distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • eval_loss: 1.7956
  • eval_accuracy: 0.54
  • eval_runtime: 47.8612
  • eval_samples_per_second: 2.089
  • eval_steps_per_second: 0.146
  • epoch: 1.0
  • step: 57

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
21
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MariiBel/distilhubert-finetuned-gtzan

Finetuned
(440)
this model

Dataset used to train MariiBel/distilhubert-finetuned-gtzan