Misha24-10's picture
Update README.md
5ad8883
---
license: apache-2.0
pipeline_tag: token-classification
---
An example of using an ensemble of models is shown in the main.py file
Code for this project: https://github.com/Misha24-10/semeval_ner/tree/main
In low lavel classification on MultiCoNER II in test set:
| Класс | Precision | Recall | F1 |
|---------------------------|-----------|--------|--------|
| Facility | 0,7464 | 0,7321 | 0,7392 |
| OtherLOC | 0,7932 | 0,7068 | 0,7475 |
| HumanSettlement | 0,899 | 0,8948 | 0,8969 |
| Station | 0,8318 | 0,8125 | 0,8221 |
| VisualWork | 0,8528 | 0,8319 | 0,8422 |
| MusicalWork | 0,8025 | 0,7813 | 0,7917 |
| WrittenWork | 0,7766 | 0,728 | 0,7515 |
| ArtWork | 0,6374 | 0,5528 | 0,5921 |
| Software | 0,8476 | 0,8201 | 0,8336 |
| MusicalGRP | 0,8185 | 0,8207 | 0,8196 |
| PublicCorp | 0,7853 | 0,7572 | 0,771 |
| PrivateCorp | 0,7362 | 0,6896 | 0,7121 |
| AerospaceManufacturer | 0,6774 | 0,7541 | 0,7137 |
| SportsGRP | 0,8715 | 0,8938 | 0,8825 |
| CarManufacturer | 0,7617 | 0,7902 | 0,7757 |
| ORG | 0,7617 | 0,7371 | 0,7492 |
| Scientist | 0,5338 | 0,4886 | 0,5102 |
| Artist | 0,7971 | 0,8369 | 0,8165 |
| Athlete | 0,8094 | 0,802 | 0,8057 |
| Politician | 0,7115 | 0,6194 | 0,6622 |
| Cleric | 0,7349 | 0,6239 | 0,6748 |
| SportsManager | 0,678 | 0,6097 | 0,6421 |
| OtherPER | 0,5354 | 0,5915 | 0,562 |
| Clothing | 0,6326 | 0,6876 | 0,659 |
| Vehicle | 0,6699 | 0,6608 | 0,6653 |
| Food | 0,6814 | 0,6634 | 0,6723 |
| Drink | 0,6859 | 0,7203 | 0,7027 |
| OtherPROD | 0,7033 | 0,6638 | 0,683 |
| Medication/Vaccine | 0,7943 | 0,816 | 0,805 |
| MedicalProcedure | 0,7481 | 0,7375 | 0,7428 |
| AnatomicalStructure | 0,7765 | 0,7567 | 0,7664 |
| Symptom | 0,6086 | 0,7178 | 0,6587 |
| Disease | 0,7977 | 0,7719 | 0,7846 |
| Macro Average Performance | 0,7423 | 0,7294 | 0,7349 |
In high lavel classification on MultiCoNER II in test set:
| Класс | Precision | Recall | F1 |
|---------------------------|-----------|--------|--------|
| LOC | 0,8866 | 0,8732 | 0,8798 |
| Medicine | 0,794 | 0,7927 | 0,7934 |
| GRP | 0,8489 | 0,8419 | 0,8454 |
| PROD | 0,7449 | 0,7247 | 0,7347 |
| PER | 0,9346 | 0,939 | 0,9368 |
| CW | 0,8507 | 0,8162 | 0,8331 |
| Macro Average Performance | 0,8433 | 0,8313 | 0,8372 |
MultiCoNER II features complex NER in these languages:
1. English
2. Spanish
3. Hindi
4. Bangla
5. Chinese
6. Swedish
7. Farsi
8. French
9. Italian
10. Portugese
11. Ukranian
12. German
classification entities in low level between languages overall Macro F1-score:
| Язык | F1 |
|------|--------|
| PT | 0,6872 |
| IT | 0,7441 |
| UK | 0,7199 |
| BN | 0,7320 |
| FA | 0,6404 |
| ES | 0,7230 |
| FR | 0,7289 |
| DE | 0,7164 |
| EN | 0,7069 |
| HI | 0,7544 |
| ZH | 0,5899 |
| SV | 0,7385 |