File size: 6,664 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import itertools

import numpy as np
from numpy import exp
from numpy.testing import assert_, assert_equal

from scipy.optimize import root


def test_performance():
    # Compare performance results to those listed in
    # [Cheng & Li, IMA J. Num. An. 29, 814 (2008)]
    # and
    # [W. La Cruz, J.M. Martinez, M. Raydan, Math. Comp. 75, 1429 (2006)].
    # and those produced by dfsane.f from M. Raydan's website.
    #
    # Where the results disagree, the largest limits are taken.

    e_a = 1e-5
    e_r = 1e-4

    table_1 = [
        dict(F=F_1, x0=x0_1, n=1000, nit=5, nfev=5),
        dict(F=F_1, x0=x0_1, n=10000, nit=2, nfev=2),
        dict(F=F_2, x0=x0_2, n=500, nit=11, nfev=11),
        dict(F=F_2, x0=x0_2, n=2000, nit=11, nfev=11),
        # dict(F=F_4, x0=x0_4, n=999, nit=243, nfev=1188) removed:
        # too sensitive to rounding errors
        # Results from dfsane.f; papers list nit=3, nfev=3
        dict(F=F_6, x0=x0_6, n=100, nit=6, nfev=6),
        # Must have n%3==0, typo in papers?
        dict(F=F_7, x0=x0_7, n=99, nit=23, nfev=29),
        # Must have n%3==0, typo in papers?
        dict(F=F_7, x0=x0_7, n=999, nit=23, nfev=29),
        # Results from dfsane.f; papers list nit=nfev=6?
        dict(F=F_9, x0=x0_9, n=100, nit=12, nfev=18),
        dict(F=F_9, x0=x0_9, n=1000, nit=12, nfev=18),
        # Results from dfsane.f; papers list nit=2, nfev=12
        dict(F=F_10, x0=x0_10, n=1000, nit=5, nfev=5),
    ]

    # Check also scaling invariance
    for xscale, yscale, line_search in itertools.product(
        [1.0, 1e-10, 1e10], [1.0, 1e-10, 1e10], ['cruz', 'cheng']
    ):
        for problem in table_1:
            n = problem['n']
            def func(x, n):
                return yscale * problem['F'](x / xscale, n)
            args = (n,)
            x0 = problem['x0'](n) * xscale

            fatol = np.sqrt(n) * e_a * yscale + e_r * np.linalg.norm(func(x0, n))

            sigma_eps = 1e-10 * min(yscale/xscale, xscale/yscale)
            sigma_0 = xscale/yscale

            with np.errstate(over='ignore'):
                sol = root(func, x0, args=args,
                           options=dict(ftol=0, fatol=fatol, maxfev=problem['nfev'] + 1,
                                        sigma_0=sigma_0, sigma_eps=sigma_eps,
                                        line_search=line_search),
                           method='DF-SANE')

            err_msg = repr(
                [xscale, yscale, line_search, problem, np.linalg.norm(func(sol.x, n)),
                 fatol, sol.success, sol.nit, sol.nfev]
            )
            assert sol.success, err_msg
            # nfev+1: dfsane.f doesn't count first eval
            assert sol.nfev <= problem['nfev'] + 1, err_msg
            assert sol.nit <= problem['nit'], err_msg
            assert np.linalg.norm(func(sol.x, n)) <= fatol, err_msg


def test_complex():
    def func(z):
        return z**2 - 1 + 2j
    x0 = 2.0j

    ftol = 1e-4
    sol = root(func, x0, tol=ftol, method='DF-SANE')

    assert_(sol.success)

    f0 = np.linalg.norm(func(x0))
    fx = np.linalg.norm(func(sol.x))
    assert_(fx <= ftol*f0)


def test_linear_definite():
    # The DF-SANE paper proves convergence for "strongly isolated"
    # solutions.
    #
    # For linear systems F(x) = A x - b = 0, with A positive or
    # negative definite, the solution is strongly isolated.

    def check_solvability(A, b, line_search='cruz'):
        def func(x):
            return A.dot(x) - b
        xp = np.linalg.solve(A, b)
        eps = np.linalg.norm(func(xp)) * 1e3
        sol = root(
            func, b,
            options=dict(fatol=eps, ftol=0, maxfev=17523, line_search=line_search),
            method='DF-SANE',
        )
        assert_(sol.success)
        assert_(np.linalg.norm(func(sol.x)) <= eps)

    n = 90

    # Test linear pos.def. system
    np.random.seed(1234)
    A = np.arange(n*n).reshape(n, n)
    A = A + n*n * np.diag(1 + np.arange(n))
    assert_(np.linalg.eigvals(A).min() > 0)
    b = np.arange(n) * 1.0
    check_solvability(A, b, 'cruz')
    check_solvability(A, b, 'cheng')

    # Test linear neg.def. system
    check_solvability(-A, b, 'cruz')
    check_solvability(-A, b, 'cheng')


def test_shape():
    def f(x, arg):
        return x - arg

    for dt in [float, complex]:
        x = np.zeros([2,2])
        arg = np.ones([2,2], dtype=dt)

        sol = root(f, x, args=(arg,), method='DF-SANE')
        assert_(sol.success)
        assert_equal(sol.x.shape, x.shape)


# Some of the test functions and initial guesses listed in
# [W. La Cruz, M. Raydan. Optimization Methods and Software, 18, 583 (2003)]

def F_1(x, n):
    g = np.zeros([n])
    i = np.arange(2, n+1)
    g[0] = exp(x[0] - 1) - 1
    g[1:] = i*(exp(x[1:] - 1) - x[1:])
    return g

def x0_1(n):
    x0 = np.empty([n])
    x0.fill(n/(n-1))
    return x0

def F_2(x, n):
    g = np.zeros([n])
    i = np.arange(2, n+1)
    g[0] = exp(x[0]) - 1
    g[1:] = 0.1*i*(exp(x[1:]) + x[:-1] - 1)
    return g

def x0_2(n):
    x0 = np.empty([n])
    x0.fill(1/n**2)
    return x0


def F_4(x, n):  # skip name check
    assert_equal(n % 3, 0)
    g = np.zeros([n])
    # Note: the first line is typoed in some of the references;
    # correct in original [Gasparo, Optimization Meth. 13, 79 (2000)]
    g[::3] = 0.6 * x[::3] + 1.6 * x[1::3]**3 - 7.2 * x[1::3]**2 + 9.6 * x[1::3] - 4.8
    g[1::3] = (0.48 * x[::3] - 0.72 * x[1::3]**3 + 3.24 * x[1::3]**2 - 4.32 * x[1::3]
               - x[2::3] + 0.2 * x[2::3]**3 + 2.16)
    g[2::3] = 1.25 * x[2::3] - 0.25*x[2::3]**3
    return g


def x0_4(n):  # skip name check
    assert_equal(n % 3, 0)
    x0 = np.array([-1, 1/2, -1] * (n//3))
    return x0

def F_6(x, n):
    c = 0.9
    mu = (np.arange(1, n+1) - 0.5)/n
    return x - 1/(1 - c/(2*n) * (mu[:,None]*x / (mu[:,None] + mu)).sum(axis=1))

def x0_6(n):
    return np.ones([n])

def F_7(x, n):
    assert_equal(n % 3, 0)

    def phi(t):
        v = 0.5*t - 2
        v[t > -1] = ((-592*t**3 + 888*t**2 + 4551*t - 1924)/1998)[t > -1]
        v[t >= 2] = (0.5*t + 2)[t >= 2]
        return v
    g = np.zeros([n])
    g[::3] = 1e4 * x[1::3]**2 - 1
    g[1::3] = exp(-x[::3]) + exp(-x[1::3]) - 1.0001
    g[2::3] = phi(x[2::3])
    return g

def x0_7(n):
    assert_equal(n % 3, 0)
    return np.array([1e-3, 18, 1] * (n//3))

def F_9(x, n):
    g = np.zeros([n])
    i = np.arange(2, n)
    g[0] = x[0]**3/3 + x[1]**2/2
    g[1:-1] = -x[1:-1]**2/2 + i*x[1:-1]**3/3 + x[2:]**2/2
    g[-1] = -x[-1]**2/2 + n*x[-1]**3/3
    return g

def x0_9(n):
    return np.ones([n])

def F_10(x, n):
    return np.log(1 + x) - x/n

def x0_10(n):
    return np.ones([n])