|
--- |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
--- |
|
# MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning |
|
|
|
Paper: [https://arxiv.org/pdf/2310.03731.pdf](https://arxiv.org/pdf/2310.03731.pdf) |
|
|
|
Repo: [https://github.com/mathllm/MathCoder](https://github.com/mathllm/MathCoder) |
|
|
|
|
|
## Introduction |
|
We introduce MathCoder, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. |
|
|
|
| Base Model: Llama-2 | Base Model: Code Llama | |
|
|-------------------------------------------------------------------|-----------------------------------------------------------------------| |
|
| [MathCoder-L-7B](https://huggingface.co/MathLLM/MathCoder-L-7B) | [MathCoder-CL-7B](https://huggingface.co/MathLLM/MathCoder-CL-7B) | |
|
| [MathCoder-L-13B](https://huggingface.co/MathLLM/MathCoder-L-13B) | [MathCoder-CL-34B](https://huggingface.co/MathLLM/MathCoder-CL-34B) | |
|
|
|
|
|
## Training Data |
|
The models are trained on the [MathCodeInstruct](https://huggingface.co/datasets/MathLLM/MathCodeInstruct) Dataset. |
|
|
|
|
|
## Training Procedure |
|
The models are fine-tuned with the MathCodeInstruct dataset using the original Llama-2 and CodeLlama models as base models. Check out our paper and repo for more details. |
|
|
|
## Evaluation |
|
|
|
<br> |
|
<div align="center"> |
|
<img src="result.png" width="100%" title="Result Figure"> |
|
</div> |
|
|
|
|
|
|
|
## Usage |
|
You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. |
|
Check our Github repo for datails. |
|
|
|
|
|
## Citation |
|
Please cite the paper if you use our data, model or code. |
|
|
|
``` |
|
@misc{wang2023mathcoder, |
|
title={MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning}, |
|
author={Ke Wang and Houxing Ren and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li}, |
|
year={2023}, |
|
eprint={2310.03731}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |