File size: 25,543 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
from itertools import product
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy import optimize
from scipy.special import factorial, xlogy
from sklearn.dummy import DummyRegressor
from sklearn.exceptions import UndefinedMetricWarning
from sklearn.metrics import (
d2_absolute_error_score,
d2_pinball_score,
d2_tweedie_score,
explained_variance_score,
make_scorer,
max_error,
mean_absolute_error,
mean_absolute_percentage_error,
mean_pinball_loss,
mean_squared_error,
mean_squared_log_error,
mean_tweedie_deviance,
median_absolute_error,
r2_score,
root_mean_squared_error,
root_mean_squared_log_error,
)
from sklearn.metrics._regression import _check_reg_targets
from sklearn.model_selection import GridSearchCV
from sklearn.utils._testing import (
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
)
def test_regression_metrics(n_samples=50):
y_true = np.arange(n_samples)
y_pred = y_true + 1
y_pred_2 = y_true - 1
assert_almost_equal(mean_squared_error(y_true, y_pred), 1.0)
assert_almost_equal(
mean_squared_log_error(y_true, y_pred),
mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred)),
)
assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.0)
assert_almost_equal(mean_pinball_loss(y_true, y_pred), 0.5)
assert_almost_equal(mean_pinball_loss(y_true, y_pred_2), 0.5)
assert_almost_equal(mean_pinball_loss(y_true, y_pred, alpha=0.4), 0.6)
assert_almost_equal(mean_pinball_loss(y_true, y_pred_2, alpha=0.4), 0.4)
assert_almost_equal(median_absolute_error(y_true, y_pred), 1.0)
mape = mean_absolute_percentage_error(y_true, y_pred)
assert np.isfinite(mape)
assert mape > 1e6
assert_almost_equal(max_error(y_true, y_pred), 1.0)
assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2)
assert_almost_equal(r2_score(y_true, y_pred, force_finite=False), 0.995, 2)
assert_almost_equal(explained_variance_score(y_true, y_pred), 1.0)
assert_almost_equal(
explained_variance_score(y_true, y_pred, force_finite=False), 1.0
)
assert_almost_equal(
mean_tweedie_deviance(y_true, y_pred, power=0),
mean_squared_error(y_true, y_pred),
)
assert_almost_equal(
d2_tweedie_score(y_true, y_pred, power=0), r2_score(y_true, y_pred)
)
dev_median = np.abs(y_true - np.median(y_true)).sum()
assert_array_almost_equal(
d2_absolute_error_score(y_true, y_pred),
1 - np.abs(y_true - y_pred).sum() / dev_median,
)
alpha = 0.2
pinball_loss = lambda y_true, y_pred, alpha: alpha * np.maximum(
y_true - y_pred, 0
) + (1 - alpha) * np.maximum(y_pred - y_true, 0)
y_quantile = np.percentile(y_true, q=alpha * 100)
assert_almost_equal(
d2_pinball_score(y_true, y_pred, alpha=alpha),
1
- pinball_loss(y_true, y_pred, alpha).sum()
/ pinball_loss(y_true, y_quantile, alpha).sum(),
)
assert_almost_equal(
d2_absolute_error_score(y_true, y_pred),
d2_pinball_score(y_true, y_pred, alpha=0.5),
)
# Tweedie deviance needs positive y_pred, except for p=0,
# p>=2 needs positive y_true
# results evaluated by sympy
y_true = np.arange(1, 1 + n_samples)
y_pred = 2 * y_true
n = n_samples
assert_almost_equal(
mean_tweedie_deviance(y_true, y_pred, power=-1),
5 / 12 * n * (n**2 + 2 * n + 1),
)
assert_almost_equal(
mean_tweedie_deviance(y_true, y_pred, power=1), (n + 1) * (1 - np.log(2))
)
assert_almost_equal(
mean_tweedie_deviance(y_true, y_pred, power=2), 2 * np.log(2) - 1
)
assert_almost_equal(
mean_tweedie_deviance(y_true, y_pred, power=3 / 2),
((6 * np.sqrt(2) - 8) / n) * np.sqrt(y_true).sum(),
)
assert_almost_equal(
mean_tweedie_deviance(y_true, y_pred, power=3), np.sum(1 / y_true) / (4 * n)
)
dev_mean = 2 * np.mean(xlogy(y_true, 2 * y_true / (n + 1)))
assert_almost_equal(
d2_tweedie_score(y_true, y_pred, power=1),
1 - (n + 1) * (1 - np.log(2)) / dev_mean,
)
dev_mean = 2 * np.log((n + 1) / 2) - 2 / n * np.log(factorial(n))
assert_almost_equal(
d2_tweedie_score(y_true, y_pred, power=2), 1 - (2 * np.log(2) - 1) / dev_mean
)
def test_root_mean_squared_error_multioutput_raw_value():
# non-regression test for
# https://github.com/scikit-learn/scikit-learn/pull/16323
mse = mean_squared_error([[1]], [[10]], multioutput="raw_values")
rmse = root_mean_squared_error([[1]], [[10]], multioutput="raw_values")
assert np.sqrt(mse) == pytest.approx(rmse)
def test_multioutput_regression():
y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]])
y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])
error = mean_squared_error(y_true, y_pred)
assert_almost_equal(error, (1.0 / 3 + 2.0 / 3 + 2.0 / 3) / 4.0)
error = root_mean_squared_error(y_true, y_pred)
assert_almost_equal(error, 0.454, decimal=2)
error = mean_squared_log_error(y_true, y_pred)
assert_almost_equal(error, 0.200, decimal=2)
error = root_mean_squared_log_error(y_true, y_pred)
assert_almost_equal(error, 0.315, decimal=2)
# mean_absolute_error and mean_squared_error are equal because
# it is a binary problem.
error = mean_absolute_error(y_true, y_pred)
assert_almost_equal(error, (1.0 + 2.0 / 3) / 4.0)
error = mean_pinball_loss(y_true, y_pred)
assert_almost_equal(error, (1.0 + 2.0 / 3) / 8.0)
error = np.around(mean_absolute_percentage_error(y_true, y_pred), decimals=2)
assert np.isfinite(error)
assert error > 1e6
error = median_absolute_error(y_true, y_pred)
assert_almost_equal(error, (1.0 + 1.0) / 4.0)
error = r2_score(y_true, y_pred, multioutput="variance_weighted")
assert_almost_equal(error, 1.0 - 5.0 / 2)
error = r2_score(y_true, y_pred, multioutput="uniform_average")
assert_almost_equal(error, -0.875)
score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values")
raw_expected_score = [
1
- np.abs(y_true[:, i] - y_pred[:, i]).sum()
/ np.abs(y_true[:, i] - np.median(y_true[:, i])).sum()
for i in range(y_true.shape[1])
]
# in the last case, the denominator vanishes and hence we get nan,
# but since the numerator vanishes as well the expected score is 1.0
raw_expected_score = np.where(np.isnan(raw_expected_score), 1, raw_expected_score)
assert_array_almost_equal(score, raw_expected_score)
score = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="uniform_average")
assert_almost_equal(score, raw_expected_score.mean())
# constant `y_true` with force_finite=True leads to 1. or 0.
yc = [5.0, 5.0]
error = r2_score(yc, [5.0, 5.0], multioutput="variance_weighted")
assert_almost_equal(error, 1.0)
error = r2_score(yc, [5.0, 5.1], multioutput="variance_weighted")
assert_almost_equal(error, 0.0)
# Setting force_finite=False results in the nan for 4th output propagating
error = r2_score(
y_true, y_pred, multioutput="variance_weighted", force_finite=False
)
assert_almost_equal(error, np.nan)
error = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False)
assert_almost_equal(error, np.nan)
# Dropping the 4th output to check `force_finite=False` for nominal
y_true = y_true[:, :-1]
y_pred = y_pred[:, :-1]
error = r2_score(y_true, y_pred, multioutput="variance_weighted")
error2 = r2_score(
y_true, y_pred, multioutput="variance_weighted", force_finite=False
)
assert_almost_equal(error, error2)
error = r2_score(y_true, y_pred, multioutput="uniform_average")
error2 = r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False)
assert_almost_equal(error, error2)
# constant `y_true` with force_finite=False leads to NaN or -Inf.
error = r2_score(
yc, [5.0, 5.0], multioutput="variance_weighted", force_finite=False
)
assert_almost_equal(error, np.nan)
error = r2_score(
yc, [5.0, 6.0], multioutput="variance_weighted", force_finite=False
)
assert_almost_equal(error, -np.inf)
def test_regression_metrics_at_limits():
# Single-sample case
# Note: for r2 and d2_tweedie see also test_regression_single_sample
assert_almost_equal(mean_squared_error([0.0], [0.0]), 0.0)
assert_almost_equal(root_mean_squared_error([0.0], [0.0]), 0.0)
assert_almost_equal(mean_squared_log_error([0.0], [0.0]), 0.0)
assert_almost_equal(mean_absolute_error([0.0], [0.0]), 0.0)
assert_almost_equal(mean_pinball_loss([0.0], [0.0]), 0.0)
assert_almost_equal(mean_absolute_percentage_error([0.0], [0.0]), 0.0)
assert_almost_equal(median_absolute_error([0.0], [0.0]), 0.0)
assert_almost_equal(max_error([0.0], [0.0]), 0.0)
assert_almost_equal(explained_variance_score([0.0], [0.0]), 1.0)
# Perfect cases
assert_almost_equal(r2_score([0.0, 1], [0.0, 1]), 1.0)
assert_almost_equal(d2_pinball_score([0.0, 1], [0.0, 1]), 1.0)
# Non-finite cases
# R² and explained variance have a fix by default for non-finite cases
for s in (r2_score, explained_variance_score):
assert_almost_equal(s([0, 0], [1, -1]), 0.0)
assert_almost_equal(s([0, 0], [1, -1], force_finite=False), -np.inf)
assert_almost_equal(s([1, 1], [1, 1]), 1.0)
assert_almost_equal(s([1, 1], [1, 1], force_finite=False), np.nan)
msg = (
"Mean Squared Logarithmic Error cannot be used when "
"targets contain values less than or equal to -1."
)
with pytest.raises(ValueError, match=msg):
mean_squared_log_error([-1.0], [-1.0])
msg = (
"Mean Squared Logarithmic Error cannot be used when "
"targets contain values less than or equal to -1."
)
with pytest.raises(ValueError, match=msg):
mean_squared_log_error([1.0, 2.0, 3.0], [1.0, -2.0, 3.0])
msg = (
"Mean Squared Logarithmic Error cannot be used when "
"targets contain values less than or equal to -1."
)
with pytest.raises(ValueError, match=msg):
mean_squared_log_error([1.0, -2.0, 3.0], [1.0, 2.0, 3.0])
msg = (
"Mean Squared Logarithmic Error cannot be used when "
"targets contain values less than or equal to -1."
)
with pytest.raises(ValueError, match=msg):
root_mean_squared_log_error([1.0, -2.0, 3.0], [1.0, 2.0, 3.0])
msg = (
"Root Mean Squared Logarithmic Error cannot be used when "
"targets contain values less than or equal to -1."
)
# Tweedie deviance error
power = -1.2
assert_allclose(
mean_tweedie_deviance([0], [1.0], power=power), 2 / (2 - power), rtol=1e-3
)
msg = "can only be used on strictly positive y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
with pytest.raises(ValueError, match=msg):
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
assert_almost_equal(mean_tweedie_deviance([0.0], [0.0], power=0), 0.0, 2)
power = 1.0
msg = "only be used on non-negative y and strictly positive y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
with pytest.raises(ValueError, match=msg):
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
power = 1.5
assert_allclose(mean_tweedie_deviance([0.0], [1.0], power=power), 2 / (2 - power))
msg = "only be used on non-negative y and strictly positive y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
with pytest.raises(ValueError, match=msg):
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
power = 2.0
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8)
msg = "can only be used on strictly positive y and y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
with pytest.raises(ValueError, match=msg):
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
power = 3.0
assert_allclose(mean_tweedie_deviance([1.0], [1.0], power=power), 0.00, atol=1e-8)
msg = "can only be used on strictly positive y and y_pred."
with pytest.raises(ValueError, match=msg):
mean_tweedie_deviance([0.0], [0.0], power=power)
with pytest.raises(ValueError, match=msg):
d2_tweedie_score([0.0] * 2, [0.0] * 2, power=power)
def test__check_reg_targets():
# All of length 3
EXAMPLES = [
("continuous", [1, 2, 3], 1),
("continuous", [[1], [2], [3]], 1),
("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2),
("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2),
("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3),
]
for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2):
if type1 == type2 and n_out1 == n_out2:
y_type, y_check1, y_check2, multioutput = _check_reg_targets(y1, y2, None)
assert type1 == y_type
if type1 == "continuous":
assert_array_equal(y_check1, np.reshape(y1, (-1, 1)))
assert_array_equal(y_check2, np.reshape(y2, (-1, 1)))
else:
assert_array_equal(y_check1, y1)
assert_array_equal(y_check2, y2)
else:
with pytest.raises(ValueError):
_check_reg_targets(y1, y2, None)
def test__check_reg_targets_exception():
invalid_multioutput = "this_value_is_not_valid"
expected_message = (
"Allowed 'multioutput' string values are.+You provided multioutput={!r}".format(
invalid_multioutput
)
)
with pytest.raises(ValueError, match=expected_message):
_check_reg_targets([1, 2, 3], [[1], [2], [3]], invalid_multioutput)
def test_regression_multioutput_array():
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]]
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]]
mse = mean_squared_error(y_true, y_pred, multioutput="raw_values")
mae = mean_absolute_error(y_true, y_pred, multioutput="raw_values")
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values")
mape = mean_absolute_percentage_error(y_true, y_pred, multioutput="raw_values")
r = r2_score(y_true, y_pred, multioutput="raw_values")
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values")
d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values")
evs2 = explained_variance_score(
y_true, y_pred, multioutput="raw_values", force_finite=False
)
assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2)
assert_array_almost_equal(mae, [0.25, 0.625], decimal=2)
assert_array_almost_equal(pbl, [0.25 / 2, 0.625 / 2], decimal=2)
assert_array_almost_equal(mape, [0.0778, 0.2262], decimal=2)
assert_array_almost_equal(r, [0.95, 0.93], decimal=2)
assert_array_almost_equal(evs, [0.95, 0.93], decimal=2)
assert_array_almost_equal(d2ps, [0.833, 0.722], decimal=2)
assert_array_almost_equal(evs2, [0.95, 0.93], decimal=2)
# mean_absolute_error and mean_squared_error are equal because
# it is a binary problem.
y_true = [[0, 0]] * 4
y_pred = [[1, 1]] * 4
mse = mean_squared_error(y_true, y_pred, multioutput="raw_values")
mae = mean_absolute_error(y_true, y_pred, multioutput="raw_values")
pbl = mean_pinball_loss(y_true, y_pred, multioutput="raw_values")
r = r2_score(y_true, y_pred, multioutput="raw_values")
d2ps = d2_pinball_score(y_true, y_pred, multioutput="raw_values")
assert_array_almost_equal(mse, [1.0, 1.0], decimal=2)
assert_array_almost_equal(mae, [1.0, 1.0], decimal=2)
assert_array_almost_equal(pbl, [0.5, 0.5], decimal=2)
assert_array_almost_equal(r, [0.0, 0.0], decimal=2)
assert_array_almost_equal(d2ps, [0.0, 0.0], decimal=2)
r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values")
assert_array_almost_equal(r, [0, -3.5], decimal=2)
assert np.mean(r) == r2_score(
[[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="uniform_average"
)
evs = explained_variance_score(
[[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput="raw_values"
)
assert_array_almost_equal(evs, [0, -1.25], decimal=2)
evs2 = explained_variance_score(
[[0, -1], [0, 1]],
[[2, 2], [1, 1]],
multioutput="raw_values",
force_finite=False,
)
assert_array_almost_equal(evs2, [-np.inf, -1.25], decimal=2)
# Checking for the condition in which both numerator and denominator is
# zero.
y_true = [[1, 3], [1, 2]]
y_pred = [[1, 4], [1, 1]]
r2 = r2_score(y_true, y_pred, multioutput="raw_values")
assert_array_almost_equal(r2, [1.0, -3.0], decimal=2)
assert np.mean(r2) == r2_score(y_true, y_pred, multioutput="uniform_average")
r22 = r2_score(y_true, y_pred, multioutput="raw_values", force_finite=False)
assert_array_almost_equal(r22, [np.nan, -3.0], decimal=2)
assert_almost_equal(
np.mean(r22),
r2_score(y_true, y_pred, multioutput="uniform_average", force_finite=False),
)
evs = explained_variance_score(y_true, y_pred, multioutput="raw_values")
assert_array_almost_equal(evs, [1.0, -3.0], decimal=2)
assert np.mean(evs) == explained_variance_score(y_true, y_pred)
d2ps = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput="raw_values")
assert_array_almost_equal(d2ps, [1.0, -1.0], decimal=2)
evs2 = explained_variance_score(
y_true, y_pred, multioutput="raw_values", force_finite=False
)
assert_array_almost_equal(evs2, [np.nan, -3.0], decimal=2)
assert_almost_equal(
np.mean(evs2), explained_variance_score(y_true, y_pred, force_finite=False)
)
# Handling msle separately as it does not accept negative inputs.
y_true = np.array([[0.5, 1], [1, 2], [7, 6]])
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]])
msle = mean_squared_log_error(y_true, y_pred, multioutput="raw_values")
msle2 = mean_squared_error(
np.log(1 + y_true), np.log(1 + y_pred), multioutput="raw_values"
)
assert_array_almost_equal(msle, msle2, decimal=2)
def test_regression_custom_weights():
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]]
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]]
msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6])
rmsew = root_mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6])
maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6])
mapew = mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.4, 0.6])
rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6])
evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6])
d2psw = d2_pinball_score(y_true, y_pred, alpha=0.5, multioutput=[0.4, 0.6])
evsw2 = explained_variance_score(
y_true, y_pred, multioutput=[0.4, 0.6], force_finite=False
)
assert_almost_equal(msew, 0.39, decimal=2)
assert_almost_equal(rmsew, 0.59, decimal=2)
assert_almost_equal(maew, 0.475, decimal=3)
assert_almost_equal(mapew, 0.1668, decimal=2)
assert_almost_equal(rw, 0.94, decimal=2)
assert_almost_equal(evsw, 0.94, decimal=2)
assert_almost_equal(d2psw, 0.766, decimal=2)
assert_almost_equal(evsw2, 0.94, decimal=2)
# Handling msle separately as it does not accept negative inputs.
y_true = np.array([[0.5, 1], [1, 2], [7, 6]])
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]])
msle = mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
msle2 = mean_squared_error(
np.log(1 + y_true), np.log(1 + y_pred), multioutput=[0.3, 0.7]
)
assert_almost_equal(msle, msle2, decimal=2)
@pytest.mark.parametrize("metric", [r2_score, d2_tweedie_score, d2_pinball_score])
def test_regression_single_sample(metric):
y_true = [0]
y_pred = [1]
warning_msg = "not well-defined with less than two samples."
# Trigger the warning
with pytest.warns(UndefinedMetricWarning, match=warning_msg):
score = metric(y_true, y_pred)
assert np.isnan(score)
def test_tweedie_deviance_continuity():
n_samples = 100
y_true = np.random.RandomState(0).rand(n_samples) + 0.1
y_pred = np.random.RandomState(1).rand(n_samples) + 0.1
assert_allclose(
mean_tweedie_deviance(y_true, y_pred, power=0 - 1e-10),
mean_tweedie_deviance(y_true, y_pred, power=0),
)
# Ws we get closer to the limit, with 1e-12 difference the absolute
# tolerance to pass the below check increases. There are likely
# numerical precision issues on the edges of different definition
# regions.
assert_allclose(
mean_tweedie_deviance(y_true, y_pred, power=1 + 1e-10),
mean_tweedie_deviance(y_true, y_pred, power=1),
atol=1e-6,
)
assert_allclose(
mean_tweedie_deviance(y_true, y_pred, power=2 - 1e-10),
mean_tweedie_deviance(y_true, y_pred, power=2),
atol=1e-6,
)
assert_allclose(
mean_tweedie_deviance(y_true, y_pred, power=2 + 1e-10),
mean_tweedie_deviance(y_true, y_pred, power=2),
atol=1e-6,
)
def test_mean_absolute_percentage_error():
random_number_generator = np.random.RandomState(42)
y_true = random_number_generator.exponential(size=100)
y_pred = 1.2 * y_true
assert mean_absolute_percentage_error(y_true, y_pred) == pytest.approx(0.2)
@pytest.mark.parametrize(
"distribution", ["normal", "lognormal", "exponential", "uniform"]
)
@pytest.mark.parametrize("target_quantile", [0.05, 0.5, 0.75])
def test_mean_pinball_loss_on_constant_predictions(distribution, target_quantile):
if not hasattr(np, "quantile"):
pytest.skip(
"This test requires a more recent version of numpy "
"with support for np.quantile."
)
# Check that the pinball loss is minimized by the empirical quantile.
n_samples = 3000
rng = np.random.RandomState(42)
data = getattr(rng, distribution)(size=n_samples)
# Compute the best possible pinball loss for any constant predictor:
best_pred = np.quantile(data, target_quantile)
best_constant_pred = np.full(n_samples, fill_value=best_pred)
best_pbl = mean_pinball_loss(data, best_constant_pred, alpha=target_quantile)
# Evaluate the loss on a grid of quantiles
candidate_predictions = np.quantile(data, np.linspace(0, 1, 100))
for pred in candidate_predictions:
# Compute the pinball loss of a constant predictor:
constant_pred = np.full(n_samples, fill_value=pred)
pbl = mean_pinball_loss(data, constant_pred, alpha=target_quantile)
# Check that the loss of this constant predictor is greater or equal
# than the loss of using the optimal quantile (up to machine
# precision):
assert pbl >= best_pbl - np.finfo(best_pbl.dtype).eps
# Check that the value of the pinball loss matches the analytical
# formula.
expected_pbl = (pred - data[data < pred]).sum() * (1 - target_quantile) + (
data[data >= pred] - pred
).sum() * target_quantile
expected_pbl /= n_samples
assert_almost_equal(expected_pbl, pbl)
# Check that we can actually recover the target_quantile by minimizing the
# pinball loss w.r.t. the constant prediction quantile.
def objective_func(x):
constant_pred = np.full(n_samples, fill_value=x)
return mean_pinball_loss(data, constant_pred, alpha=target_quantile)
result = optimize.minimize(objective_func, data.mean(), method="Nelder-Mead")
assert result.success
# The minimum is not unique with limited data, hence the large tolerance.
assert result.x == pytest.approx(best_pred, rel=1e-2)
assert result.fun == pytest.approx(best_pbl)
def test_dummy_quantile_parameter_tuning():
# Integration test to check that it is possible to use the pinball loss to
# tune the hyperparameter of a quantile regressor. This is conceptually
# similar to the previous test but using the scikit-learn estimator and
# scoring API instead.
n_samples = 1000
rng = np.random.RandomState(0)
X = rng.normal(size=(n_samples, 5)) # Ignored
y = rng.exponential(size=n_samples)
all_quantiles = [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95]
for alpha in all_quantiles:
neg_mean_pinball_loss = make_scorer(
mean_pinball_loss,
alpha=alpha,
greater_is_better=False,
)
regressor = DummyRegressor(strategy="quantile", quantile=0.25)
grid_search = GridSearchCV(
regressor,
param_grid=dict(quantile=all_quantiles),
scoring=neg_mean_pinball_loss,
).fit(X, y)
assert grid_search.best_params_["quantile"] == pytest.approx(alpha)
def test_pinball_loss_relation_with_mae():
# Test that mean_pinball loss with alpha=0.5 if half of mean absolute error
rng = np.random.RandomState(714)
n = 100
y_true = rng.normal(size=n)
y_pred = y_true.copy() + rng.uniform(n)
assert (
mean_absolute_error(y_true, y_pred)
== mean_pinball_loss(y_true, y_pred, alpha=0.5) * 2
)
|