SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-mpnet-base-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Marco127/Base_T")
# Run inference
sentences = [
'\nGuests are responsible for damages caused to hotel property according to the valid legal\nprescriptions of Hungary.',
'\nGuests are responsible for damages caused to hotel property according to the valid legal\nprescriptions of Hungary.',
'\nWe shall be happy to listen to any suggestions for improvement of the accommodation\nand catering services in the hotel. In case of any complaints we shall purposefully arrange\nthe rectification of any insufficiencies.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
dot_accuracy | 0.655 |
dot_accuracy_threshold | 48.3617 |
dot_f1 | 0.5143 |
dot_f1_threshold | 40.0116 |
dot_precision | 0.36 |
dot_recall | 0.9 |
dot_ap | 0.3571 |
dot_mcc | 0.0388 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 684 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 684 samples:
sentence1 sentence2 label type string string int details - min: 17 tokens
- mean: 42.77 tokens
- max: 71 tokens
- min: 17 tokens
- mean: 42.77 tokens
- max: 71 tokens
- 0: ~67.11%
- 1: ~32.89%
- Samples:
sentence1 sentence2 label If a guest fails to vacate
the room within the designated time, reception shall charge this guest for the following
night's accommodation fee.If a guest fails to vacate
the room within the designated time, reception shall charge this guest for the following
night's accommodation fee.0
If you do not want someone to enter
your room, please hang the "do not disturb” card on your room’s outside door handle. It can
be found in the entrance area of your room.If you do not want someone to enter
your room, please hang the "do not disturb” card on your room’s outside door handle. It can
be found in the entrance area of your room.0
Owners are responsible for ensuring that animals are kept quiet between the
hours of 10:00 pm and 06:00 am. In the case of failure to abide by this
regulation the guest may be asked to leave the hotel without a refund of the
price of the night's accommodation.
Owners are responsible for ensuring that animals are kept quiet between the
hours of 10:00 pm and 06:00 am. In the case of failure to abide by this
regulation the guest may be asked to leave the hotel without a refund of the
price of the night's accommodation.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 171 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 171 samples:
sentence1 sentence2 label type string string int details - min: 17 tokens
- mean: 42.01 tokens
- max: 71 tokens
- min: 17 tokens
- mean: 42.01 tokens
- max: 71 tokens
- 0: ~64.91%
- 1: ~35.09%
- Samples:
sentence1 sentence2 label
We shall be happy to listen to any suggestions for improvement of the accommodation
and catering services in the hotel. In case of any complaints we shall purposefully arrange
the rectification of any insufficiencies.
We shall be happy to listen to any suggestions for improvement of the accommodation
and catering services in the hotel. In case of any complaints we shall purposefully arrange
the rectification of any insufficiencies.0
Between the hours of 10:00 pm and 06:00 am guests are obliged to maintain low noise
levels.
Between the hours of 10:00 pm and 06:00 am guests are obliged to maintain low noise
levels.0
The hotel’s inner courtyard parking facility may be used only upon availability of parking
slots. Slots marked as ’Private’ are to be left free for their owners. For parking fees please
consult the reception or see the website of the hotel.
The hotel’s inner courtyard parking facility may be used only upon availability of parking
slots. Slots marked as ’Private’ are to be left free for their owners. For parking fees please
consult the reception or see the website of the hotel.1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | dot_ap |
---|---|---|---|---|
-1 | -1 | - | - | 0.3571 |
2.2791 | 100 | 0.0011 | 0.0000 | - |
4.5581 | 200 | 0.0 | 0.0000 | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Marco127/Base_T
Evaluation results
- Dot Accuracy on Unknownself-reported0.655
- Dot Accuracy Threshold on Unknownself-reported48.362
- Dot F1 on Unknownself-reported0.514
- Dot F1 Threshold on Unknownself-reported40.012
- Dot Precision on Unknownself-reported0.360
- Dot Recall on Unknownself-reported0.900
- Dot Ap on Unknownself-reported0.357
- Dot Mcc on Unknownself-reported0.039