Melo1512's picture
Model save
6c87a12 verified
|
raw
history blame
3.8 kB
metadata
library_name: transformers
base_model: Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-beta-fia-manually-enhanced-HSV_test_3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8661971830985915

vit-msn-small-beta-fia-manually-enhanced-HSV_test_3

This model is a fine-tuned version of Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5321
  • Accuracy: 0.8662

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.33
  • num_epochs: 50
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 0.5167 0.8803
No log 1.7143 3 0.5197 0.8803
No log 2.8571 5 0.5266 0.8803
No log 4.0 7 0.5391 0.8803
No log 4.5714 8 0.5425 0.8803
0.4435 5.7143 10 0.5403 0.8803
0.4435 6.8571 12 0.5251 0.8803
0.4435 8.0 14 0.5160 0.8732
0.4435 8.5714 15 0.5123 0.8873
0.4435 9.7143 17 0.5292 0.8803
0.4435 10.8571 19 0.5686 0.8732
0.4418 12.0 21 0.5460 0.8732
0.4418 12.5714 22 0.5333 0.8873
0.4418 13.7143 24 0.5152 0.8803
0.4418 14.8571 26 0.5236 0.8732
0.4418 16.0 28 0.5372 0.8592
0.4418 16.5714 29 0.5472 0.8592
0.4363 17.7143 31 0.5422 0.8592
0.4363 18.8571 33 0.5293 0.8803
0.4363 20.0 35 0.5235 0.8803
0.4363 20.5714 36 0.5240 0.8803
0.4363 21.7143 38 0.5302 0.8803
0.4371 22.8571 40 0.5324 0.8803
0.4371 24.0 42 0.5349 0.8803
0.4371 24.5714 43 0.5363 0.8732
0.4371 25.7143 45 0.5342 0.8732
0.4371 26.8571 47 0.5315 0.8732
0.4371 28.0 49 0.5319 0.8732
0.4298 28.5714 50 0.5321 0.8662

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1