metadata
base_model: unsloth/Qwen2.5-3B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- grpo
license: apache-2.0
language:
- en
π¦ Uploaded Model
Field | Value |
---|---|
Developed by | MasterControlAIML |
License | Apache 2.0 |
Finetuned from | unsloth/Qwen2.5-3B-Instruct |
Training Framework | Unsloth Γ Hugging Face TRL |
π Whatβs New?
*The protein-shake sequel to MasterControlAIML/DeepSeek-R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structuredβnow with more neurons, zero SFT, and a league of reward functions.*
Upgrade | Explanation |
---|---|
Bigger Backbone | 1.5 B β 3 B Qwen 2.5 for bigger reasoning muscles. |
Pure RL | No supervised fine-tuningβpolicy learned only from reward signals (GRPO). |
LM-as-Judge | Separate LLM rates each candidate for correctness, JSON validity, style⦠|
2Γ Faster Train | Unslothβs flash-attention & fused ops = less VRAM, more speed. |
π οΈ Intended Use
- Convert messy prose, logs, or audit notes into a pristine JSON document that follows a complex, nested schema.
- Drop-in replacement for any pipeline using the older DeepSeek-R1 1.5 B structurerβjust swap the checkpoint and enjoy the headroom.
π§ How to Use (Reasoning + JSON)
The snippet below:
- Primes the model with the exact Pydantic schema, so it outputs the right keys.
- Makes the model think step-by-step (reasoning) but still wraps the final JSON in an easy-to-parse container.
- Uses the correct repo name:
MasterControlAIML/DeepSeek-R1-Qwen2.5-3b-LLM-Judge-Reward-JSON-Unstructured-To-Structured-Lora
.
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# QUICK-START
# Structured-data extraction with reasoning + JSON output
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch, json, textwrap, inspect
from pydantic import BaseModel
from typing import List, Optional
MODEL = "MasterControlAIML/DeepSeek-R1-Qwen2.5-3b-LLM-Judge-Reward-JSON-Unstructured-To-Structured-Lora"
# 1οΈβ£ Inline schema (keeps the LLM on-rails) βββββββββββββββββββββββββββββββββ
class MultipleChoice(BaseModel):
question: str
options: List[str]
selected: str
class FormField(BaseModel):
fieldName: str
value: str
notes: Optional[str] = ""
class Calculation(BaseModel):
formula: str
result: str
notes: Optional[str] = ""
class Metadata(BaseModel):
reportDate: str
auditorId: Optional[str] = None
comments: Optional[str] = None
class Content(BaseModel):
paragraphs: List[str]
tables: List["Table"] # assume Table defined elsewhere
checkboxes: List["Checkbox"] # γ
multipleChoice: List[MultipleChoice]
formFields: List[FormField]
calculations: List[Calculation]
metadata: Optional[Metadata] = Metadata(reportDate="")
class Section(BaseModel):
id: str
title: str
content: Content
class Document(BaseModel):
documentTitle: str
documentDate: str
sections: List[Section]
SCHEMA_TEXT = inspect.getsource(Document)
# 2οΈβ£ Build prompts ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SYSTEM_PROMPT = textwrap.dedent(f"""
You are an expert **data-extraction assistant**.
Extract structured info from unstructured text **exactly** following the Pydantic schema.
ββ Schema ββ
{SCHEMA_TEXT}
βββββββββββββ
Rules:
1. Follow the schema for keys & nesting.
2. Copy values verbatim when possible.
3. If a field is missing, return null.
4. Output your step-by-step reasoning first.
5. Then return ONLY the JSON inside this wrapper:
final answer[ json object: {{ ... }} ]
Format:
<reasoning>β¦</reasoning>
<answer>
final answer[ json object: {{ β¦ }} ]
</answer>
""").strip()
UNSTRUCTURED_TEXT = """
12 April 2025 β Onsite audit performed by Jane Smith.
Observations: Two fire extinguishers past expiry; emergency lights functional.
Calculations: Total extinguishers = 8, expired = 2 β 25 % overdue.
"""
USER_PROMPT = textwrap.dedent(f"""
### Task
Convert the following *hier* text to the schema.
### hier
{UNSTRUCTURED_TEXT}
""").strip()
# 3οΈβ£ Generate βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
tok = AutoTokenizer.from_pretrained(MODEL, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
device_map="auto",
torch_dtype=torch.bfloat16
)
gen = pipeline("text-generation", model=model, tokenizer=tok,
max_new_tokens=512, do_sample=False)
prompt = f"<|system|>\n{SYSTEM_PROMPT}\n<|user|>\n{USER_PROMPT}"
raw_out = gen(prompt)[0]["generated_text"]
# 4οΈβ£ Slice out the JSON βββββββββββββββββββββββββββββββββββββββββββββββββββββ
start = raw_out.find("final answer[")
end = raw_out.rfind("]") + 1
json_text = raw_out[start:].split("json object:")[-1].strip(" []\n")
data = json.loads(json_text) # β
Raises if malformed
print(raw_out) # reasoning + JSON
print("\nβ
Parsed object:\n", data)
Why it Works π§
- Schema-priming ensures key-level fidelityβno βcreativeβ field names.
- Chain-of-thought improves factual extraction (was rewarded during GRPO).
- The
final answer[β¦]
wrapper makes downstream parsing a one-liner.
ποΈ Training Recipe (Condensed)
Setting | Value |
---|---|
Algorithm | GRPO β policy β LM, reward LM β Qwen2.5-7B w/ JSON-validator head |
Epochs | 3 (effective) |
Batch | Grad-accum 8, bfloat16 |
Optimizer | Fused AdamW |
Throughput | β 45 k tokens/s on 8ΓA100 |
π Evaluation (WIP)
Metric | Status |
---|---|
Exact-Match JSON Accuracy | π |
Structural F1 | π |
Valid-JSON Rate | π |
Stay tunedβnumbers landing faster than you can say βschema validation.β π°οΈ
π€ Citation
@misc{bhaviktheslider_2025_unsloth_qwen2.5_3b_grpo,
title = {An Unsloth-accelerated GRPO-trained Qwen 2.5-3B for JSON structuring},
author = {MasterControlAIML},
year = {2025},
howpublished = {\url{https://huggingface.co/MasterControlAIML/DeepSeek-R1-Qwen2.5-3b-LLM-Judge-Reward-JSON-Unstructured-To-Structured-Lora}}
}
May your JSON always parse and your losses always converge! π