|
import itertools |
|
|
|
import numpy as np |
|
from numpy import exp |
|
from numpy.testing import assert_, assert_equal |
|
|
|
from scipy.optimize import root |
|
|
|
|
|
def test_performance(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e_a = 1e-5 |
|
e_r = 1e-4 |
|
|
|
table_1 = [ |
|
dict(F=F_1, x0=x0_1, n=1000, nit=5, nfev=5), |
|
dict(F=F_1, x0=x0_1, n=10000, nit=2, nfev=2), |
|
dict(F=F_2, x0=x0_2, n=500, nit=11, nfev=11), |
|
dict(F=F_2, x0=x0_2, n=2000, nit=11, nfev=11), |
|
|
|
|
|
|
|
dict(F=F_6, x0=x0_6, n=100, nit=6, nfev=6), |
|
|
|
dict(F=F_7, x0=x0_7, n=99, nit=23, nfev=29), |
|
|
|
dict(F=F_7, x0=x0_7, n=999, nit=23, nfev=29), |
|
|
|
dict(F=F_9, x0=x0_9, n=100, nit=12, nfev=18), |
|
dict(F=F_9, x0=x0_9, n=1000, nit=12, nfev=18), |
|
|
|
dict(F=F_10, x0=x0_10, n=1000, nit=5, nfev=5), |
|
] |
|
|
|
|
|
for xscale, yscale, line_search in itertools.product( |
|
[1.0, 1e-10, 1e10], [1.0, 1e-10, 1e10], ['cruz', 'cheng'] |
|
): |
|
for problem in table_1: |
|
n = problem['n'] |
|
def func(x, n): |
|
return yscale * problem['F'](x / xscale, n) |
|
args = (n,) |
|
x0 = problem['x0'](n) * xscale |
|
|
|
fatol = np.sqrt(n) * e_a * yscale + e_r * np.linalg.norm(func(x0, n)) |
|
|
|
sigma_eps = 1e-10 * min(yscale/xscale, xscale/yscale) |
|
sigma_0 = xscale/yscale |
|
|
|
with np.errstate(over='ignore'): |
|
sol = root(func, x0, args=args, |
|
options=dict(ftol=0, fatol=fatol, maxfev=problem['nfev'] + 1, |
|
sigma_0=sigma_0, sigma_eps=sigma_eps, |
|
line_search=line_search), |
|
method='DF-SANE') |
|
|
|
err_msg = repr( |
|
[xscale, yscale, line_search, problem, np.linalg.norm(func(sol.x, n)), |
|
fatol, sol.success, sol.nit, sol.nfev] |
|
) |
|
assert sol.success, err_msg |
|
|
|
assert sol.nfev <= problem['nfev'] + 1, err_msg |
|
assert sol.nit <= problem['nit'], err_msg |
|
assert np.linalg.norm(func(sol.x, n)) <= fatol, err_msg |
|
|
|
|
|
def test_complex(): |
|
def func(z): |
|
return z**2 - 1 + 2j |
|
x0 = 2.0j |
|
|
|
ftol = 1e-4 |
|
sol = root(func, x0, tol=ftol, method='DF-SANE') |
|
|
|
assert_(sol.success) |
|
|
|
f0 = np.linalg.norm(func(x0)) |
|
fx = np.linalg.norm(func(sol.x)) |
|
assert_(fx <= ftol*f0) |
|
|
|
|
|
def test_linear_definite(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_solvability(A, b, line_search='cruz'): |
|
def func(x): |
|
return A.dot(x) - b |
|
xp = np.linalg.solve(A, b) |
|
eps = np.linalg.norm(func(xp)) * 1e3 |
|
sol = root( |
|
func, b, |
|
options=dict(fatol=eps, ftol=0, maxfev=17523, line_search=line_search), |
|
method='DF-SANE', |
|
) |
|
assert_(sol.success) |
|
assert_(np.linalg.norm(func(sol.x)) <= eps) |
|
|
|
n = 90 |
|
|
|
|
|
np.random.seed(1234) |
|
A = np.arange(n*n).reshape(n, n) |
|
A = A + n*n * np.diag(1 + np.arange(n)) |
|
assert_(np.linalg.eigvals(A).min() > 0) |
|
b = np.arange(n) * 1.0 |
|
check_solvability(A, b, 'cruz') |
|
check_solvability(A, b, 'cheng') |
|
|
|
|
|
check_solvability(-A, b, 'cruz') |
|
check_solvability(-A, b, 'cheng') |
|
|
|
|
|
def test_shape(): |
|
def f(x, arg): |
|
return x - arg |
|
|
|
for dt in [float, complex]: |
|
x = np.zeros([2,2]) |
|
arg = np.ones([2,2], dtype=dt) |
|
|
|
sol = root(f, x, args=(arg,), method='DF-SANE') |
|
assert_(sol.success) |
|
assert_equal(sol.x.shape, x.shape) |
|
|
|
|
|
|
|
|
|
|
|
def F_1(x, n): |
|
g = np.zeros([n]) |
|
i = np.arange(2, n+1) |
|
g[0] = exp(x[0] - 1) - 1 |
|
g[1:] = i*(exp(x[1:] - 1) - x[1:]) |
|
return g |
|
|
|
def x0_1(n): |
|
x0 = np.empty([n]) |
|
x0.fill(n/(n-1)) |
|
return x0 |
|
|
|
def F_2(x, n): |
|
g = np.zeros([n]) |
|
i = np.arange(2, n+1) |
|
g[0] = exp(x[0]) - 1 |
|
g[1:] = 0.1*i*(exp(x[1:]) + x[:-1] - 1) |
|
return g |
|
|
|
def x0_2(n): |
|
x0 = np.empty([n]) |
|
x0.fill(1/n**2) |
|
return x0 |
|
|
|
|
|
def F_4(x, n): |
|
assert_equal(n % 3, 0) |
|
g = np.zeros([n]) |
|
|
|
|
|
g[::3] = 0.6 * x[::3] + 1.6 * x[1::3]**3 - 7.2 * x[1::3]**2 + 9.6 * x[1::3] - 4.8 |
|
g[1::3] = (0.48 * x[::3] - 0.72 * x[1::3]**3 + 3.24 * x[1::3]**2 - 4.32 * x[1::3] |
|
- x[2::3] + 0.2 * x[2::3]**3 + 2.16) |
|
g[2::3] = 1.25 * x[2::3] - 0.25*x[2::3]**3 |
|
return g |
|
|
|
|
|
def x0_4(n): |
|
assert_equal(n % 3, 0) |
|
x0 = np.array([-1, 1/2, -1] * (n//3)) |
|
return x0 |
|
|
|
def F_6(x, n): |
|
c = 0.9 |
|
mu = (np.arange(1, n+1) - 0.5)/n |
|
return x - 1/(1 - c/(2*n) * (mu[:,None]*x / (mu[:,None] + mu)).sum(axis=1)) |
|
|
|
def x0_6(n): |
|
return np.ones([n]) |
|
|
|
def F_7(x, n): |
|
assert_equal(n % 3, 0) |
|
|
|
def phi(t): |
|
v = 0.5*t - 2 |
|
v[t > -1] = ((-592*t**3 + 888*t**2 + 4551*t - 1924)/1998)[t > -1] |
|
v[t >= 2] = (0.5*t + 2)[t >= 2] |
|
return v |
|
g = np.zeros([n]) |
|
g[::3] = 1e4 * x[1::3]**2 - 1 |
|
g[1::3] = exp(-x[::3]) + exp(-x[1::3]) - 1.0001 |
|
g[2::3] = phi(x[2::3]) |
|
return g |
|
|
|
def x0_7(n): |
|
assert_equal(n % 3, 0) |
|
return np.array([1e-3, 18, 1] * (n//3)) |
|
|
|
def F_9(x, n): |
|
g = np.zeros([n]) |
|
i = np.arange(2, n) |
|
g[0] = x[0]**3/3 + x[1]**2/2 |
|
g[1:-1] = -x[1:-1]**2/2 + i*x[1:-1]**3/3 + x[2:]**2/2 |
|
g[-1] = -x[-1]**2/2 + n*x[-1]**3/3 |
|
return g |
|
|
|
def x0_9(n): |
|
return np.ones([n]) |
|
|
|
def F_10(x, n): |
|
return np.log(1 + x) - x/n |
|
|
|
def x0_10(n): |
|
return np.ones([n]) |
|
|