File size: 27,215 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
"""
Functions
---------
.. autosummary::
   :toctree: generated/

    line_search_armijo
    line_search_wolfe1
    line_search_wolfe2
    scalar_search_wolfe1
    scalar_search_wolfe2

"""
from warnings import warn

from ._dcsrch import DCSRCH
import numpy as np

__all__ = ['LineSearchWarning', 'line_search_wolfe1', 'line_search_wolfe2',
           'scalar_search_wolfe1', 'scalar_search_wolfe2',
           'line_search_armijo']

class LineSearchWarning(RuntimeWarning):
    pass


def _check_c1_c2(c1, c2):
    if not (0 < c1 < c2 < 1):
        raise ValueError("'c1' and 'c2' do not satisfy"
                         "'0 < c1 < c2 < 1'.")


#------------------------------------------------------------------------------
# Minpack's Wolfe line and scalar searches
#------------------------------------------------------------------------------

def line_search_wolfe1(f, fprime, xk, pk, gfk=None,
                       old_fval=None, old_old_fval=None,
                       args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8,
                       xtol=1e-14):
    """
    As `scalar_search_wolfe1` but do a line search to direction `pk`

    Parameters
    ----------
    f : callable
        Function `f(x)`
    fprime : callable
        Gradient of `f`
    xk : array_like
        Current point
    pk : array_like
        Search direction
    gfk : array_like, optional
        Gradient of `f` at point `xk`
    old_fval : float, optional
        Value of `f` at point `xk`
    old_old_fval : float, optional
        Value of `f` at point preceding `xk`

    The rest of the parameters are the same as for `scalar_search_wolfe1`.

    Returns
    -------
    stp, f_count, g_count, fval, old_fval
        As in `line_search_wolfe1`
    gval : array
        Gradient of `f` at the final point

    Notes
    -----
    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``.

    """
    if gfk is None:
        gfk = fprime(xk, *args)

    gval = [gfk]
    gc = [0]
    fc = [0]

    def phi(s):
        fc[0] += 1
        return f(xk + s*pk, *args)

    def derphi(s):
        gval[0] = fprime(xk + s*pk, *args)
        gc[0] += 1
        return np.dot(gval[0], pk)

    derphi0 = np.dot(gfk, pk)

    stp, fval, old_fval = scalar_search_wolfe1(
            phi, derphi, old_fval, old_old_fval, derphi0,
            c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol)

    return stp, fc[0], gc[0], fval, old_fval, gval[0]


def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None,
                         c1=1e-4, c2=0.9,
                         amax=50, amin=1e-8, xtol=1e-14):
    """
    Scalar function search for alpha that satisfies strong Wolfe conditions

    alpha > 0 is assumed to be a descent direction.

    Parameters
    ----------
    phi : callable phi(alpha)
        Function at point `alpha`
    derphi : callable phi'(alpha)
        Objective function derivative. Returns a scalar.
    phi0 : float, optional
        Value of phi at 0
    old_phi0 : float, optional
        Value of phi at previous point
    derphi0 : float, optional
        Value derphi at 0
    c1 : float, optional
        Parameter for Armijo condition rule.
    c2 : float, optional
        Parameter for curvature condition rule.
    amax, amin : float, optional
        Maximum and minimum step size
    xtol : float, optional
        Relative tolerance for an acceptable step.

    Returns
    -------
    alpha : float
        Step size, or None if no suitable step was found
    phi : float
        Value of `phi` at the new point `alpha`
    phi0 : float
        Value of `phi` at `alpha=0`

    Notes
    -----
    Uses routine DCSRCH from MINPACK.
    
    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1`` as described in [1]_.

    References
    ----------
    
    .. [1] Nocedal, J., & Wright, S. J. (2006). Numerical optimization.
       In Springer Series in Operations Research and Financial Engineering.
       (Springer Series in Operations Research and Financial Engineering).
       Springer Nature.

    """
    _check_c1_c2(c1, c2)

    if phi0 is None:
        phi0 = phi(0.)
    if derphi0 is None:
        derphi0 = derphi(0.)

    if old_phi0 is not None and derphi0 != 0:
        alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0)
        if alpha1 < 0:
            alpha1 = 1.0
    else:
        alpha1 = 1.0

    maxiter = 100

    dcsrch = DCSRCH(phi, derphi, c1, c2, xtol, amin, amax)
    stp, phi1, phi0, task = dcsrch(
        alpha1, phi0=phi0, derphi0=derphi0, maxiter=maxiter
    )

    return stp, phi1, phi0


line_search = line_search_wolfe1


#------------------------------------------------------------------------------
# Pure-Python Wolfe line and scalar searches
#------------------------------------------------------------------------------

# Note: `line_search_wolfe2` is the public `scipy.optimize.line_search`

def line_search_wolfe2(f, myfprime, xk, pk, gfk=None, old_fval=None,
                       old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=None,
                       extra_condition=None, maxiter=10):
    """Find alpha that satisfies strong Wolfe conditions.

    Parameters
    ----------
    f : callable f(x,*args)
        Objective function.
    myfprime : callable f'(x,*args)
        Objective function gradient.
    xk : ndarray
        Starting point.
    pk : ndarray
        Search direction. The search direction must be a descent direction
        for the algorithm to converge.
    gfk : ndarray, optional
        Gradient value for x=xk (xk being the current parameter
        estimate). Will be recomputed if omitted.
    old_fval : float, optional
        Function value for x=xk. Will be recomputed if omitted.
    old_old_fval : float, optional
        Function value for the point preceding x=xk.
    args : tuple, optional
        Additional arguments passed to objective function.
    c1 : float, optional
        Parameter for Armijo condition rule.
    c2 : float, optional
        Parameter for curvature condition rule.
    amax : float, optional
        Maximum step size
    extra_condition : callable, optional
        A callable of the form ``extra_condition(alpha, x, f, g)``
        returning a boolean. Arguments are the proposed step ``alpha``
        and the corresponding ``x``, ``f`` and ``g`` values. The line search
        accepts the value of ``alpha`` only if this
        callable returns ``True``. If the callable returns ``False``
        for the step length, the algorithm will continue with
        new iterates. The callable is only called for iterates
        satisfying the strong Wolfe conditions.
    maxiter : int, optional
        Maximum number of iterations to perform.

    Returns
    -------
    alpha : float or None
        Alpha for which ``x_new = x0 + alpha * pk``,
        or None if the line search algorithm did not converge.
    fc : int
        Number of function evaluations made.
    gc : int
        Number of gradient evaluations made.
    new_fval : float or None
        New function value ``f(x_new)=f(x0+alpha*pk)``,
        or None if the line search algorithm did not converge.
    old_fval : float
        Old function value ``f(x0)``.
    new_slope : float or None
        The local slope along the search direction at the
        new value ``<myfprime(x_new), pk>``,
        or None if the line search algorithm did not converge.


    Notes
    -----
    Uses the line search algorithm to enforce strong Wolfe
    conditions. See Wright and Nocedal, 'Numerical Optimization',
    1999, pp. 59-61.

    The search direction `pk` must be a descent direction (e.g.
    ``-myfprime(xk)``) to find a step length that satisfies the strong Wolfe
    conditions. If the search direction is not a descent direction (e.g.
    ``myfprime(xk)``), then `alpha`, `new_fval`, and `new_slope` will be None.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import line_search

    A objective function and its gradient are defined.

    >>> def obj_func(x):
    ...     return (x[0])**2+(x[1])**2
    >>> def obj_grad(x):
    ...     return [2*x[0], 2*x[1]]

    We can find alpha that satisfies strong Wolfe conditions.

    >>> start_point = np.array([1.8, 1.7])
    >>> search_gradient = np.array([-1.0, -1.0])
    >>> line_search(obj_func, obj_grad, start_point, search_gradient)
    (1.0, 2, 1, 1.1300000000000001, 6.13, [1.6, 1.4])

    """
    fc = [0]
    gc = [0]
    gval = [None]
    gval_alpha = [None]

    def phi(alpha):
        fc[0] += 1
        return f(xk + alpha * pk, *args)

    fprime = myfprime

    def derphi(alpha):
        gc[0] += 1
        gval[0] = fprime(xk + alpha * pk, *args)  # store for later use
        gval_alpha[0] = alpha
        return np.dot(gval[0], pk)

    if gfk is None:
        gfk = fprime(xk, *args)
    derphi0 = np.dot(gfk, pk)

    if extra_condition is not None:
        # Add the current gradient as argument, to avoid needless
        # re-evaluation
        def extra_condition2(alpha, phi):
            if gval_alpha[0] != alpha:
                derphi(alpha)
            x = xk + alpha * pk
            return extra_condition(alpha, x, phi, gval[0])
    else:
        extra_condition2 = None

    alpha_star, phi_star, old_fval, derphi_star = scalar_search_wolfe2(
            phi, derphi, old_fval, old_old_fval, derphi0, c1, c2, amax,
            extra_condition2, maxiter=maxiter)

    if derphi_star is None:
        warn('The line search algorithm did not converge',
             LineSearchWarning, stacklevel=2)
    else:
        # derphi_star is a number (derphi) -- so use the most recently
        # calculated gradient used in computing it derphi = gfk*pk
        # this is the gradient at the next step no need to compute it
        # again in the outer loop.
        derphi_star = gval[0]

    return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star


def scalar_search_wolfe2(phi, derphi, phi0=None,
                         old_phi0=None, derphi0=None,
                         c1=1e-4, c2=0.9, amax=None,
                         extra_condition=None, maxiter=10):
    """Find alpha that satisfies strong Wolfe conditions.

    alpha > 0 is assumed to be a descent direction.

    Parameters
    ----------
    phi : callable phi(alpha)
        Objective scalar function.
    derphi : callable phi'(alpha)
        Objective function derivative. Returns a scalar.
    phi0 : float, optional
        Value of phi at 0.
    old_phi0 : float, optional
        Value of phi at previous point.
    derphi0 : float, optional
        Value of derphi at 0
    c1 : float, optional
        Parameter for Armijo condition rule.
    c2 : float, optional
        Parameter for curvature condition rule.
    amax : float, optional
        Maximum step size.
    extra_condition : callable, optional
        A callable of the form ``extra_condition(alpha, phi_value)``
        returning a boolean. The line search accepts the value
        of ``alpha`` only if this callable returns ``True``.
        If the callable returns ``False`` for the step length,
        the algorithm will continue with new iterates.
        The callable is only called for iterates satisfying
        the strong Wolfe conditions.
    maxiter : int, optional
        Maximum number of iterations to perform.

    Returns
    -------
    alpha_star : float or None
        Best alpha, or None if the line search algorithm did not converge.
    phi_star : float
        phi at alpha_star.
    phi0 : float
        phi at 0.
    derphi_star : float or None
        derphi at alpha_star, or None if the line search algorithm
        did not converge.

    Notes
    -----
    Uses the line search algorithm to enforce strong Wolfe
    conditions. See Wright and Nocedal, 'Numerical Optimization',
    1999, pp. 59-61.

    """
    _check_c1_c2(c1, c2)

    if phi0 is None:
        phi0 = phi(0.)

    if derphi0 is None:
        derphi0 = derphi(0.)

    alpha0 = 0
    if old_phi0 is not None and derphi0 != 0:
        alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0)
    else:
        alpha1 = 1.0

    if alpha1 < 0:
        alpha1 = 1.0

    if amax is not None:
        alpha1 = min(alpha1, amax)

    phi_a1 = phi(alpha1)
    #derphi_a1 = derphi(alpha1) evaluated below

    phi_a0 = phi0
    derphi_a0 = derphi0

    if extra_condition is None:
        def extra_condition(alpha, phi):
            return True

    for i in range(maxiter):
        if alpha1 == 0 or (amax is not None and alpha0 > amax):
            # alpha1 == 0: This shouldn't happen. Perhaps the increment has
            # slipped below machine precision?
            alpha_star = None
            phi_star = phi0
            phi0 = old_phi0
            derphi_star = None

            if alpha1 == 0:
                msg = 'Rounding errors prevent the line search from converging'
            else:
                msg = "The line search algorithm could not find a solution " + \
                      f"less than or equal to amax: {amax}"

            warn(msg, LineSearchWarning, stacklevel=2)
            break

        not_first_iteration = i > 0
        if (phi_a1 > phi0 + c1 * alpha1 * derphi0) or \
           ((phi_a1 >= phi_a0) and not_first_iteration):
            alpha_star, phi_star, derphi_star = \
                        _zoom(alpha0, alpha1, phi_a0,
                              phi_a1, derphi_a0, phi, derphi,
                              phi0, derphi0, c1, c2, extra_condition)
            break

        derphi_a1 = derphi(alpha1)
        if (abs(derphi_a1) <= -c2*derphi0):
            if extra_condition(alpha1, phi_a1):
                alpha_star = alpha1
                phi_star = phi_a1
                derphi_star = derphi_a1
                break

        if (derphi_a1 >= 0):
            alpha_star, phi_star, derphi_star = \
                        _zoom(alpha1, alpha0, phi_a1,
                              phi_a0, derphi_a1, phi, derphi,
                              phi0, derphi0, c1, c2, extra_condition)
            break

        alpha2 = 2 * alpha1  # increase by factor of two on each iteration
        if amax is not None:
            alpha2 = min(alpha2, amax)
        alpha0 = alpha1
        alpha1 = alpha2
        phi_a0 = phi_a1
        phi_a1 = phi(alpha1)
        derphi_a0 = derphi_a1

    else:
        # stopping test maxiter reached
        alpha_star = alpha1
        phi_star = phi_a1
        derphi_star = None
        warn('The line search algorithm did not converge',
             LineSearchWarning, stacklevel=2)

    return alpha_star, phi_star, phi0, derphi_star


def _cubicmin(a, fa, fpa, b, fb, c, fc):
    """
    Finds the minimizer for a cubic polynomial that goes through the
    points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.

    If no minimizer can be found, return None.

    """
    # f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D

    with np.errstate(divide='raise', over='raise', invalid='raise'):
        try:
            C = fpa
            db = b - a
            dc = c - a
            denom = (db * dc) ** 2 * (db - dc)
            d1 = np.empty((2, 2))
            d1[0, 0] = dc ** 2
            d1[0, 1] = -db ** 2
            d1[1, 0] = -dc ** 3
            d1[1, 1] = db ** 3
            [A, B] = np.dot(d1, np.asarray([fb - fa - C * db,
                                            fc - fa - C * dc]).flatten())
            A /= denom
            B /= denom
            radical = B * B - 3 * A * C
            xmin = a + (-B + np.sqrt(radical)) / (3 * A)
        except ArithmeticError:
            return None
    if not np.isfinite(xmin):
        return None
    return xmin


def _quadmin(a, fa, fpa, b, fb):
    """
    Finds the minimizer for a quadratic polynomial that goes through
    the points (a,fa), (b,fb) with derivative at a of fpa.

    """
    # f(x) = B*(x-a)^2 + C*(x-a) + D
    with np.errstate(divide='raise', over='raise', invalid='raise'):
        try:
            D = fa
            C = fpa
            db = b - a * 1.0
            B = (fb - D - C * db) / (db * db)
            xmin = a - C / (2.0 * B)
        except ArithmeticError:
            return None
    if not np.isfinite(xmin):
        return None
    return xmin


def _zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo,
          phi, derphi, phi0, derphi0, c1, c2, extra_condition):
    """Zoom stage of approximate linesearch satisfying strong Wolfe conditions.

    Part of the optimization algorithm in `scalar_search_wolfe2`.

    Notes
    -----
    Implements Algorithm 3.6 (zoom) in Wright and Nocedal,
    'Numerical Optimization', 1999, pp. 61.

    """

    maxiter = 10
    i = 0
    delta1 = 0.2  # cubic interpolant check
    delta2 = 0.1  # quadratic interpolant check
    phi_rec = phi0
    a_rec = 0
    while True:
        # interpolate to find a trial step length between a_lo and
        # a_hi Need to choose interpolation here. Use cubic
        # interpolation and then if the result is within delta *
        # dalpha or outside of the interval bounded by a_lo or a_hi
        # then use quadratic interpolation, if the result is still too
        # close, then use bisection

        dalpha = a_hi - a_lo
        if dalpha < 0:
            a, b = a_hi, a_lo
        else:
            a, b = a_lo, a_hi

        # minimizer of cubic interpolant
        # (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
        #
        # if the result is too close to the end points (or out of the
        # interval), then use quadratic interpolation with phi_lo,
        # derphi_lo and phi_hi if the result is still too close to the
        # end points (or out of the interval) then use bisection

        if (i > 0):
            cchk = delta1 * dalpha
            a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi,
                            a_rec, phi_rec)
        if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk):
            qchk = delta2 * dalpha
            a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi)
            if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk):
                a_j = a_lo + 0.5*dalpha

        # Check new value of a_j

        phi_aj = phi(a_j)
        if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo):
            phi_rec = phi_hi
            a_rec = a_hi
            a_hi = a_j
            phi_hi = phi_aj
        else:
            derphi_aj = derphi(a_j)
            if abs(derphi_aj) <= -c2*derphi0 and extra_condition(a_j, phi_aj):
                a_star = a_j
                val_star = phi_aj
                valprime_star = derphi_aj
                break
            if derphi_aj*(a_hi - a_lo) >= 0:
                phi_rec = phi_hi
                a_rec = a_hi
                a_hi = a_lo
                phi_hi = phi_lo
            else:
                phi_rec = phi_lo
                a_rec = a_lo
            a_lo = a_j
            phi_lo = phi_aj
            derphi_lo = derphi_aj
        i += 1
        if (i > maxiter):
            # Failed to find a conforming step size
            a_star = None
            val_star = None
            valprime_star = None
            break
    return a_star, val_star, valprime_star


#------------------------------------------------------------------------------
# Armijo line and scalar searches
#------------------------------------------------------------------------------

def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
    """Minimize over alpha, the function ``f(xk+alpha pk)``.

    Parameters
    ----------
    f : callable
        Function to be minimized.
    xk : array_like
        Current point.
    pk : array_like
        Search direction.
    gfk : array_like
        Gradient of `f` at point `xk`.
    old_fval : float
        Value of `f` at point `xk`.
    args : tuple, optional
        Optional arguments.
    c1 : float, optional
        Value to control stopping criterion.
    alpha0 : scalar, optional
        Value of `alpha` at start of the optimization.

    Returns
    -------
    alpha
    f_count
    f_val_at_alpha

    Notes
    -----
    Uses the interpolation algorithm (Armijo backtracking) as suggested by
    Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57

    """
    xk = np.atleast_1d(xk)
    fc = [0]

    def phi(alpha1):
        fc[0] += 1
        return f(xk + alpha1*pk, *args)

    if old_fval is None:
        phi0 = phi(0.)
    else:
        phi0 = old_fval  # compute f(xk) -- done in past loop

    derphi0 = np.dot(gfk, pk)
    alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1,
                                       alpha0=alpha0)
    return alpha, fc[0], phi1


def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
    """
    Compatibility wrapper for `line_search_armijo`
    """
    r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1,
                           alpha0=alpha0)
    return r[0], r[1], 0, r[2]


def scalar_search_armijo(phi, phi0, derphi0, c1=1e-4, alpha0=1, amin=0):
    """Minimize over alpha, the function ``phi(alpha)``.

    Uses the interpolation algorithm (Armijo backtracking) as suggested by
    Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57

    alpha > 0 is assumed to be a descent direction.

    Returns
    -------
    alpha
    phi1

    """
    phi_a0 = phi(alpha0)
    if phi_a0 <= phi0 + c1*alpha0*derphi0:
        return alpha0, phi_a0

    # Otherwise, compute the minimizer of a quadratic interpolant:

    alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0)
    phi_a1 = phi(alpha1)

    if (phi_a1 <= phi0 + c1*alpha1*derphi0):
        return alpha1, phi_a1

    # Otherwise, loop with cubic interpolation until we find an alpha which
    # satisfies the first Wolfe condition (since we are backtracking, we will
    # assume that the value of alpha is not too small and satisfies the second
    # condition.

    while alpha1 > amin:       # we are assuming alpha>0 is a descent direction
        factor = alpha0**2 * alpha1**2 * (alpha1-alpha0)
        a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \
            alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0)
        a = a / factor
        b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \
            alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0)
        b = b / factor

        alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a)
        phi_a2 = phi(alpha2)

        if (phi_a2 <= phi0 + c1*alpha2*derphi0):
            return alpha2, phi_a2

        if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96:
            alpha2 = alpha1 / 2.0

        alpha0 = alpha1
        alpha1 = alpha2
        phi_a0 = phi_a1
        phi_a1 = phi_a2

    # Failed to find a suitable step length
    return None, phi_a1


#------------------------------------------------------------------------------
# Non-monotone line search for DF-SANE
#------------------------------------------------------------------------------

def _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta,
                                  gamma=1e-4, tau_min=0.1, tau_max=0.5):
    """
    Nonmonotone backtracking line search as described in [1]_

    Parameters
    ----------
    f : callable
        Function returning a tuple ``(f, F)`` where ``f`` is the value
        of a merit function and ``F`` the residual.
    x_k : ndarray
        Initial position.
    d : ndarray
        Search direction.
    prev_fs : float
        List of previous merit function values. Should have ``len(prev_fs) <= M``
        where ``M`` is the nonmonotonicity window parameter.
    eta : float
        Allowed merit function increase, see [1]_
    gamma, tau_min, tau_max : float, optional
        Search parameters, see [1]_

    Returns
    -------
    alpha : float
        Step length
    xp : ndarray
        Next position
    fp : float
        Merit function value at next position
    Fp : ndarray
        Residual at next position

    References
    ----------
    [1] "Spectral residual method without gradient information for solving
        large-scale nonlinear systems of equations." W. La Cruz,
        J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).

    """
    f_k = prev_fs[-1]
    f_bar = max(prev_fs)

    alpha_p = 1
    alpha_m = 1
    alpha = 1

    while True:
        xp = x_k + alpha_p * d
        fp, Fp = f(xp)

        if fp <= f_bar + eta - gamma * alpha_p**2 * f_k:
            alpha = alpha_p
            break

        alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k)

        xp = x_k - alpha_m * d
        fp, Fp = f(xp)

        if fp <= f_bar + eta - gamma * alpha_m**2 * f_k:
            alpha = -alpha_m
            break

        alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k)

        alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p)
        alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m)

    return alpha, xp, fp, Fp


def _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta,
                                   gamma=1e-4, tau_min=0.1, tau_max=0.5,
                                   nu=0.85):
    """
    Nonmonotone line search from [1]

    Parameters
    ----------
    f : callable
        Function returning a tuple ``(f, F)`` where ``f`` is the value
        of a merit function and ``F`` the residual.
    x_k : ndarray
        Initial position.
    d : ndarray
        Search direction.
    f_k : float
        Initial merit function value.
    C, Q : float
        Control parameters. On the first iteration, give values
        Q=1.0, C=f_k
    eta : float
        Allowed merit function increase, see [1]_
    nu, gamma, tau_min, tau_max : float, optional
        Search parameters, see [1]_

    Returns
    -------
    alpha : float
        Step length
    xp : ndarray
        Next position
    fp : float
        Merit function value at next position
    Fp : ndarray
        Residual at next position
    C : float
        New value for the control parameter C
    Q : float
        New value for the control parameter Q

    References
    ----------
    .. [1] W. Cheng & D.-H. Li, ''A derivative-free nonmonotone line
           search and its application to the spectral residual
           method'', IMA J. Numer. Anal. 29, 814 (2009).

    """
    alpha_p = 1
    alpha_m = 1
    alpha = 1

    while True:
        xp = x_k + alpha_p * d
        fp, Fp = f(xp)

        if fp <= C + eta - gamma * alpha_p**2 * f_k:
            alpha = alpha_p
            break

        alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k)

        xp = x_k - alpha_m * d
        fp, Fp = f(xp)

        if fp <= C + eta - gamma * alpha_m**2 * f_k:
            alpha = -alpha_m
            break

        alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k)

        alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p)
        alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m)

    # Update C and Q
    Q_next = nu * Q + 1
    C = (nu * Q * (C + eta) + fp) / Q_next
    Q = Q_next

    return alpha, xp, fp, Fp, C, Q