|
--- |
|
language: |
|
- ko |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
datasets: |
|
- Marcusxx/gwanju2 |
|
model-index: |
|
- name: gwanju2_mparameters1e-5__model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gwanju2_mparameters1e-5__model |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/gwanju2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8405 |
|
- Cer: 19.4108 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 250 |
|
- training_steps: 50000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:--------:| |
|
| 0.43 | 0.6046 | 1000 | 0.4009 | 166.0129 | |
|
| 0.2587 | 1.2092 | 2000 | 0.3832 | 55.7046 | |
|
| 0.2636 | 1.8138 | 3000 | 0.3843 | 98.7021 | |
|
| 0.1623 | 2.4184 | 4000 | 0.4000 | 33.8374 | |
|
| 0.1503 | 3.0230 | 5000 | 0.4133 | 27.1959 | |
|
| 0.1061 | 3.6276 | 6000 | 0.4223 | 25.8623 | |
|
| 0.0638 | 4.2322 | 7000 | 0.4534 | 24.9179 | |
|
| 0.0671 | 4.8368 | 8000 | 0.4526 | 22.6665 | |
|
| 0.0406 | 5.4414 | 9000 | 0.4991 | 21.5252 | |
|
| 0.0372 | 6.0459 | 10000 | 0.5183 | 22.3878 | |
|
| 0.0273 | 6.6505 | 11000 | 0.5348 | 21.8627 | |
|
| 0.0195 | 7.2551 | 12000 | 0.5536 | 20.8458 | |
|
| 0.0212 | 7.8597 | 13000 | 0.5466 | 21.0162 | |
|
| 0.0146 | 8.4643 | 14000 | 0.5870 | 21.4089 | |
|
| 0.0126 | 9.0689 | 15000 | 0.6040 | 26.2815 | |
|
| 0.0113 | 9.6735 | 16000 | 0.6097 | 20.9229 | |
|
| 0.0088 | 10.2781 | 17000 | 0.6190 | 21.1083 | |
|
| 0.0098 | 10.8827 | 18000 | 0.6309 | 20.7387 | |
|
| 0.0069 | 11.4873 | 19000 | 0.6489 | 20.5855 | |
|
| 0.0056 | 12.0919 | 20000 | 0.6642 | 20.5590 | |
|
| 0.0064 | 12.6965 | 21000 | 0.6514 | 20.8815 | |
|
| 0.0053 | 13.3011 | 22000 | 0.6716 | 20.3149 | |
|
| 0.005 | 13.9057 | 23000 | 0.6720 | 20.3068 | |
|
| 0.0037 | 14.5103 | 24000 | 0.6912 | 20.6039 | |
|
| 0.0044 | 15.1149 | 25000 | 0.7038 | 20.6166 | |
|
| 0.004 | 15.7195 | 26000 | 0.6959 | 20.3149 | |
|
| 0.0029 | 16.3241 | 27000 | 0.7064 | 20.6454 | |
|
| 0.0031 | 16.9287 | 28000 | 0.7188 | 20.5463 | |
|
| 0.002 | 17.5333 | 29000 | 0.7127 | 20.7640 | |
|
| 0.0033 | 18.1378 | 30000 | 0.7193 | 20.4496 | |
|
| 0.0019 | 18.7424 | 31000 | 0.7109 | 20.6719 | |
|
| 0.002 | 19.3470 | 32000 | 0.7208 | 20.1306 | |
|
| 0.0013 | 19.9516 | 33000 | 0.7442 | 20.1490 | |
|
| 0.0007 | 20.5562 | 34000 | 0.7357 | 19.9198 | |
|
| 0.0012 | 21.1608 | 35000 | 0.7501 | 19.5755 | |
|
| 0.0022 | 21.7654 | 36000 | 0.7537 | 19.5870 | |
|
| 0.0008 | 22.3700 | 37000 | 0.7686 | 19.6031 | |
|
| 0.0013 | 22.9746 | 38000 | 0.7702 | 20.6097 | |
|
| 0.0005 | 23.5792 | 39000 | 0.7712 | 19.9590 | |
|
| 0.0007 | 24.1838 | 40000 | 0.7802 | 20.2020 | |
|
| 0.0004 | 24.7884 | 41000 | 0.8050 | 19.5536 | |
|
| 0.0004 | 25.3930 | 42000 | 0.8012 | 19.8093 | |
|
| 0.0003 | 25.9976 | 43000 | 0.8049 | 19.6722 | |
|
| 0.0002 | 26.6022 | 44000 | 0.8094 | 19.5214 | |
|
| 0.0002 | 27.2068 | 45000 | 0.8109 | 19.6296 | |
|
| 0.0001 | 27.8114 | 46000 | 0.8206 | 19.5248 | |
|
| 0.0001 | 28.4160 | 47000 | 0.8299 | 19.5974 | |
|
| 0.0001 | 29.0206 | 48000 | 0.8343 | 19.5490 | |
|
| 0.0001 | 29.6252 | 49000 | 0.8395 | 19.4661 | |
|
| 0.0001 | 30.2297 | 50000 | 0.8405 | 19.4108 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.19.1 |
|
|