LoRA text2image fine-tuning - Miracle-2001/pokemon-lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the svjack/pokemon-blip-captions-en-zh dataset. You can find some example images in the following.
Intended uses & limitations
How to use
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from huggingface_hub import model_info
# LoRA weights ~3 MB
model_path = "Miracle-2001/pokemon-lora"
info = model_info(model_path)
model_base = info.cardData["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.unet.load_attn_procs(model_path)
pipe.to("cuda")
image = pipe("Green pokemon with menacing face", num_inference_steps=25).images[0]
image.save("green_pokemon.png")
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
cd diffusers/examples/text_to_image
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="/flash2/aml/kyzhang24/HW3/hw3-base/"
export HUB_MODEL_ID="pokemon-lora"
export DATASET_NAME="svjack/pokemon-blip-captions-en-zh"
HF_ENDPOINT=https://hf-mirror.com python train_text_to_image_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--dataloader_num_workers=8 \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=15000 \
--learning_rate=1e-04 \
--max_grad_norm=1 \
--lr_scheduler="cosine" --lr_warmup_steps=0 \
--output_dir=${OUTPUT_DIR} \
--push_to_hub \
--hub_model_id=${HUB_MODEL_ID} \
--report_to=wandb \
--checkpointing_steps=500 \
--validation_prompt="Totoro" \
--seed=1337 \
--caption_column="en_text"
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Miracle-2001/pokemon-lora
Base model
runwayml/stable-diffusion-v1-5