MoGHenry's picture
End of training
488c9ed verified
|
raw
history blame
2.98 kB
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: cat_dog_classifier_with_small_datasest
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8571428571428571

cat_dog_classifier_with_small_datasest

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5540
  • Accuracy: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 140 0.5149 0.8143
No log 2.0 280 0.2519 0.9214
No log 3.0 420 0.3596 0.85
0.3145 4.0 560 0.2661 0.9214
0.3145 5.0 700 0.2600 0.8929
0.3145 6.0 840 0.1840 0.9286
0.3145 7.0 980 0.3145 0.9071
0.27 8.0 1120 0.2121 0.9214
0.27 9.0 1260 0.3926 0.8571
0.27 10.0 1400 0.3488 0.8786
0.2426 11.0 1540 0.2437 0.9071
0.2426 12.0 1680 0.2497 0.9
0.2426 13.0 1820 0.1663 0.9214
0.2426 14.0 1960 0.2132 0.9357
0.2556 15.0 2100 0.3464 0.8714
0.2556 16.0 2240 0.3063 0.9071
0.2556 17.0 2380 0.2992 0.9071
0.261 18.0 2520 0.3765 0.8857
0.261 19.0 2660 0.1396 0.9286
0.261 20.0 2800 0.5540 0.8571

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0