metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: cat_dog_classifier_with_small_datasest
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8571428571428571
cat_dog_classifier_with_small_datasest
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5540
- Accuracy: 0.8571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 140 | 0.5149 | 0.8143 |
No log | 2.0 | 280 | 0.2519 | 0.9214 |
No log | 3.0 | 420 | 0.3596 | 0.85 |
0.3145 | 4.0 | 560 | 0.2661 | 0.9214 |
0.3145 | 5.0 | 700 | 0.2600 | 0.8929 |
0.3145 | 6.0 | 840 | 0.1840 | 0.9286 |
0.3145 | 7.0 | 980 | 0.3145 | 0.9071 |
0.27 | 8.0 | 1120 | 0.2121 | 0.9214 |
0.27 | 9.0 | 1260 | 0.3926 | 0.8571 |
0.27 | 10.0 | 1400 | 0.3488 | 0.8786 |
0.2426 | 11.0 | 1540 | 0.2437 | 0.9071 |
0.2426 | 12.0 | 1680 | 0.2497 | 0.9 |
0.2426 | 13.0 | 1820 | 0.1663 | 0.9214 |
0.2426 | 14.0 | 1960 | 0.2132 | 0.9357 |
0.2556 | 15.0 | 2100 | 0.3464 | 0.8714 |
0.2556 | 16.0 | 2240 | 0.3063 | 0.9071 |
0.2556 | 17.0 | 2380 | 0.2992 | 0.9071 |
0.261 | 18.0 | 2520 | 0.3765 | 0.8857 |
0.261 | 19.0 | 2660 | 0.1396 | 0.9286 |
0.261 | 20.0 | 2800 | 0.5540 | 0.8571 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0