metadata
language:
- ab
- af
- ak
- am
- ar
- as
- av
- ay
- az
- ba
- bm
- be
- bn
- bi
- bo
- sh
- br
- bg
- ca
- cs
- ce
- cv
- ku
- cy
- da
- de
- dv
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- fj
- fi
- fr
- fy
- ff
- ga
- gl
- gn
- gu
- zh
- ht
- ha
- he
- hi
- sh
- hu
- hy
- ig
- ia
- ms
- is
- it
- jv
- ja
- kn
- ka
- kk
- kr
- km
- ki
- rw
- ky
- ko
- kv
- lo
- la
- lv
- ln
- lt
- lb
- lg
- mh
- ml
- mr
- ms
- mk
- mg
- mt
- mn
- mi
- my
- zh
- nl
- 'no'
- 'no'
- ne
- ny
- oc
- om
- or
- os
- pa
- pl
- pt
- ms
- ps
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- ro
- rn
- ru
- sg
- sk
- sl
- sm
- sn
- sd
- so
- es
- sq
- su
- sv
- sw
- ta
- tt
- te
- tg
- tl
- th
- ti
- ts
- tr
- uk
- ms
- vi
- wo
- xh
- ms
- yo
- ms
- zu
- za
license: cc-by-nc-4.0
tags:
- mms
- wav2vec2
Forced Alignment with Hugging Face CTC Models
This Python package provides an efficient way to perform forced alignment between text and audio using Hugging Face's pretrained models. it also features an improved implementation to use much less memory than TorchAudio forced alignment API.
The model checkpoint uploaded here is a conversion from torchaudio to HF Transformers for the MMS-300M checkpoint trained on forced alignment dataset
Installation
pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
Usage
from ctc_forced_aligner import (
load_audio,
load_alignment_model,
generate_emissions,
preprocess_text,
get_alignments,
get_spans,
postprocess_results,
)
audio_path = "your/audio/path"
text_path = "your/text/path"
audio_waveform = load_audio(audio_path, model.dtype, model.device)
emissions, stride = generate_emissions(
model, audio_waveform, args.window_size, args.context_size, args.batch_size
)
with open(text_path, "r") as f:
lines = f.readlines()
text = "".join(line for line in lines).replace("\n", " ").strip()
alignment_model, alignment_tokenizer, alignment_dictionary = load_alignment_model(
device,
dtype=torch.float16 if device == "cuda" else torch.float32,
model_path="MahmoudAshraf/mms-300m-1130-forced-aligner"
)
# also compatible with other Wav2Vec2 Checkpoints such as
# "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
emissions, stride = generate_emissions(
alignment_model, audio_waveform, batch_size=batch_size
)
# romanization should be enabled when using multilingual models
# it should be changed to `False` when using models that support the
# native vocabulary of the text
tokens_starred, text_starred = preprocess_text(
text,
romanize=True,
language=langs_to_iso[language],
)
segments, blank_id = get_alignments(
emissions,
tokens_starred,
alignment_dictionary,
)
spans = get_spans(tokens_starred, segments, alignment_tokenizer.decode(blank_id))
word_timestamps = postprocess_results(text_starred, spans, stride)