|
""" |
|
Functions |
|
--------- |
|
.. autosummary:: |
|
:toctree: generated/ |
|
|
|
line_search_armijo |
|
line_search_wolfe1 |
|
line_search_wolfe2 |
|
scalar_search_wolfe1 |
|
scalar_search_wolfe2 |
|
|
|
""" |
|
from warnings import warn |
|
|
|
from ._dcsrch import DCSRCH |
|
import numpy as np |
|
|
|
__all__ = ['LineSearchWarning', 'line_search_wolfe1', 'line_search_wolfe2', |
|
'scalar_search_wolfe1', 'scalar_search_wolfe2', |
|
'line_search_armijo'] |
|
|
|
class LineSearchWarning(RuntimeWarning): |
|
pass |
|
|
|
|
|
def _check_c1_c2(c1, c2): |
|
if not (0 < c1 < c2 < 1): |
|
raise ValueError("'c1' and 'c2' do not satisfy" |
|
"'0 < c1 < c2 < 1'.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
def line_search_wolfe1(f, fprime, xk, pk, gfk=None, |
|
old_fval=None, old_old_fval=None, |
|
args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8, |
|
xtol=1e-14): |
|
""" |
|
As `scalar_search_wolfe1` but do a line search to direction `pk` |
|
|
|
Parameters |
|
---------- |
|
f : callable |
|
Function `f(x)` |
|
fprime : callable |
|
Gradient of `f` |
|
xk : array_like |
|
Current point |
|
pk : array_like |
|
Search direction |
|
gfk : array_like, optional |
|
Gradient of `f` at point `xk` |
|
old_fval : float, optional |
|
Value of `f` at point `xk` |
|
old_old_fval : float, optional |
|
Value of `f` at point preceding `xk` |
|
|
|
The rest of the parameters are the same as for `scalar_search_wolfe1`. |
|
|
|
Returns |
|
------- |
|
stp, f_count, g_count, fval, old_fval |
|
As in `line_search_wolfe1` |
|
gval : array |
|
Gradient of `f` at the final point |
|
|
|
Notes |
|
----- |
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. |
|
|
|
""" |
|
if gfk is None: |
|
gfk = fprime(xk, *args) |
|
|
|
gval = [gfk] |
|
gc = [0] |
|
fc = [0] |
|
|
|
def phi(s): |
|
fc[0] += 1 |
|
return f(xk + s*pk, *args) |
|
|
|
def derphi(s): |
|
gval[0] = fprime(xk + s*pk, *args) |
|
gc[0] += 1 |
|
return np.dot(gval[0], pk) |
|
|
|
derphi0 = np.dot(gfk, pk) |
|
|
|
stp, fval, old_fval = scalar_search_wolfe1( |
|
phi, derphi, old_fval, old_old_fval, derphi0, |
|
c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol) |
|
|
|
return stp, fc[0], gc[0], fval, old_fval, gval[0] |
|
|
|
|
|
def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None, |
|
c1=1e-4, c2=0.9, |
|
amax=50, amin=1e-8, xtol=1e-14): |
|
""" |
|
Scalar function search for alpha that satisfies strong Wolfe conditions |
|
|
|
alpha > 0 is assumed to be a descent direction. |
|
|
|
Parameters |
|
---------- |
|
phi : callable phi(alpha) |
|
Function at point `alpha` |
|
derphi : callable phi'(alpha) |
|
Objective function derivative. Returns a scalar. |
|
phi0 : float, optional |
|
Value of phi at 0 |
|
old_phi0 : float, optional |
|
Value of phi at previous point |
|
derphi0 : float, optional |
|
Value derphi at 0 |
|
c1 : float, optional |
|
Parameter for Armijo condition rule. |
|
c2 : float, optional |
|
Parameter for curvature condition rule. |
|
amax, amin : float, optional |
|
Maximum and minimum step size |
|
xtol : float, optional |
|
Relative tolerance for an acceptable step. |
|
|
|
Returns |
|
------- |
|
alpha : float |
|
Step size, or None if no suitable step was found |
|
phi : float |
|
Value of `phi` at the new point `alpha` |
|
phi0 : float |
|
Value of `phi` at `alpha=0` |
|
|
|
Notes |
|
----- |
|
Uses routine DCSRCH from MINPACK. |
|
|
|
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1`` as described in [1]_. |
|
|
|
References |
|
---------- |
|
|
|
.. [1] Nocedal, J., & Wright, S. J. (2006). Numerical optimization. |
|
In Springer Series in Operations Research and Financial Engineering. |
|
(Springer Series in Operations Research and Financial Engineering). |
|
Springer Nature. |
|
|
|
""" |
|
_check_c1_c2(c1, c2) |
|
|
|
if phi0 is None: |
|
phi0 = phi(0.) |
|
if derphi0 is None: |
|
derphi0 = derphi(0.) |
|
|
|
if old_phi0 is not None and derphi0 != 0: |
|
alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) |
|
if alpha1 < 0: |
|
alpha1 = 1.0 |
|
else: |
|
alpha1 = 1.0 |
|
|
|
maxiter = 100 |
|
|
|
dcsrch = DCSRCH(phi, derphi, c1, c2, xtol, amin, amax) |
|
stp, phi1, phi0, task = dcsrch( |
|
alpha1, phi0=phi0, derphi0=derphi0, maxiter=maxiter |
|
) |
|
|
|
return stp, phi1, phi0 |
|
|
|
|
|
line_search = line_search_wolfe1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def line_search_wolfe2(f, myfprime, xk, pk, gfk=None, old_fval=None, |
|
old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=None, |
|
extra_condition=None, maxiter=10): |
|
"""Find alpha that satisfies strong Wolfe conditions. |
|
|
|
Parameters |
|
---------- |
|
f : callable f(x,*args) |
|
Objective function. |
|
myfprime : callable f'(x,*args) |
|
Objective function gradient. |
|
xk : ndarray |
|
Starting point. |
|
pk : ndarray |
|
Search direction. The search direction must be a descent direction |
|
for the algorithm to converge. |
|
gfk : ndarray, optional |
|
Gradient value for x=xk (xk being the current parameter |
|
estimate). Will be recomputed if omitted. |
|
old_fval : float, optional |
|
Function value for x=xk. Will be recomputed if omitted. |
|
old_old_fval : float, optional |
|
Function value for the point preceding x=xk. |
|
args : tuple, optional |
|
Additional arguments passed to objective function. |
|
c1 : float, optional |
|
Parameter for Armijo condition rule. |
|
c2 : float, optional |
|
Parameter for curvature condition rule. |
|
amax : float, optional |
|
Maximum step size |
|
extra_condition : callable, optional |
|
A callable of the form ``extra_condition(alpha, x, f, g)`` |
|
returning a boolean. Arguments are the proposed step ``alpha`` |
|
and the corresponding ``x``, ``f`` and ``g`` values. The line search |
|
accepts the value of ``alpha`` only if this |
|
callable returns ``True``. If the callable returns ``False`` |
|
for the step length, the algorithm will continue with |
|
new iterates. The callable is only called for iterates |
|
satisfying the strong Wolfe conditions. |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. |
|
|
|
Returns |
|
------- |
|
alpha : float or None |
|
Alpha for which ``x_new = x0 + alpha * pk``, |
|
or None if the line search algorithm did not converge. |
|
fc : int |
|
Number of function evaluations made. |
|
gc : int |
|
Number of gradient evaluations made. |
|
new_fval : float or None |
|
New function value ``f(x_new)=f(x0+alpha*pk)``, |
|
or None if the line search algorithm did not converge. |
|
old_fval : float |
|
Old function value ``f(x0)``. |
|
new_slope : float or None |
|
The local slope along the search direction at the |
|
new value ``<myfprime(x_new), pk>``, |
|
or None if the line search algorithm did not converge. |
|
|
|
|
|
Notes |
|
----- |
|
Uses the line search algorithm to enforce strong Wolfe |
|
conditions. See Wright and Nocedal, 'Numerical Optimization', |
|
1999, pp. 59-61. |
|
|
|
The search direction `pk` must be a descent direction (e.g. |
|
``-myfprime(xk)``) to find a step length that satisfies the strong Wolfe |
|
conditions. If the search direction is not a descent direction (e.g. |
|
``myfprime(xk)``), then `alpha`, `new_fval`, and `new_slope` will be None. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.optimize import line_search |
|
|
|
A objective function and its gradient are defined. |
|
|
|
>>> def obj_func(x): |
|
... return (x[0])**2+(x[1])**2 |
|
>>> def obj_grad(x): |
|
... return [2*x[0], 2*x[1]] |
|
|
|
We can find alpha that satisfies strong Wolfe conditions. |
|
|
|
>>> start_point = np.array([1.8, 1.7]) |
|
>>> search_gradient = np.array([-1.0, -1.0]) |
|
>>> line_search(obj_func, obj_grad, start_point, search_gradient) |
|
(1.0, 2, 1, 1.1300000000000001, 6.13, [1.6, 1.4]) |
|
|
|
""" |
|
fc = [0] |
|
gc = [0] |
|
gval = [None] |
|
gval_alpha = [None] |
|
|
|
def phi(alpha): |
|
fc[0] += 1 |
|
return f(xk + alpha * pk, *args) |
|
|
|
fprime = myfprime |
|
|
|
def derphi(alpha): |
|
gc[0] += 1 |
|
gval[0] = fprime(xk + alpha * pk, *args) |
|
gval_alpha[0] = alpha |
|
return np.dot(gval[0], pk) |
|
|
|
if gfk is None: |
|
gfk = fprime(xk, *args) |
|
derphi0 = np.dot(gfk, pk) |
|
|
|
if extra_condition is not None: |
|
|
|
|
|
def extra_condition2(alpha, phi): |
|
if gval_alpha[0] != alpha: |
|
derphi(alpha) |
|
x = xk + alpha * pk |
|
return extra_condition(alpha, x, phi, gval[0]) |
|
else: |
|
extra_condition2 = None |
|
|
|
alpha_star, phi_star, old_fval, derphi_star = scalar_search_wolfe2( |
|
phi, derphi, old_fval, old_old_fval, derphi0, c1, c2, amax, |
|
extra_condition2, maxiter=maxiter) |
|
|
|
if derphi_star is None: |
|
warn('The line search algorithm did not converge', |
|
LineSearchWarning, stacklevel=2) |
|
else: |
|
|
|
|
|
|
|
|
|
derphi_star = gval[0] |
|
|
|
return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star |
|
|
|
|
|
def scalar_search_wolfe2(phi, derphi, phi0=None, |
|
old_phi0=None, derphi0=None, |
|
c1=1e-4, c2=0.9, amax=None, |
|
extra_condition=None, maxiter=10): |
|
"""Find alpha that satisfies strong Wolfe conditions. |
|
|
|
alpha > 0 is assumed to be a descent direction. |
|
|
|
Parameters |
|
---------- |
|
phi : callable phi(alpha) |
|
Objective scalar function. |
|
derphi : callable phi'(alpha) |
|
Objective function derivative. Returns a scalar. |
|
phi0 : float, optional |
|
Value of phi at 0. |
|
old_phi0 : float, optional |
|
Value of phi at previous point. |
|
derphi0 : float, optional |
|
Value of derphi at 0 |
|
c1 : float, optional |
|
Parameter for Armijo condition rule. |
|
c2 : float, optional |
|
Parameter for curvature condition rule. |
|
amax : float, optional |
|
Maximum step size. |
|
extra_condition : callable, optional |
|
A callable of the form ``extra_condition(alpha, phi_value)`` |
|
returning a boolean. The line search accepts the value |
|
of ``alpha`` only if this callable returns ``True``. |
|
If the callable returns ``False`` for the step length, |
|
the algorithm will continue with new iterates. |
|
The callable is only called for iterates satisfying |
|
the strong Wolfe conditions. |
|
maxiter : int, optional |
|
Maximum number of iterations to perform. |
|
|
|
Returns |
|
------- |
|
alpha_star : float or None |
|
Best alpha, or None if the line search algorithm did not converge. |
|
phi_star : float |
|
phi at alpha_star. |
|
phi0 : float |
|
phi at 0. |
|
derphi_star : float or None |
|
derphi at alpha_star, or None if the line search algorithm |
|
did not converge. |
|
|
|
Notes |
|
----- |
|
Uses the line search algorithm to enforce strong Wolfe |
|
conditions. See Wright and Nocedal, 'Numerical Optimization', |
|
1999, pp. 59-61. |
|
|
|
""" |
|
_check_c1_c2(c1, c2) |
|
|
|
if phi0 is None: |
|
phi0 = phi(0.) |
|
|
|
if derphi0 is None: |
|
derphi0 = derphi(0.) |
|
|
|
alpha0 = 0 |
|
if old_phi0 is not None and derphi0 != 0: |
|
alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) |
|
else: |
|
alpha1 = 1.0 |
|
|
|
if alpha1 < 0: |
|
alpha1 = 1.0 |
|
|
|
if amax is not None: |
|
alpha1 = min(alpha1, amax) |
|
|
|
phi_a1 = phi(alpha1) |
|
|
|
|
|
phi_a0 = phi0 |
|
derphi_a0 = derphi0 |
|
|
|
if extra_condition is None: |
|
def extra_condition(alpha, phi): |
|
return True |
|
|
|
for i in range(maxiter): |
|
if alpha1 == 0 or (amax is not None and alpha0 > amax): |
|
|
|
|
|
alpha_star = None |
|
phi_star = phi0 |
|
phi0 = old_phi0 |
|
derphi_star = None |
|
|
|
if alpha1 == 0: |
|
msg = 'Rounding errors prevent the line search from converging' |
|
else: |
|
msg = "The line search algorithm could not find a solution " + \ |
|
f"less than or equal to amax: {amax}" |
|
|
|
warn(msg, LineSearchWarning, stacklevel=2) |
|
break |
|
|
|
not_first_iteration = i > 0 |
|
if (phi_a1 > phi0 + c1 * alpha1 * derphi0) or \ |
|
((phi_a1 >= phi_a0) and not_first_iteration): |
|
alpha_star, phi_star, derphi_star = \ |
|
_zoom(alpha0, alpha1, phi_a0, |
|
phi_a1, derphi_a0, phi, derphi, |
|
phi0, derphi0, c1, c2, extra_condition) |
|
break |
|
|
|
derphi_a1 = derphi(alpha1) |
|
if (abs(derphi_a1) <= -c2*derphi0): |
|
if extra_condition(alpha1, phi_a1): |
|
alpha_star = alpha1 |
|
phi_star = phi_a1 |
|
derphi_star = derphi_a1 |
|
break |
|
|
|
if (derphi_a1 >= 0): |
|
alpha_star, phi_star, derphi_star = \ |
|
_zoom(alpha1, alpha0, phi_a1, |
|
phi_a0, derphi_a1, phi, derphi, |
|
phi0, derphi0, c1, c2, extra_condition) |
|
break |
|
|
|
alpha2 = 2 * alpha1 |
|
if amax is not None: |
|
alpha2 = min(alpha2, amax) |
|
alpha0 = alpha1 |
|
alpha1 = alpha2 |
|
phi_a0 = phi_a1 |
|
phi_a1 = phi(alpha1) |
|
derphi_a0 = derphi_a1 |
|
|
|
else: |
|
|
|
alpha_star = alpha1 |
|
phi_star = phi_a1 |
|
derphi_star = None |
|
warn('The line search algorithm did not converge', |
|
LineSearchWarning, stacklevel=2) |
|
|
|
return alpha_star, phi_star, phi0, derphi_star |
|
|
|
|
|
def _cubicmin(a, fa, fpa, b, fb, c, fc): |
|
""" |
|
Finds the minimizer for a cubic polynomial that goes through the |
|
points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa. |
|
|
|
If no minimizer can be found, return None. |
|
|
|
""" |
|
|
|
|
|
with np.errstate(divide='raise', over='raise', invalid='raise'): |
|
try: |
|
C = fpa |
|
db = b - a |
|
dc = c - a |
|
denom = (db * dc) ** 2 * (db - dc) |
|
d1 = np.empty((2, 2)) |
|
d1[0, 0] = dc ** 2 |
|
d1[0, 1] = -db ** 2 |
|
d1[1, 0] = -dc ** 3 |
|
d1[1, 1] = db ** 3 |
|
[A, B] = np.dot(d1, np.asarray([fb - fa - C * db, |
|
fc - fa - C * dc]).flatten()) |
|
A /= denom |
|
B /= denom |
|
radical = B * B - 3 * A * C |
|
xmin = a + (-B + np.sqrt(radical)) / (3 * A) |
|
except ArithmeticError: |
|
return None |
|
if not np.isfinite(xmin): |
|
return None |
|
return xmin |
|
|
|
|
|
def _quadmin(a, fa, fpa, b, fb): |
|
""" |
|
Finds the minimizer for a quadratic polynomial that goes through |
|
the points (a,fa), (b,fb) with derivative at a of fpa. |
|
|
|
""" |
|
|
|
with np.errstate(divide='raise', over='raise', invalid='raise'): |
|
try: |
|
D = fa |
|
C = fpa |
|
db = b - a * 1.0 |
|
B = (fb - D - C * db) / (db * db) |
|
xmin = a - C / (2.0 * B) |
|
except ArithmeticError: |
|
return None |
|
if not np.isfinite(xmin): |
|
return None |
|
return xmin |
|
|
|
|
|
def _zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, |
|
phi, derphi, phi0, derphi0, c1, c2, extra_condition): |
|
"""Zoom stage of approximate linesearch satisfying strong Wolfe conditions. |
|
|
|
Part of the optimization algorithm in `scalar_search_wolfe2`. |
|
|
|
Notes |
|
----- |
|
Implements Algorithm 3.6 (zoom) in Wright and Nocedal, |
|
'Numerical Optimization', 1999, pp. 61. |
|
|
|
""" |
|
|
|
maxiter = 10 |
|
i = 0 |
|
delta1 = 0.2 |
|
delta2 = 0.1 |
|
phi_rec = phi0 |
|
a_rec = 0 |
|
while True: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dalpha = a_hi - a_lo |
|
if dalpha < 0: |
|
a, b = a_hi, a_lo |
|
else: |
|
a, b = a_lo, a_hi |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (i > 0): |
|
cchk = delta1 * dalpha |
|
a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, |
|
a_rec, phi_rec) |
|
if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk): |
|
qchk = delta2 * dalpha |
|
a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) |
|
if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): |
|
a_j = a_lo + 0.5*dalpha |
|
|
|
|
|
|
|
phi_aj = phi(a_j) |
|
if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): |
|
phi_rec = phi_hi |
|
a_rec = a_hi |
|
a_hi = a_j |
|
phi_hi = phi_aj |
|
else: |
|
derphi_aj = derphi(a_j) |
|
if abs(derphi_aj) <= -c2*derphi0 and extra_condition(a_j, phi_aj): |
|
a_star = a_j |
|
val_star = phi_aj |
|
valprime_star = derphi_aj |
|
break |
|
if derphi_aj*(a_hi - a_lo) >= 0: |
|
phi_rec = phi_hi |
|
a_rec = a_hi |
|
a_hi = a_lo |
|
phi_hi = phi_lo |
|
else: |
|
phi_rec = phi_lo |
|
a_rec = a_lo |
|
a_lo = a_j |
|
phi_lo = phi_aj |
|
derphi_lo = derphi_aj |
|
i += 1 |
|
if (i > maxiter): |
|
|
|
a_star = None |
|
val_star = None |
|
valprime_star = None |
|
break |
|
return a_star, val_star, valprime_star |
|
|
|
|
|
|
|
|
|
|
|
|
|
def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): |
|
"""Minimize over alpha, the function ``f(xk+alpha pk)``. |
|
|
|
Parameters |
|
---------- |
|
f : callable |
|
Function to be minimized. |
|
xk : array_like |
|
Current point. |
|
pk : array_like |
|
Search direction. |
|
gfk : array_like |
|
Gradient of `f` at point `xk`. |
|
old_fval : float |
|
Value of `f` at point `xk`. |
|
args : tuple, optional |
|
Optional arguments. |
|
c1 : float, optional |
|
Value to control stopping criterion. |
|
alpha0 : scalar, optional |
|
Value of `alpha` at start of the optimization. |
|
|
|
Returns |
|
------- |
|
alpha |
|
f_count |
|
f_val_at_alpha |
|
|
|
Notes |
|
----- |
|
Uses the interpolation algorithm (Armijo backtracking) as suggested by |
|
Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57 |
|
|
|
""" |
|
xk = np.atleast_1d(xk) |
|
fc = [0] |
|
|
|
def phi(alpha1): |
|
fc[0] += 1 |
|
return f(xk + alpha1*pk, *args) |
|
|
|
if old_fval is None: |
|
phi0 = phi(0.) |
|
else: |
|
phi0 = old_fval |
|
|
|
derphi0 = np.dot(gfk, pk) |
|
alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1, |
|
alpha0=alpha0) |
|
return alpha, fc[0], phi1 |
|
|
|
|
|
def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): |
|
""" |
|
Compatibility wrapper for `line_search_armijo` |
|
""" |
|
r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1, |
|
alpha0=alpha0) |
|
return r[0], r[1], 0, r[2] |
|
|
|
|
|
def scalar_search_armijo(phi, phi0, derphi0, c1=1e-4, alpha0=1, amin=0): |
|
"""Minimize over alpha, the function ``phi(alpha)``. |
|
|
|
Uses the interpolation algorithm (Armijo backtracking) as suggested by |
|
Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57 |
|
|
|
alpha > 0 is assumed to be a descent direction. |
|
|
|
Returns |
|
------- |
|
alpha |
|
phi1 |
|
|
|
""" |
|
phi_a0 = phi(alpha0) |
|
if phi_a0 <= phi0 + c1*alpha0*derphi0: |
|
return alpha0, phi_a0 |
|
|
|
|
|
|
|
alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0) |
|
phi_a1 = phi(alpha1) |
|
|
|
if (phi_a1 <= phi0 + c1*alpha1*derphi0): |
|
return alpha1, phi_a1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
while alpha1 > amin: |
|
factor = alpha0**2 * alpha1**2 * (alpha1-alpha0) |
|
a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \ |
|
alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0) |
|
a = a / factor |
|
b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \ |
|
alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0) |
|
b = b / factor |
|
|
|
alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a) |
|
phi_a2 = phi(alpha2) |
|
|
|
if (phi_a2 <= phi0 + c1*alpha2*derphi0): |
|
return alpha2, phi_a2 |
|
|
|
if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96: |
|
alpha2 = alpha1 / 2.0 |
|
|
|
alpha0 = alpha1 |
|
alpha1 = alpha2 |
|
phi_a0 = phi_a1 |
|
phi_a1 = phi_a2 |
|
|
|
|
|
return None, phi_a1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta, |
|
gamma=1e-4, tau_min=0.1, tau_max=0.5): |
|
""" |
|
Nonmonotone backtracking line search as described in [1]_ |
|
|
|
Parameters |
|
---------- |
|
f : callable |
|
Function returning a tuple ``(f, F)`` where ``f`` is the value |
|
of a merit function and ``F`` the residual. |
|
x_k : ndarray |
|
Initial position. |
|
d : ndarray |
|
Search direction. |
|
prev_fs : float |
|
List of previous merit function values. Should have ``len(prev_fs) <= M`` |
|
where ``M`` is the nonmonotonicity window parameter. |
|
eta : float |
|
Allowed merit function increase, see [1]_ |
|
gamma, tau_min, tau_max : float, optional |
|
Search parameters, see [1]_ |
|
|
|
Returns |
|
------- |
|
alpha : float |
|
Step length |
|
xp : ndarray |
|
Next position |
|
fp : float |
|
Merit function value at next position |
|
Fp : ndarray |
|
Residual at next position |
|
|
|
References |
|
---------- |
|
[1] "Spectral residual method without gradient information for solving |
|
large-scale nonlinear systems of equations." W. La Cruz, |
|
J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006). |
|
|
|
""" |
|
f_k = prev_fs[-1] |
|
f_bar = max(prev_fs) |
|
|
|
alpha_p = 1 |
|
alpha_m = 1 |
|
alpha = 1 |
|
|
|
while True: |
|
xp = x_k + alpha_p * d |
|
fp, Fp = f(xp) |
|
|
|
if fp <= f_bar + eta - gamma * alpha_p**2 * f_k: |
|
alpha = alpha_p |
|
break |
|
|
|
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) |
|
|
|
xp = x_k - alpha_m * d |
|
fp, Fp = f(xp) |
|
|
|
if fp <= f_bar + eta - gamma * alpha_m**2 * f_k: |
|
alpha = -alpha_m |
|
break |
|
|
|
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) |
|
|
|
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) |
|
alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) |
|
|
|
return alpha, xp, fp, Fp |
|
|
|
|
|
def _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta, |
|
gamma=1e-4, tau_min=0.1, tau_max=0.5, |
|
nu=0.85): |
|
""" |
|
Nonmonotone line search from [1] |
|
|
|
Parameters |
|
---------- |
|
f : callable |
|
Function returning a tuple ``(f, F)`` where ``f`` is the value |
|
of a merit function and ``F`` the residual. |
|
x_k : ndarray |
|
Initial position. |
|
d : ndarray |
|
Search direction. |
|
f_k : float |
|
Initial merit function value. |
|
C, Q : float |
|
Control parameters. On the first iteration, give values |
|
Q=1.0, C=f_k |
|
eta : float |
|
Allowed merit function increase, see [1]_ |
|
nu, gamma, tau_min, tau_max : float, optional |
|
Search parameters, see [1]_ |
|
|
|
Returns |
|
------- |
|
alpha : float |
|
Step length |
|
xp : ndarray |
|
Next position |
|
fp : float |
|
Merit function value at next position |
|
Fp : ndarray |
|
Residual at next position |
|
C : float |
|
New value for the control parameter C |
|
Q : float |
|
New value for the control parameter Q |
|
|
|
References |
|
---------- |
|
.. [1] W. Cheng & D.-H. Li, ''A derivative-free nonmonotone line |
|
search and its application to the spectral residual |
|
method'', IMA J. Numer. Anal. 29, 814 (2009). |
|
|
|
""" |
|
alpha_p = 1 |
|
alpha_m = 1 |
|
alpha = 1 |
|
|
|
while True: |
|
xp = x_k + alpha_p * d |
|
fp, Fp = f(xp) |
|
|
|
if fp <= C + eta - gamma * alpha_p**2 * f_k: |
|
alpha = alpha_p |
|
break |
|
|
|
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) |
|
|
|
xp = x_k - alpha_m * d |
|
fp, Fp = f(xp) |
|
|
|
if fp <= C + eta - gamma * alpha_m**2 * f_k: |
|
alpha = -alpha_m |
|
break |
|
|
|
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) |
|
|
|
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) |
|
alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) |
|
|
|
|
|
Q_next = nu * Q + 1 |
|
C = (nu * Q * (C + eta) + fp) / Q_next |
|
Q = Q_next |
|
|
|
return alpha, xp, fp, Fp, C, Q |
|
|