bhaviktheslider commited on
Commit
bba005d
·
verified ·
1 Parent(s): 5463267

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -5
README.md CHANGED
@@ -1,5 +1,4 @@
1
- Below is an improved version of the README in Markdown format. You can copy and paste the following text into your README file.
2
-
3
  ---
4
 
5
  # MasterControlAIML R1-Qwen2.5-1.5b SFT R1 JSON Unstructured-To-Structured LoRA Model
@@ -76,7 +75,7 @@ from unsloth import FastLanguageModel
76
  import torch
77
 
78
  # Specify the model name
79
- MODEL = "MasterControlAIML/R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured-lora"
80
 
81
  # Load the model and tokenizer
82
  model, tokenizer = FastLanguageModel.from_pretrained(
@@ -118,7 +117,7 @@ If you prefer to use Hugging Face's Transformers directly, here’s an alternati
118
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
119
  import torch
120
 
121
- MODEL = "MasterControlAIML/R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured-lora"
122
 
123
  # Initialize tokenizer and model
124
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
@@ -133,7 +132,7 @@ Below is an instruction that describes a task, paired with an input that provide
133
  """
134
 
135
  # Define your text input
136
- TEXT = "Provide a detailed explanation of the QA processes in manufacturing."
137
  prompt = ALPACA_PROMPT.format(TEXT, "")
138
  inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
139
  text_streamer = TextStreamer(tokenizer)
 
1
+ Model
 
2
  ---
3
 
4
  # MasterControlAIML R1-Qwen2.5-1.5b SFT R1 JSON Unstructured-To-Structured LoRA Model
 
75
  import torch
76
 
77
  # Specify the model name
78
+ MODEL = "MasterControlAIML/DeepSeek-R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured"
79
 
80
  # Load the model and tokenizer
81
  model, tokenizer = FastLanguageModel.from_pretrained(
 
117
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
118
  import torch
119
 
120
+ MODEL = "MasterControlAIML/DeepSeek-R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured"
121
 
122
  # Initialize tokenizer and model
123
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
 
132
  """
133
 
134
  # Define your text input
135
+ TEXT = ""
136
  prompt = ALPACA_PROMPT.format(TEXT, "")
137
  inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
138
  text_streamer = TextStreamer(tokenizer)