metadata
base_model: Qwen/Qwen2.5-1.5B-Instruct
library_name: transformers
model_name: Qwen2.5-1.5B-Open-R1-Distill
tags:
- generated_from_trainer
- trl
- sft
licence: license
datasets:
- HuggingFaceH4/Bespoke-Stratos-17k
Model Card for Qwen2.5-1.5B-Open-R1-Distill
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct. It has been trained using TRL.
Quick start
from transformers import pipeline
generator = pipeline("text-generation", model="Mingsmilet/Qwen2.5-1.5B-Open-R1-Distill", device="cuda")
question = "The fraction\n\\[\\frac{\\left(3^{2008}\\right)^2-\\left(3^{2006}\\right)^2}{\\left(3^{2007}\\right)^2-\\left(3^{2005}\\right)^2}\\]\nsimplifies to which of the following?\n$\\mathrm{(A)}\\ 1\\qquad\\mathrm{(B)}\\ \\frac{9}{4}\\qquad\\mathrm{(C)}\\ 3\\qquad\\mathrm{(D)}\\ \\frac{9}{2}\\qquad\\mathrm{(E)}\\ 9$"
output = generator([{"role": "user", "content": question}], max_new_tokens=5000, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with SFT.
Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0.dev0
- Pytorch: 2.5.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}