metadata
library_name: transformers
license: apache-2.0
base_model: Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_6
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-msn-small-lateral_flow_ivalidation_train_test_7
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8754578754578755
vit-msn-small-lateral_flow_ivalidation_train_test_7
This model is a fine-tuned version of Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_6 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4368
- Accuracy: 0.8755
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: reduce_lr_on_plateau
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.6154 | 1 | 0.4368 | 0.8755 |
No log | 1.8462 | 3 | 0.4440 | 0.8681 |
No log | 2.4615 | 4 | 0.4470 | 0.8645 |
No log | 3.6923 | 6 | 0.4443 | 0.8645 |
No log | 4.9231 | 8 | 0.4393 | 0.8645 |
No log | 5.5385 | 9 | 0.4372 | 0.8681 |
0.3118 | 6.7692 | 11 | 0.4340 | 0.8645 |
0.3118 | 8.0 | 13 | 0.4319 | 0.8608 |
0.3118 | 8.6154 | 14 | 0.4313 | 0.8608 |
0.3118 | 9.8462 | 16 | 0.4312 | 0.8681 |
0.3118 | 10.4615 | 17 | 0.4314 | 0.8718 |
0.3118 | 11.6923 | 19 | 0.4306 | 0.8718 |
0.3019 | 12.9231 | 21 | 0.4294 | 0.8718 |
0.3019 | 13.5385 | 22 | 0.4290 | 0.8718 |
0.3019 | 14.7692 | 24 | 0.4262 | 0.8718 |
0.3019 | 16.0 | 26 | 0.4223 | 0.8718 |
0.3019 | 16.6154 | 27 | 0.4204 | 0.8718 |
0.3019 | 17.8462 | 29 | 0.4170 | 0.8718 |
0.2922 | 18.4615 | 30 | 0.4160 | 0.8718 |
0.2922 | 19.6923 | 32 | 0.4161 | 0.8718 |
0.2922 | 20.9231 | 34 | 0.4161 | 0.8718 |
0.2922 | 21.5385 | 35 | 0.4162 | 0.8718 |
0.2922 | 22.7692 | 37 | 0.4164 | 0.8718 |
0.2922 | 24.0 | 39 | 0.4166 | 0.8718 |
0.2993 | 24.6154 | 40 | 0.4168 | 0.8718 |
0.2993 | 25.8462 | 42 | 0.4170 | 0.8718 |
0.2993 | 26.4615 | 43 | 0.4171 | 0.8718 |
0.2993 | 27.6923 | 45 | 0.4176 | 0.8718 |
0.2993 | 28.9231 | 47 | 0.4179 | 0.8718 |
0.2993 | 29.5385 | 48 | 0.4179 | 0.8718 |
0.298 | 30.7692 | 50 | 0.4179 | 0.8718 |
0.298 | 32.0 | 52 | 0.4179 | 0.8718 |
0.298 | 32.6154 | 53 | 0.4179 | 0.8718 |
0.298 | 33.8462 | 55 | 0.4179 | 0.8718 |
0.298 | 34.4615 | 56 | 0.4179 | 0.8718 |
0.298 | 35.6923 | 58 | 0.4179 | 0.8718 |
0.2936 | 36.9231 | 60 | 0.4178 | 0.8718 |
0.2936 | 37.5385 | 61 | 0.4178 | 0.8718 |
0.2936 | 38.7692 | 63 | 0.4178 | 0.8718 |
0.2936 | 40.0 | 65 | 0.4178 | 0.8718 |
0.2936 | 40.6154 | 66 | 0.4178 | 0.8718 |
0.2936 | 41.8462 | 68 | 0.4178 | 0.8718 |
0.2936 | 42.4615 | 69 | 0.4177 | 0.8718 |
0.2948 | 43.6923 | 71 | 0.4177 | 0.8718 |
0.2948 | 44.9231 | 73 | 0.4177 | 0.8718 |
0.2948 | 45.5385 | 74 | 0.4176 | 0.8718 |
0.2948 | 46.7692 | 76 | 0.4176 | 0.8718 |
0.2948 | 48.0 | 78 | 0.4176 | 0.8718 |
0.2948 | 48.6154 | 79 | 0.4176 | 0.8718 |
0.2965 | 49.8462 | 81 | 0.4176 | 0.8718 |
0.2965 | 50.4615 | 82 | 0.4175 | 0.8718 |
0.2965 | 51.6923 | 84 | 0.4175 | 0.8718 |
0.2965 | 52.9231 | 86 | 0.4175 | 0.8718 |
0.2965 | 53.5385 | 87 | 0.4175 | 0.8718 |
0.2965 | 54.7692 | 89 | 0.4174 | 0.8718 |
0.292 | 56.0 | 91 | 0.4174 | 0.8718 |
0.292 | 56.6154 | 92 | 0.4174 | 0.8718 |
0.292 | 57.8462 | 94 | 0.4174 | 0.8718 |
0.292 | 58.4615 | 95 | 0.4173 | 0.8718 |
0.292 | 59.6923 | 97 | 0.4173 | 0.8718 |
0.292 | 60.9231 | 99 | 0.4173 | 0.8718 |
0.2962 | 61.5385 | 100 | 0.4173 | 0.8718 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1