=msg): |
|
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power) |
|
|
|
|
|
def test__check_reg_targets(): |
|
|
|
EXAMPLES = [ |
|
("continuous", [1, 2, 3], 1), |
|
("continuous", [[1], [2], [3]], 1), |
|
("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), |
|
("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), |
|
("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), |
|
] |
|
|
|
for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): |
|
if type1 == type2 and n_out1 == n_out2: |
|
y_type, y_check1, y_check2, multioutput = _check_reg_targets(y1, y2, None) |
|
assert type1 == y_type |
|
if type1 == "continuous": |
|
assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) |
|
assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) |
|
else: |
|
assert_array_equal(y_check1, y1) |
|
assert_array_equal(y_check2, y2) |
|
else: |
|
with pytest.raises(ValueError): |
|
_check_reg_targets(y1, y2, None) |
|
|
|
|
|
def test__check_reg_targets_exception(): |
|
invalid_multioutput = "this_value_is_not_valid" |
|
expected_message = ( |
|
"Allowed 'multioutput' string values are.+You provided multioutput={!r}".format( |
|
invalid_multioutput |
|
) |
|
) |
|
with pytest.raises(ValueError, match=expected_message): |
|
_check_reg_targets([1, 2, 3], [[1], [2], [3]], invalid_multioutput) |
|
|
|
|
|
def test_regression_multioutput_array(): |
|
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] |
|
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] |
|
|
|
mse = mean_squared_error(y_true, y_pred, multioutput="raw_values") |
|
mae = mean_absolute_error(y_true, y_pred, multioutput="raw_values") |
|
|
|
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values") |
|
mape = mean_absolute_percentage_error(y_true, y_pred, multioutput="raw_values") |
|
r = r2_score(y_true, y_pred, multioutput="raw_values") |
|
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values") |
|
d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values") |
|
evs2 = explained_variance_score( |
|
y_true, y_pred, multioutput="raw_values", force_finite=False |
|
) |
|
|
|
assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) |
|
assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) |
|
assert_array_almost_equal(pbl, [0.25 / 2, 0.625 / 2], decimal=2) |
|
assert_array_almost_equal(mape, [0.0778, 0.2262], decimal=2) |
|
assert_array_almost_equal(r, [0.95, 0.93], decimal=2) |
|
assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) |
|
assert_array_almost_equal(d2ps, [0.833, 0.722], decimal=2) |
|
assert_array_almost_equal(evs2, [0.95, 0.93], decimal=2) |
|
|
|
|
|
|
|
y_true = [[0, 0]] * 4 |
|
y_pred = [[1, 1]] * 4 |
|
mse = mean_squared_error(y_true, y_pred, multioutput="raw_values") |
|
mae = mean_absolute_error(y_true, y_pred, multioutput="raw_values") |
|
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values") |
|
r = r2_score(y_true, y_pred, multioutput="raw_values") |
|
d2ps = d2_pinball_score(y_true, y_pred, multioutput="raw_values") |
|
assert_array_almost_equal(mse, [1.0, 1.0], decimal=2) |
|
assert_array_almost_equal(mae, [1.0, 1.0], decimal=2) |
|
assert_array_almost_equal(pbl, [0.5, 0.5], decimal=2) |
|
assert_array_almost_equal(r, [0.0, 0.0], decimal=2) |
|
assert_array_almost_equal(d2ps, [0.0, 0.0], decimal=2) |
|
|
|
r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values") |
|
assert_array_almost_equal(r, [0, -3.5], decimal=2) |
|
assert np.mean(r) == r2_score( |
|
[[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="uniform_average" |
|
) |
|
evs = explained_variance_score( |
|
[[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values" |
|
) |
|
assert_array_almost_equal(evs, [0, -1.25], decimal=2) |
|
evs2 = explained_variance_score( |
|
[[0, -1], [0, 1]], |
|
[[2, 2], [1, 1]], |
|
multioutput="raw_values", |
|
force_finite=False, |
|
) |
|
assert_array_almost_equal(evs2, [-np.inf, -1.25], decimal=2) |
|
|
|
|
|
|
|
y_true = [[1, 3], [1, 2]] |
|
y_pred = [[1, 4], [1, 1]] |
|
r2 = r2_score(y_true, y_pred, multioutput="raw_values") |
|
assert_array_almost_equal(r2, [1.0, -3.0], decimal=2) |
|
assert np.mean(r2) == r2_score(y_true, y_pred, multioutput="uniform_average") |
|
r22 = r2_score(y_true, y_pred, multioutput="raw_values", force_finite=False) |
|
assert_array_almost_equal(r22, [np.nan, -3.0], decimal=2) |
|
assert_almost_equal( |
|
np.mean(r22), |
|
r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False), |
|
) |
|
|
|
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values") |
|
assert_array_almost_equal(evs, [1.0, -3.0], decimal=2) |
|
assert np.mean(evs) == explained_variance_score(y_true, y_pred) |
|
d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values") |
|
assert_array_almost_equal(d2ps, [1.0, -1.0], decimal=2) |
|
evs2 = explained_variance_score( |
|
y_true, y_pred, multioutput="raw_values", force_finite=False |
|
) |
|
assert_array_almost_equal(evs2, [np.nan, -3.0], decimal=2) |
|
assert_almost_equal( |
|
np.mean(evs2), explained_variance_score(y_true, y_pred, force_finite=False) |
|
) |
|
|
|
|
|
y_true = np.array([[0.5, 1], [1, 2], [7, 6]]) |
|
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]]) |
|
msle = mean_squared_log_error(y_true, y_pred, multioutput="raw_values") |
|
msle2 = mean_squared_error( |
|
np.log(1 + y_true), np.log(1 + y_pred), multioutput="raw_values" |
|
) |
|
assert_array_almost_equal(msle, msle2, decimal=2) |
|
|
|
|
|
def test_regression_custom_weights(): |
|
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] |
|
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] |
|
|
|
msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) |
|
rmsew = root_mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) |
|
maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) |
|
mapew = mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.4, 0.6]) |
|
rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) |
|
evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) |
|
d2psw = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput=[0.4, 0.6]) |
|
evsw2 = explained_variance_score( |
|
y_true, y_pred, multioutput=[0.4, 0.6], force_finite=False |
|
) |
|
|
|
assert_almost_equal(msew, 0.39, decimal=2) |
|
assert_almost_equal(rmsew, 0.59, decimal=2) |
|
assert_almost_equal(maew, 0.475, decimal=3) |
|
assert_almost_equal(mapew, 0.1668, decimal=2) |
|
assert_almost_equal(rw, 0.94, decimal=2) |
|
assert_almost_equal(evsw, 0.94, decimal=2) |
|
assert_almost_equal(d2psw, 0.766, decimal=2) |
|
assert_almost_equal(evsw2, 0.94, decimal=2) |
|
|
|
|
|
y_true = np.array([[0.5, 1], [1, 2], [7, 6]]) |
|
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]]) |
|
msle = mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7]) |
|
msle2 = mean_squared_error( |
|
np.log(1 + y_true), np.log(1 + y_pred), multioutput=[0.3, 0.7] |
|
) |
|
assert_almost_equal(msle, msle2, decimal=2) |
|
|
|
|
|
@pytest.mark.parametrize("metric", [r2_score, d2_tweedie_score, d2_pinball_score]) |
|
def test_regression_single_sample(metric): |
|
y_true = [0] |
|
y_pred = [1] |
|
warning_msg = "not well-defined with less than two samples." |
|
|
|
|
|
with pytest.warns(UndefinedMetricWarning, match=warning_msg): |
|
score = metric(y_true, y_pred) |
|
assert np.isnan(score) |
|
|
|
|
|
def test_tweedie_deviance_continuity(): |
|
n_samples = 100 |
|
|
|
y_true = np.random.RandomState(0).rand(n_samples) + 0.1 |
|
y_pred = np.random.RandomState(1).rand(n_samples) + 0.1 |
|
|
|
assert_allclose( |
|
mean_tweedie_deviance(y_true, y_pred, power=0 - 1e-10), |
|
mean_tweedie_deviance(y_true, y_pred, power=0), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
assert_allclose( |
|
mean_tweedie_deviance(y_true, y_pred, power=1 + 1e-10), |
|
mean_tweedie_deviance(y_true, y_pred, power=1), |
|
atol=1e-6, |
|
) |
|
|
|
assert_allclose( |
|
mean_tweedie_deviance(y_true, y_pred, power=2 - 1e-10), |
|
mean_tweedie_deviance(y_true, y_pred, power=2), |
|
atol=1e-6, |
|
) |
|
|
|
assert_allclose( |
|
mean_tweedie_deviance(y_true, y_pred, power=2 + 1e-10), |
|
mean_tweedie_deviance(y_true, y_pred, power=2), |
|
atol=1e-6, |
|
) |
|
|
|
|
|
def test_mean_absolute_percentage_error(): |
|
random_number_generator = np.random.RandomState(42) |
|
y_true = random_number_generator.exponential(size=100) |
|
y_pred = 1.2 * y_true |
|
assert mean_absolute_percentage_error(y_true, y_pred) == pytest.approx(0.2) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"distribution", ["normal", "lognormal", "exponential", "uniform"] |
|
) |
|
@pytest.mark.parametrize("target_quantile", [0.05, 0.5, 0.75]) |
|
def test_mean_pinball_loss_on_constant_predictions(distribution, target_quantile): |
|
if not hasattr(np, "quantile"): |
|
pytest.skip( |
|
"This test requires a more recent version of numpy " |
|
"with support for np.quantile." |
|
) |
|
|
|
|
|
n_samples = 3000 |
|
rng = np.random.RandomState(42) |
|
data = getattr(rng, distribution)(size=n_samples) |
|
|
|
|
|
best_pred = np.quantile(data, target_quantile) |
|
best_constant_pred = np.full(n_samples, fill_value=best_pred) |
|
best_pbl = mean_pinball_loss(data, best_constant_pred, alpha=target_quantile) |
|
|
|
|
|
candidate_predictions = np.quantile(data, np.linspace(0, 1, 100)) |
|
for pred in candidate_predictions: |
|
|
|
constant_pred = np.full(n_samples, fill_value=pred) |
|
pbl = mean_pinball_loss(data, constant_pred, alpha=target_quantile) |
|
|
|
|
|
|
|
|
|
assert pbl >= best_pbl - np.finfo(best_pbl.dtype).eps |
|
|
|
|
|
|
|
expected_pbl = (pred - data[data < pred]).sum() * (1 - target_quantile) + ( |
|
data[data >= pred] - pred |
|
).sum() * target_quantile |
|
expected_pbl /= n_samples |
|
assert_almost_equal(expected_pbl, pbl) |
|
|
|
|
|
|
|
def objective_func(x): |
|
constant_pred = np.full(n_samples, fill_value=x) |
|
return mean_pinball_loss(data, constant_pred, alpha=target_quantile) |
|
|
|
result = optimize.minimize(objective_func, data.mean(), method="Nelder-Mead") |
|
assert result.success |
|
|
|
assert result.x == pytest.approx(best_pred, rel=1e-2) |
|
assert result.fun == pytest.approx(best_pbl) |
|
|
|
|
|
def test_dummy_quantile_parameter_tuning(): |
|
|
|
|
|
|
|
|
|
n_samples = 1000 |
|
rng = np.random.RandomState(0) |
|
X = rng.normal(size=(n_samples, 5)) |
|
y = rng.exponential(size=n_samples) |
|
|
|
all_quantiles = [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95] |
|
for alpha in all_quantiles: |
|
neg_mean_pinball_loss = make_scorer( |
|
mean_pinball_loss, |
|
alpha=alpha, |
|
greater_is_better=False, |
|
) |
|
regressor = DummyRegressor(strategy="quantile", quantile=0.25) |
|
grid_search = GridSearchCV( |
|
regressor, |
|
param_grid=dict(quantile=all_quantiles), |
|
scoring=neg_mean_pinball_loss, |
|
).fit(X, y) |
|
|
|
assert grid_search.best_params_["quantile"] == pytest.approx(alpha) |
|
|
|
|
|
def test_pinball_loss_relation_with_mae(): |
|
|
|
rng = np.random.RandomState(714) |
|
n = 100 |
|
y_true = rng.normal(size=n) |
|
y_pred = y_true.copy() + rng.uniform(n) |
|
assert ( |
|
mean_absolute_error(y_true, y_pred) |
|
== mean_pinball_loss(y_true, y_pred, alpha=0.5) * 2 |
|
) |
|
|