MicroPhion's picture
End of training
6b238d3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - audio-classification
  - generated_from_trainer
datasets:
  - common_language
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-lang-id
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: common_language
          type: common_language
          config: full
          split: validation
          args: full
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7800611413043478

wav2vec2-base-lang-id

This model is a fine-tuned version of facebook/wav2vec2-base on the common_language dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2554
  • Accuracy: 0.7801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.58 0.9989 693 2.5609 0.2899
1.8581 1.9989 1386 2.1486 0.4008
1.3784 2.9989 2079 1.5906 0.5666
0.976 3.9989 2772 1.4036 0.6318
0.6109 4.9989 3465 1.3022 0.6695
0.4357 5.9989 4158 1.2386 0.7138
0.23 6.9989 4851 1.3078 0.7221
0.1461 7.9989 5544 1.2247 0.7534
0.0567 8.9989 6237 1.3279 0.7646
0.0375 9.9989 6930 1.2554 0.7801

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0