Upload sac BipedalWalker-v3 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- logs/SAC_1/events.out.tfevents.1704479263.Thunder.6168.13 +3 -0
- logs/events.out.tfevents.1704479263.Thunder.6168.12 +3 -0
- replay.mp4 +0 -0
- results.json +1 -1
- sac-BipedalWalker-v3.zip +2 -2
- sac-BipedalWalker-v3/actor.optimizer.pth +2 -2
- sac-BipedalWalker-v3/critic.optimizer.pth +2 -2
- sac-BipedalWalker-v3/data +37 -42
- sac-BipedalWalker-v3/ent_coef_optimizer.pth +1 -1
- sac-BipedalWalker-v3/policy.pth +2 -2
- sac-BipedalWalker-v3/pytorch_variables.pth +1 -1
- sac-BipedalWalker-v3/system_info.txt +5 -5
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: BipedalWalker-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: BipedalWalker-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -59.13 +/- 6.27
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7964a088fc70>", "_build": "<function SACPolicy._build at 0x7964a088fd00>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7964a088fd90>", "reset_noise": "<function SACPolicy.reset_noise at 0x7964a088fe20>", "make_actor": "<function SACPolicy.make_actor at 0x7964a088feb0>", "make_critic": "<function SACPolicy.make_critic at 0x7964a088ff40>", "forward": "<function SACPolicy.forward at 0x7964a08b4040>", "_predict": "<function SACPolicy._predict at 0x7964a08b40d0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7964a08b4160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7964a08ae640>"}, "verbose": 5, "policy_kwargs": {"log_std_init": -3, "net_arch": [400, 300], "use_sde": true}, "num_timesteps": 500736, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704045945719916661, "learning_rate": 0.00073, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAMzzbT1U6KU7d0BLvURGMz5AFp4/+7O7PGu6hz/lyos8201pP2PxpL/x6S275VKmvxMNHzxrOQY/jlEAv4pRAL+SUQC/n1EAv8VRAL8rUwC/KVQAvzV7AL9OVhC/mU1UPiKzgb7z56U7TEBLvUJGMz7wrmy/+7O7PI7Pgj/lyos8201pP4a+UD/x6S27Xqejvw0NHzxrOQY//pWePwWWnj8Ylp4/MJaePx2Wnj/Akp4/+JGeP8aRnj/yDdA/mU1UPmdzor7k56U7bkBLvUdGMz4oYGe/+7O7PCXCgj/lyos8201pP+bXVT/x6S27Zu+lvw0NHzxrOQY/c/icP3z4nD+L+Jw/pvicP5H4nD869Zw/bvScPx/0nD9codE/mU1UPgi7Cz7R6KU7eUBLvSRGMz7T7Zk/AbS7PJTBgz/lyos8201pPx8uob/z6S27WDGhvwsNHzxrOQY/tgPHvq8Dx761A8e+xQPHvhcEx76TB8e+pgnHvr5Sx75wEvK+mU1UPno6Rj4FBeO+1kOTP/EwSb9tqHY+SvD1PsdZBb90xO++201pP7Z9VD/x6S279a56P2n1gEDxIPS/5CIkQOsiJED5IiRAESMkQAwjJEBXICRA1h8kQBsnJEADYg9AmU1UPpRADj2356U7T0BLvTpGMz6v5p0//LO7PGiPhz/lyos8rXOMv6dSoL/y6S27p8SjvwwNHzxrOQY/4STjvtwk477hJOO+/iTjvkAl475rKOO+eirjvgJ2477rfBi/eOC1vx7GFL51HuK7WMMUvTapVz6enmm/eLS9PO0jkz1Omgs9201pP/DLWT+WEiy79j5yPxyfGTzxIPS//IpHv/uKR78Ii0e/HYtHv0aLR7/Wi0e/uIxHv/S5R79u7GK/mU1UPtCeGz2E6KU7ekBLvUdGMz7/D54/+7O7PEfQhz/lyos8201pP1y+ob/x6S27v1Wkvw0NHzxrOQY/y8PovsrD6L7Ow+i+3cPovi3E6L5Kx+i+VMnovlQV6b4aFAu/mU1UPiGibD426KU7uT9LvThGMz7/AJ4/oLO7PHKnlb+Myos8201pP8ubtL7+7S27ZjagvwoNHzxrOQY/vxiGP8kYhj/WGIY/6RiGP9cYhj+eao4/PweOP6RMgz8gsLw/mU1UPk9W6b5+46U7kz5LvURGMz4yF54/77O7PHz6lb8zyos8201pP3jIdT076y278b6gvwwNHzxrOQY/55K5P/GSuT8Dk7k/H5O5Pw6TuT9fj7k/io65P1rvtz91pPE/mU1UPr1hzT2b6KU7hUBLvUdGMz4j+Zw/+7O7POHMgT/lyos8201pP9Vdob/x6S27rbSlvw0NHzxrOQY/IsTWvh/E1r4ixNa+NcTWvobE1r7Vx9a+3cnWvlgU177Od+C+mU1UPnFdbT2f56U7R0BLvU1GMz5wGJ4/+7O7PN7ehz/lyos8rXOMv87xpL/x6S27lQ6mvw0NHzxrOQY/TC8Bv0svAb9PLwG/Wy8Bv4YvAb/rMAG/6TEBvwRZAb/Cwhy/Gu0ZwECmrL7w6KU7kUBLvTxGMz7VIWS/+7O7POZ7gj/lyos8201pP3vvUz/x6S27XZOlvw0NHzxrOQY/mm6gP6RuoD+1bqA/zW6gP7luoD9Ya6A/i2qgP4RqoD9kZcQ/mU1UPl9MsT1p56U7REBLvUZGMz7rJJw/+7O7PArGhz/lyos8201pP69VpL/x6S277GKkvw0NHzxrOQY//q7uvgCv7r4Hr+6+Gq/uvmWv7r5xsu6+ebTuvvYA775xdJe+mU1UPhiPaj2P56U7U0BLvUlGMz7qF54/+7O7PNbehz/lyos8201pP23xpL/x6S27SFOmvw0NHzzxIPS/rM0Av63NAL+uzQC/u80Av+DNAL9LzwC/R9AAv2D3AL8R5Aq/mU1UPkg9rj2+5aU7zD9LvVtGMz4IRJs/G7S7PG6EhT/lyos8201pP5YZpL/56S27VeCNvjUNHzxrOQY/F+vCvhXrwr4c68K+I+vCvnfrwr4B78K+FPHCvtE5w74wldW+mU1UPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAACwn9z0KsZyu/4g0r0oIFbAqQ5E/EFErr94ibz8AAAAAAACAP2u8Vb/AkgAtdIgiv4lPvjAAAIA/5wJxPpa/cz5sR3w+JtSFPhECkj77saQ+T9zBPhgw8j53hCU/AACAP82v9jyTb6OwENsKMlTn8bCUAlW/AAAgp2c5aD8AAAAAAACAP58ajT8AAAAAxMwevwAAgCYAAIA/tyWrPkkXrT4UJrM+vRG+PvBdzz5B6Ok+IaoJP5n7Kz9vKGw/AACAPxCUPDystLqwK9PlMJdfwTAFLVC/AADgJ40maD8AAAAAAACAP5Vzjz8AAAAAVv0hv6uqKqYAAIA/sseqPjO4rD6pw7I+U6m9PgXszj7CZ+k+gF4JPx+dKz8hjmw/AACAP8DpEj69wbowGxHNr6AYrrKzeY0/kF0XMZiNaT+rqiqmAACAP5DOTr8AtIeu5Fsbv2v4xK8AAIA/yY93PoNfej5akYE+SneJPvL5lT7hK6k+ISHHPinF+D5TdCg/AACAP/7sIz6IlTS8Q7h4PQqOIb1f4mo+DWC8PchzNb65EvW9AACAPzXUjj8AAAAAgkN1PwEAgD8AAAAA27nRPpYb1D7xh9s+x+noPigc/j7+UA8/IbIoP/O/Uj8AAIA/AACAP6w86T1qZACxpAP9MZ9K77HXF5E/QIm7L2jmbj8AAAAAAAAAAGk6Tb8A8CuttvUev2t1gq8AAIA/L110Pp0jdz7VyX8+vLCHPgcKlD59/KY+rY7EPpCO9T52fSQ/dz15P8wIfD3dKJq54HEwOggpvzo7OFK/oBlOOCwhdT7sfIk7AACAP4BFkT8A87w2fl1vPwverLgAAAAAfdFgPhhfYz40VGs+kqx5PrcyiD41oZk+5NW0PnHq4T6kGxs/AACAP08u6z3PgwEwEwgjsAC9ejB4PZE/AABQJ5hBbz8AAAAAAACAPy7YT78AAAAAlMAfv6uqKqUAAIA/nblzPi9+dj6dHn8+6VWHPu+mkz62jKY+GwvEPjLq9D4lLiY/AACAP0oYLz4BEOivK18ZMzFbCLLOL5E/KEETs5L/Ib/MvC6zAACAP7572zwVsE+zBv0Zv9XmEbAAAIA/Y5SlPsZ1pz4dUq0+0+K3PvieyD4C4+Q+rKMGPyPBJT+iRmc/AACAP1WP67z0sHSyPLvDM5gCcrAGRJE/sG6WsUp0Ir9LjK+zAACAPyFN0D5ITISy8Lsav6seBK8AAIA/eUixPuJLsz5Fkrk+KOLEPh3N1j4DS/I+lpkOP7TGMT8BoHQ/AACAPxgkCD6DGEswq7dAsfhlgzB8P5A/AEDgKs7NZj8AAAAAAACAP2wmT78AAEioPKshvwAABqoAAIA/ZcV1PuqPeD5xoYA+wXiIPj/klD6j8qc+a7DFPoj49j5XkCk/AACAP08R9z0LhBOx314bMtGpsTEoRZE/AACAJhpWbz8AAAAAAAAAADC9Vb8AAAAA8Cgiv6uq6qcAAIA/fdBwPpmMcz6nEnw+KLiFPobjkT6Hj6Q+wbPBPm/98T6X8yM/cyd1P9hUuzstQOowKiiusRQexLHFOE2/AAAwqNDDZz8AAAAAAACAP7qSjj8AAAAAqHwhv6uqKiYAAIA/KpGrPvWDrT6NlrM+EYm+PiDgzz4be+o+jgAKP5JnLD8ROGk/AACAP6sOBD4PSD6xkZUiMq18FTAzfo8/AADAJzQzbz8AAAAAAACAP7GdVL8AAAAAANMfv6uqKqcAAIA/Xw1zPvzPdT5Ran4+RPaGPpY+kz4CF6Y+j4DDPh099D5NKi4/AACAP9qo9j1D2h+xRJroMbHoLzGuRJE/AADgpw5Wbz8AAAAAAACAP368Vb8AAAAA/ogivwAAACcAAAAAr+ZwPgujcz7jKXw+e8SFPvnwkT6ynqQ+nMXBPrwT8j4zNCY/AACAP8ycAz5ZcAOy42YKM6afajJgsY4/DGhNMlAHbD+rqiqnAACAPwYvVL8AN8avgGOjPQN1IDIAAIA//QZ4PhHYej69z4E+e7mJPilClj5Wfak+A4HHPvI8+T71Pyo/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_episode_num": 643, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEFzxYJVsDaMAWyUTUAGjAF0lEdAmB/i8nNPg3V9lChoBkfAUKq2b5M10mgHTUAGaAhHQJhAmWD6Fdt1fZQoaAZHwEoCfDk2gnNoB01ABmgIR0CYZIoNd7fIdX2UKGgGR8BI/Hk92X9jaAdNQAZoCEdAmGZzRQaaTnV9lChoBkfAQzkCcPOIImgHTUAGaAhHQJh2E7A+IM11fZQoaAZHwEYxGEwnH/9oB01ABmgIR0CYdlGlhw2mdX2UKGgGR8BPedonKGL2aAdNQAZoCEdAmJ7JlSS/03V9lChoBkfAUGt8VpKzzGgHTUAGaAhHQJiuwyzolld1fZQoaAZHwEf0BXjlxOtoB01ABmgIR0CYw2g9Net0dX2UKGgGR8BH6LMcIZ62aAdNQAZoCEdAmPfyu2Zy/HV9lChoBkfARprB/I8yOGgHTUAGaAhHQJkMZomG/N91fZQoaAZHwEkkjUNKAaxoB01ABmgIR0CZG8abWmP6dX2UKGgGR8BPwrYXfqHHaAdNQAZoCEdAmRzkDlo11nV9lChoBkfASSrtG/etS2gHTUAGaAhHQJlDlmyxA0N1fZQoaAZHwEX3bM5fdARoB01ABmgIR0CZZTlnyup0dX2UKGgGR8BKlSrYGt6paAdNQAZoCEdAmZmje0ojOnV9lChoBkfARszkIX0oSmgHTUAGaAhHQJni/3dsSCh1fZQoaAZHwEHvvbXYlIFoB01ABmgIR0CaBbLl3hXKdX2UKGgGR8BGOjHOryUcaAdNQAZoCEdAmiiMzuWrwXV9lChoBkfAQc1YQrc0tWgHTUAGaAhHQJoqM2kzoEB1fZQoaAZHwEb8ep4rz5JoB01ABmgIR0CaOiIHC4z8dX2UKGgGR8BNI/QSi/O/aAdNQAZoCEdAmjp9fkWAPXV9lChoBkfARgyuMdcSoWgHTUAGaAhHQJph9aA4GUx1fZQoaAZHwElAf7rLQoloB01ABmgIR0Cacfjwx33YdX2UKGgGR8BIx9lNDc/MaAdNQAZoCEdAmoUXZK3/gnV9lChoBkfARzHX5FgDzWgHTUAGaAhHQJq6/CYTkAB1fZQoaAZHwEX7TVDrqt5oB01ABmgIR0Caz1dPtUn5dX2UKGgGR8BIvRAjY7JXaAdNQAZoCEdAmt802Hck+3V9lChoBkfATJA0sOG0u2gHTUAGaAhHQJrgL6UJOWV1fZQoaAZHwE0AgctGus9oB01ABmgIR0CbBYEzfrKOdX2UKGgGR8BDyDPOY6XCaAdNQAZoCEdAmyit6gM+eXV9lChoBkfAQ53tBv73wmgHTUAGaAhHQJte71AZ88d1fZQoaAZHwECrkNnXd0toB01ABmgIR0Cbp+rELpiadX2UKGgGR8BN5BX8wYceaAdNQAZoCEdAm8zZJsfq5nV9lChoBkfAUYFK3/givGgHTUAGaAhHQJvzBLytmth1fZQoaAZHwEV65YHPeHloB01ABmgIR0Cb9LbSqlxfdX2UKGgGR8BG3ZqVQhwEaAdNQAZoCEdAnALSeyzHCHV9lChoBkfARQF0xM36ymgHTUAGaAhHQJwDEtZmqYJ1fZQoaAZHwER/zDn/1g9oB01ABmgIR0CcK2t4zJp4dX2UKGgGR8BCQrQw9JSSaAdNQAZoCEdAnDoqz7di2HV9lChoBkfAQ7DjNpudgGgHTUAGaAhHQJxNDuw5eZ51fZQoaAZHwEOzxTbWVeNoB01ABmgIR0CcgDOLzf78dX2UKGgGR8BCTTXjENvwaAdNQAZoCEdAnJWpSWJJoXV9lChoBkfAQtA/gR9PUWgHTUAGaAhHQJykQjJMg2Z1fZQoaAZHwEG1UBnzxw1oB01ABmgIR0CcpT4YJmdzdX2UKGgGR8A+BJT2nKnvaAdNQAZoCEdAnMocRUWEb3V9lChoBkfATw7+kxh2GWgHTUAGaAhHQJzp7ufEn9h1fZQoaAZHwEKQaBqbjLloB01ABmgIR0CdIDs90RvndX2UKGgGR8A/kh4+r2g4aAdNQAZoCEdAnWOQVbiZOXV9lChoBkfAPsw3tKIznGgHTUAGaAhHQJ2IlyYG+sZ1fZQoaAZHwD3FOuaF23doB01ABmgIR0Cdq8r8R+SbdX2UKGgGR8BSU0HdGiHqaAdNQAZoCEdAna1r0Bfa6HV9lChoBkfARSCVW0Z3tGgHTUAGaAhHQJ29DCXQdCF1fZQoaAZHwDhSXUpd8iRoB01ABmgIR0CdvVhbGFSLdX2UKGgGR8BYTtH+ZPVNaAdLYWgIR0Cdvm779AHFdX2UKGgGR8BAEim2sq8UaAdNQAZoCEdAneO+8PFvRHV9lChoBkfAPaEqhDgIhWgHTUAGaAhHQJ3ybgwXZXd1fZQoaAZHwD/q2x6fJ3hoB01ABmgIR0CeAT3N9ph4dX2UKGgGR8BA4TsyBTXKaAdNQAZoCEdAnjaX/1g6VHV9lChoBkfAQZoAdXDFZWgHTUAGaAhHQJ5KF01ZTyd1fZQoaAZHwE/s3S8an75oB01ABmgIR0CeW75d4VyndX2UKGgGR8BAG+7cwg1WaAdNQAZoCEdAnlzW4d6syXV9lChoBkfAQOXfl6qsEWgHTUAGaAhHQJ59vps41gp1fZQoaAZHwEL4Az544ZNoB01ABmgIR0Ceom2OAAhjdX2UKGgGR8BCzVqesgdPaAdNQAZoCEdAntk/BvaURnV9lChoBkfASKI3WFvhqGgHTUAGaAhHQJ8bdQl8gIR1fZQoaAZHwFUN6hQFcIJoB01ABmgIR0CfQCnF5v9+dX2UKGgGR8BCfmoJiRW+aAdNQAZoCEdAn2C034sVcnV9lChoBkfAN5DuF6AvtmgHTUAGaAhHQJ91CY/mknF1fZQoaAZHwEKVq6e5Fw1oB01ABmgIR0CfdU08vEjxdX2UKGgGR8BByN0FKTStaAdNQAZoCEdAn3ZzIV/MGHV9lChoBkfAN+x0uDjBEmgHTUAGaAhHQJ+WgrYoRZl1fZQoaAZHwDsL1rZamoBoB01ABmgIR0Cfq4xsEaESdX2UKGgGR8A9IbYbsF+vaAdNQAZoCEdAn7qhr8BMjHV9lChoBkfARmF3hXKbKGgHTUAGaAhHQJ/wg8/2TPl1fZQoaAZHwEzVeLvTgEVoB01ABmgIR0CgAlWdmQKbdX2UKGgGR8BAkYDDCP6saAdNQAZoCEdAoAtEIC2c8XV9lChoBkfAP/kliSaEz2gHTUAGaAhHQKAMHxiG34N1fZQoaAZHwEAdZaFEiMZoB01ABmgIR0CgHPI6jnFHdX2UKGgGR8BB8QLeANG3aAdNQAZoCEdAoC8Ao3JgcHV9lChoBkfAVJ7yWiUPhGgHTUAGaAhHQKBKTGWldkd1fZQoaAZHwFZqdwvQF9toB01ABmgIR0CgbHcDB/I9dX2UKGgGR8BE6RXGOuJUaAdNQAZoCEdAoH4RGe+VT3V9lChoBkfARvCg00m+kGgHTUAGaAhHQKCPVt1IRRN1fZQoaAZHwEExFPznRsxoB01ABmgIR0Cgmh6Lfk3kdX2UKGgGR8BG5VC5VfeDaAdNQAZoCEdAoJpZiTdLx3V9lChoBkfAQVhDVpblimgHTUAGaAhHQKCbOmYSg5B1fZQoaAZHwF4MjLjghr5oB007AmgIR0Cgm6kV32VWdX2UKGgGR8Bic8HjZL7GaAdNHARoCEdAoKV72i+L33V9lChoBkfAXdVmDlHSW2gHS05oCEdAoK5qrxRVInV9lChoBkfARIXHo5ggHWgHTUAGaAhHQKCupigCfYl1fZQoaAZHwEFBYukDZDloB01ABmgIR0Cgt6bpu/DcdX2UKGgGR8BdLN5D7ZWaaAdLPGgIR0Cgt6tayKNydX2UKGgGR8Blwu9SMtK7aAdNXAVoCEdAoLhVj/dZaHV9lChoBkfAW1ktkFwDNmgHTYYBaAhHQKC4aOwPiDN1fZQoaAZHwDPTAeq7yx1oB01ABmgIR0CgwWGy5Zr6dX2UKGgGR8A74jPOY6XCaAdNQAZoCEdAoOhb6YVqOHV9lChoBkfAUQMRBeHBUWgHTUAGaAhHQKDwawHqu8t1fZQoaAZHwGj17YChew9oB018BWgIR0Cg+vTnq3VkdX2UKGgGR8A0eakAPuohaAdNQAZoCEdAoQQ2dXko4XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30720, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVSQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQHdg1v4HdDctYSRADeIkFU4wDaW5jlIoQMw7CWAStVoBimj/659hGA3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 300000, "batch_size": 256, "learning_starts": 10000, "tau": 0.02, "gamma": 0.98, "gradient_steps": 64, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7964a09a3d00>", "add": "<function ReplayBuffer.add at 0x7964a09a3d90>", "sample": "<function ReplayBuffer.sample at 0x7964a09a3e20>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7964a09a3eb0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7964a09a3f40>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7964a09b3280>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLQGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x0000028A8DCBD900>", "_build": "<function SACPolicy._build at 0x0000028A8DCBD990>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x0000028A8DCBDA20>", "reset_noise": "<function SACPolicy.reset_noise at 0x0000028A8DCBDAB0>", "make_actor": "<function SACPolicy.make_actor at 0x0000028A8DCBDB40>", "make_critic": "<function SACPolicy.make_critic at 0x0000028A8DCBDBD0>", "forward": "<function SACPolicy.forward at 0x0000028A8DCBDC60>", "_predict": "<function SACPolicy._predict at 0x0000028A8DCBDCF0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x0000028A8DCBDD80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000028A8DCC1200>"}, "verbose": 5, "policy_kwargs": {"use_sde": false}, "num_timesteps": 500000, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704479263185889100, "learning_rate": 0.0003, "tensorboard_log": "runs/BipedalWalker-v3__sac-BipedalWalker-v3__1__1704479249", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAE7Ntz4vP2W7pbbFPJHaB7vC548/AMCjtmjlUj+Ab3C/AAAAAAe8Vb8AACY18MUcv6sqzDgAAIA/OOeDPrqIhT4fVYs++nmVPkChpz5kt8A+t6LmPs0iGj8hrVU/AACAP1ukzD4dWVO8PnxkPZZ0ELxvD40/AHhVOJKJHD+p/3+/AAAAACDpU78AAPS1djATv7VqtLwAAIA/NnOJPoqjjD6rhZE+COSZPo9Ipj6wqrk+5ojaPv2+Cj/5BkI/AACAPzzIxD6dkkK8rRVtPeR3+LtIT5E/QC7NutZXbz8AAAAAAAAAANjBVb8AIFM4sMwdvwA97joAAAAAxqSJPipkjT6YS5M+vkOcPp57qj7FyMA+6+DlPoFvET/Cd0I/AACAPzGazD6NkYE9S/4zPekhJj31mZA/AACAs+BSIz0AAIC/AAAAABG4Vb8AAAAACKkcv6uqqjIAAAAABIqHPhEUiT404I0+NoaWPho5pD7SPbk+PdvZPn4yBD9QtzM/AACAPzL+zz43vSm8KpVaPYSwqrsOeY8/gJ3+ugxWbz8AAAAAAAAAAHqoVb8ApIM4DHUhv7VFJDsAAIA/M2qHPuPziD7nvo0+4WKWPj62oz4OULg+UiTbPojXDT/OeEg/AACAP8F/0D6Tn5u7p+edPHLiqLvIupA/wHYduupuXT8b/H8/AAAAAH/rUr8AWMk3ogchv/2lqjsAAAAAfCCIPj6siT61fY4+US2XPhfKpT4m9r0+D6LnPusLHD9qHF8/AACAP48riz74wBO94sfmPd8CqLznI44/rhg3vn5kJD/sqI0/AACAPxPAVb8AAIi1iqUTv/367z4AAIA/JbSBPmjZgj4rl4c+fAuQPgZFnD7L664+HknLPic4+T5o8ik/AACAPzFE6D4EEQS8E24LPWmdhrvlR5A/AIg0OPwiNz8hAIA/AAAAAJXAVL8AAPO1oJghv1UF6bkAAAAA9/mIPsP/ij6OX5A+swuZPt7/pj5DRb4+P1bfPowYCT9PnTs/AACAP7RQbD59/B29kZvfPfrMlry+aIk/qkqIvrelJz8PIKQ/AACAP8FVVL8AAIAzAGPZvgAeZz8AAIA/4mN+PuWCgT4Hy4c+kemRPlIeoT5nV7Y+tljaPm70ET8T9Fc/AACAP6OmiT5xHoc8lauIPdD3hjyrRJE/IJ4AO2ovAj8o/WG+AACAP3OLU78AcFa4hBobvwC467gAAAAAsE2CPj+rgz7Kyoc+UIKPPpKQnD6cILA+HvPNPmARAT+1Ayo/AACAP+mUdD6vucS8rLQGPpqnZbxYH44/AADQtHHDLz8/0HO/AAAAADHTTr9Actk7WmMUv1S1uD4AAIA/PZmCPujFhD7OOIo+/JyTPki+oj5Mxrk+SifcPkxbCT/zYD4/AACAP/p5wj5fqye87d4rPQQ8CbwmEY0/AFzSuVqKMz9LAYC/AAAAAHAXVb8AoHs3Dmwhv2vAJDsAAAAAnO2GPqdQiT7yMI8+acOZPvFuqT7oA8A+wnzfPuiRCj/BIjQ/AACAPx+RsT4KDsu8LsvQPZNApbz19o0/AAB7N1SJTD8MAIA/AAAAAFm/Vb8AACC1tJMivwCQBrkAAIA/A7CGPqpbiT6NLJA+3Y2bPvsbqz4q3cI+bcDnPup0ET+2TFU/AACAPznfhT7qrN47rj+WPcFHCD24RJE/8BULO/7B/z51bCm+AACAP6+8Vb8AnGy4+HjpvrD1fz8AAIA/BjCCPoSqgz4qRog+wZSQPi29nT5z7bE+p2/RPrjSAj+8ozM/AACAP7KcsT60BTy8Ozc/PfF9JrwGaY8/AB2wuYbkLT8ZAYC/AAAAAFG7Vb8AYE83lFEiv6t0/zoAAAAAFTaHPi2/iD5YiI0+6JuZPsD0qz4zEsc+evrqPo24ET8KDkE/AACAP4qy4T6pbZy7t56iPM9mQDuqRJE/cOK0Oj5CaD+EBIA/AAAAAJG8Vb8A1Gu4LIYhv9U/qTsAAIA/3o+IPrENij7MzI4+LoiWPlWBoj7zb7M+OHzNPlRa+z4Gfy4/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAI6yuD6RGQK8ulEMPT8EZrtSApA/4HuNOgxWbz8AAAAAAAAAAHu8Vb8A5C+4psYcv1spBbwAAIA/BfSDPrCVhT7fXIs+SoKVPgChpz7HycA+0KfmPo8pGj/ix1U/AACAP7Dizz5ydWa8b6pcPYkVCLwhUY0/AGB3t4bwOT/JvC+/AAAAADjXU78AgBA2uJQSvym2hz0AAIA/C5qJPkbLjD5wxZE+eCeaPpOZpj5U/rk+69DaPhr4Cj+QTEI/AACAP/qZxT5KYoW8mCaKPUT1VLwcHJE/AGCPufxQfz8//n8/AAAAAHW8Vb8AwEM3+m4dv9XaRjsAAAAAuaeJPjJnjT5yZ5M+SmGcPsObqj5P5MA+O/nlPgyJET+ooUI/AACAPyRhvD6I34I9AjQwPTJabD2AwZA/wIZTvGTOHz4LlYC/AACAP86pVb8AcKM5kAcdv1U/aTsAAAAAX4SGPnMLiD5Uzow+pGOVPhX8oj472Lc+rmbYPglKAz9yTTI/AACAP1Sw0j7yUHe8uFiBPSr2HLzf6o0/AOhcOCB2eT8rAIA/AAAAAIG8Vb8AgBS2/nohvwDZD7oAAIA/0ZKHPvcciT5r6Y0+/I+WPirroz6Qgbg+x1TbPm/zDT9zsUg/AACAPwKz0T4hfia7ip5fPLxT1rok15A/ADgKt1JsPj/w/38/AAAAAOPfUr8AAI00BBQhv1VFJjcAAAAABEGIPiXNiT7Dn44+clGXPkrtpT7IG74+gM3nPlgqHD+ESV8/AACAP2dXlD5UTNy8ZEHbPY/IAL1wdpA/ANRUuv0UCT9PAoC/AAAAACOXVb8AMCE4tHYiv/V2SDwAAIA/5kKCPh5hgz45IIg+Fp2QPr/0nD7ds68+xjzMPtNF+j4ypyo/AACAP9RD6j6KhNO7oNHePHepfLvMZZA/ABq6uIDEFz+U/38/AAAAAHiwVL8AQIM2bKYhv5VZijoAAAAArxOJPkUXiz74d5A+GSqZPqAZpz6cYr4+N4PfPkUyCT+9wzs/AACAP3Dmfz62Fg29O9vhPSXSYLyno4w/1CfLvYkkID8BAIC/AAAAANLgU78AAIAyzPwIv59FQT8AAIA/2ld/PoXbgT70J4g+T1iSPpqYoT4aALc+zfHaPhtMEj9UoVg/AACAPyaThD46+Mm8s3nKPXgz1rwoKZM/+/9cP8b1/D6//X+/AACAP8M0U78AAFA0mEcbv6uY1joAAAAAENSBPpw1gz54UYc+GQKPPvD7mz7Ghq8+VivNPtCQAD/RiCk/AACAP0RdgD57MF692lYBPleWkLz/Vo4/AHWIOnrOSz9fA4A/AAAAAFHRTr90wzY+rrAfv6u+C7wAAIA/FOOCPvsQhT5mhYo+yO6TPoQNoz49Mbo+esHcPpG3CT/u8z4/AACAP0cGxT7U9nG7F5YqPZcKMbsbSo0/AMDUth4aUT8CAIC/AAAAAHMGVb8AAFY0OnQhv6vKBjcAAAAAExyHPvB/iT6SXY8+VPOZPrqrqT7+U8A+XdPfPnXLCj91cTQ/AACAP+Xutz7pOLu8WS3BPfzokbyoFo4/AADvN6BLLT8VAIA/AAAAADfAVb8AAKC1qJciv1W5lbkAAIA/8BeHPqfFiT4di5A+4/ObPnamqz7UesM+WYPoPhXqET+a/FU/AACAPx15gz5xoOO8YGDOPbiTWrw4iJM/58tYP8b19T4NAIC/AACAP3G8Vb8AALg0EEITvxBPDz8AAIA/SUuBPi7Dgj67Voc+upaPPgionD7VtLA+rf/PPt3sAT8caDI/AACAP0Z6tD4Osoa78Wo/PbBKj7uepI8/ABjut7xjSz8WAIC/AAAAAOuqVb8AAHU1BFsiv6sSGDgAAAAAQ3eHPhkBiT6SzI0+hMuZPl0urD5faMc+cWjrPg36ET8jbEE/AACAP6XR4j79WBy8Kz7kPIwAFrzqh5E/8cr+PlpMSD89/H8/AAAAAEq8Vb8AgLs2Ojciv83lVTwAAIA/fn2IPnT7iT7vuY4+anmWPmVxoj57Y7M+z2zNPo05+z6rZS4/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_episode_num": 448, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEJmlwcYIjaMAWyUTUAGjAF0lEdAgn98ABDG+HV9lChoBkfAM4qVlf7aZmgHTUAGaAhHQIKKkX7+DOF1fZQoaAZHwDHrAAQxvehoB01ABmgIR0CCkhWIXTEzdX2UKGgGR8BHG7CiyprDaAdNQAZoCEdAgqD07bL2YnV9lChoBkfAOaIJzDGcWmgHTUAGaAhHQILi6g00m+l1fZQoaAZHwCwftjTa0yBoB01ABmgIR0CC4xZV4oqkdX2UKGgGR8BSULUgB91EaAdNQAZoCEdAgvN4Wk8A73V9lChoBkfASu2SMcZLqWgHTUAGaAhHQIMKggmqo611fZQoaAZHwEljI3BHkLhoB01ABmgIR0CDHTYnOSntdX2UKGgGR8BV8jR6Ww/xaAdNQAZoCEdAgzjqT8pCr3V9lChoBkfARr3Heaa1C2gHTUAGaAhHQINAC/XXiBJ1fZQoaAZHwF+jv5P/JeVoB0v+aAhHQINzsknkT6B1fZQoaAZHwFz+h3qzJIVoB0tJaAhHQIOCv4sVclh1fZQoaAZHwEY5ysCDEm9oB01ABmgIR0CDkpZPEbYLdX2UKGgGR8A9lv60pmVaaAdNQAZoCEdAg5Qz1CgK4XV9lChoBkfAUz727FsHjmgHTUAGaAhHQIO2QJ9iMHd1fZQoaAZHwFVHkSElE7ZoB01ABmgIR0CDt01hLGrCdX2UKGgGR8A6ux/NJOFhaAdNQAZoCEdAg7wPqC6H03V9lChoBkfAVp88PnSv1WgHTUAGaAhHQIPGZgG8mKJ1fZQoaAZHwFjLwkxASnNoB01ABmgIR0CD0d4Pf8/EdX2UKGgGR8BQ3kBfa6BiaAdNQAZoCEdAg9l0gjhUBHV9lChoBkfAQ6I482aUimgHTUAGaAhHQIPn6Oo5xR51fZQoaAZHwGFAEM1CPZJoB01LAWgIR0CEHQ/Zdv87dX2UKGgGR8BDO9I5HVgAaAdNQAZoCEdAhCkLnkkrw3V9lChoBkfAQx0JIDoyK2gHTUAGaAhHQIQpXbuc+aB1fZQoaAZHwEZ3hgmZ3LVoB01ABmgIR0CEOdgSeyzHdX2UKGgGR8BCTQN9YwIuaAdNQAZoCEdAhFApqh11XHV9lChoBkfAR0I2wV0tAmgHTUAGaAhHQIRiuE9Mbm51fZQoaAZHwEO4FwkxASpoB01ABmgIR0CEfqmoBJZodX2UKGgGR8BOcwdsBQvYaAdNQAZoCEdAhMjkJSiudXV9lChoBkfAScJH7P6bfGgHTUAGaAhHQITZNH2AXl91fZQoaAZHwEqXMTN+so5oB01ABmgIR0CE2uD+zdDZdX2UKGgGR8BJY5j6N2kjaAdNQAZoCEdAhP3mGEf1YnV9lChoBkfASdGjwhGH6GgHTUAGaAhHQIT+39tMwlB1fZQoaAZHwE0huZTho/RoB01ABmgIR0CFA6K+BYmtdX2UKGgGR8BOeiDujRD1aAdNQAZoCEdAhQ254W1twnV9lChoBkfATSgEU0vXb2gHTUAGaAhHQIUZUmF8G9p1fZQoaAZHwE7986V+qipoB01ABmgIR0CFLy2nbZezdX2UKGgGR8BOtxiobXHzaAdNQAZoCEdAhWQwtjCpFXV9lChoBkfAThoB/7SApmgHTUAGaAhHQIVxIT0xubZ1fZQoaAZHwFAmSXMQmNRoB01ABmgIR0CFcVboKUmldX2UKGgGR8BQOPKMefZmaAdNQAZoCEdAhYJVs+FDfHV9lChoBkfAUJtylvZRK2gHTUAGaAhHQIWaPjp9qlB1fZQoaAZHwFGgJu2qkuZoB01ABmgIR0CFrb2LYPGydX2UKGgGR8BQ+cTnJT2naAdNQAZoCEdAhcxpz1bqyHV9lChoBkfAUlAPsiSq2mgHTUAGaAhHQIYdAqoZQ551fZQoaAZHwFFhFDv3JxNoB01ABmgIR0CGLyIvalDXdX2UKGgGR8BPRtZmqYJFaAdNQAZoCEdAhjDrwOOKfnV9lChoBkfAUkD2AXl8xGgHTUAGaAhHQIZWZ+YtxuN1fZQoaAZHwFDXqREF4cFoB01ABmgIR0CGV3NSqEOBdX2UKGgGR8BSA7wWnCO4aAdNQAZoCEdAhlzGb1AZ9HV9lChoBkfAUeY8ifQKKGgHTUAGaAhHQIZoVFDv3Jx1fZQoaAZHwFInvStvGZNoB01ABmgIR0CGdbVxS5y3dX2UKGgGR8BShhzaK1ohaAdNQAZoCEdAho0SJCSid3V9lChoBkfAUiAmNR3u/mgHTUAGaAhHQIbChzxPO6d1fZQoaAZHwFD96/Zdv89oB01ABmgIR0CGz075mAbydX2UKGgGR8BQ+B5TqB3BaAdNQAZoCEdAhs+Unw5NoXV9lChoBkfAT+xKxs2vS2gHTUAGaAhHQIbggd+5OJt1fZQoaAZHwGGPBYvFm4BoB0ucaAhHQIbvVwWFev91fZQoaAZHwFFdg5BC2MNoB01ABmgIR0CG9q8Hv+fidX2UKGgGR8BSBqmTC+DfaAdNQAZoCEdAhwkf+bVjJHV9lChoBkfAV+mWgOBlMGgHS+JoCEdAhySeWv8qF3V9lChoBkfAUMCADq4YrWgHTUAGaAhHQIclNr/Khct1fZQoaAZHwF9lAjY7JXBoB0uGaAhHQIdABUvPC2t1fZQoaAZHwGJl5nL7oB9oB00fAWgIR0CHQ6YGdI5HdX2UKGgGR8BO5ClBQemvaAdNQAZoCEdAh2+DOLR8dHV9lChoBkfAT1JnWattAWgHTUAGaAhHQId/7AzpHI91fZQoaAZHwEuTInSfDk5oB01ABmgIR0CHgXeN1hb4dX2UKGgGR8BacpVfeDWcaAdLdWgIR0CHh91r6+FldX2UKGgGR8BgK6kTHsC1aAdLUGgIR0CHmDV+Zw4sdX2UKGgGR8BO6tw71ZkkaAdNQAZoCEdAh6O4d6sySHV9lChoBkfATwPb212JSGgHTUAGaAhHQIeks1fmcON1fZQoaAZHwErxO+IuXeFoB01ABmgIR0CHqcZPVNHpdX2UKGgGR8BKIgntv4ucaAdNQAZoCEdAh7PP4dp7C3V9lChoBkfAR/dGsmv4d2gHTUAGaAhHQIe/CgkC3gF1fZQoaAZHwEuqj/uLJjloB01ABmgIR0CH1RwmVqvedX2UKGgGR8BhmYfp2U0OaAdNDQFoCEdAh+rsdcSoO3V9lChoBkfATPQcxTKkmGgHTUAGaAhHQIgJmx2St/51fZQoaAZHwEkQg8KXv6VoB01ABmgIR0CIFkqG1x82dX2UKGgGR8BNeBZ6lchUaAdNQAZoCEdAiCdBqbjLjnV9lChoBkfASVC9Gqgh82gHTUAGaAhHQIg2cxmCiAV1fZQoaAZHwF+HxrzoUztoB0t8aAhHQIhPAHcDbJx1fZQoaAZHQBcnSF49ovloB01ABmgIR0CIa1pA2Q4kdX2UKGgGR8BD7WKVII4VaAdNQAZoCEdAiIcPeYUnHHV9lChoBkfARKkfcN6PbWgHTUAGaAhHQIiKZfYzzmR1fZQoaAZHwEJsIMz/IbRoB01ABmgIR0CIxSKE384xdX2UKGgGR8BHDPxhDw6RaAdNQAZoCEdAiMa6Ogg5inV9lChoBkfAXsM2GZeAu2gHS3RoCEdAiNz3wTdtVXV9lChoBkfAQpypm29cr2gHTUAGaAhHQIjdreO4oZ11fZQoaAZHwFEspNsWO6xoB01ABmgIR0CI6RqX4TK1dX2UKGgGR8BEHjM/yGzsaAdNQAZoCEdAiOoal+EytXV9lChoBkfATin7FbVz62gHTUAGaAhHQIjvEOAiFCd1fZQoaAZHwFwZCJ40Mw1oB0s6aAhHQIj07T6SDAd1fZQoaAZHwFMUQBPsRg9oB01ABmgIR0CJBEEB8x9HdX2UKGgGR8BGevWH1vl2aAdNQAZoCEdAiRkz5wfhdnV9lChoBkfAUgyZof0VamgHTUAGaAhHQIkuqYE4ecR1fZQoaAZHwFLEn5SFXaJoB01ABmgIR0CJTmDOC5EudX2UKGgGR8BRczC+De0paAdNQAZoCEdAiVsUo8ZDRnV9lChoBkfATwYq0+kgwGgHTUAGaAhHQIlsG7Wd3B51fZQoaAZHwE6VO7g88tBoB01ABmgIR0CJlDdyDIzWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31244, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVagIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQIpJmzQ/ce2PdA/uVxS4la4wDaW5jlIoQHaE7yCpzGC82Rs7C12PLJHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x0000028A8D9DC5E0>", "add": "<function ReplayBuffer.add at 0x0000028A8D9DC670>", "sample": "<function ReplayBuffer.sample at 0x0000028A8D9DC700>", "_get_samples": "<function ReplayBuffer._get_samples at 0x0000028A8D9DC790>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x0000028A8D9DC820>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000028A8D9D2100>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVaAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMU2M6XFVzZXJzXHByaWNvXC5jb25kYVxlbnZzXEFUTk5cbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0", "GPU Enabled": "False", "Numpy": "1.26.0", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.21.0"}}
|
logs/SAC_1/events.out.tfevents.1704479263.Thunder.6168.13
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5092fd8360785efcc91ee907acc606f6563734e02a5ff3d3de88bfd786d09ca
|
3 |
+
size 50283
|
logs/events.out.tfevents.1704479263.Thunder.6168.12
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14da41df77a25238f5913382ed6ded25a8e2f8f876fc6ce947435b9d1d57bdea
|
3 |
+
size 440
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -59.13289440000001, "std_reward": 6.265562781116287, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-05T20:41:31.183202"}
|
sac-BipedalWalker-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5da50a87666d1b8845155ca7e449ca18bf6d9b5dfa34a2925d5dcf5f5168e0e9
|
3 |
+
size 3294622
|
sac-BipedalWalker-v3/actor.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dc0742442946a2185fa1840d890dbb3f36aaca502b434101c84829da79cd456
|
3 |
+
size 600654
|
sac-BipedalWalker-v3/critic.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4f9f1ee3c20c5cdb99756e8b8b06c96d6929bcd17677a9dba078335b0d020f4
|
3 |
+
size 1185194
|
sac-BipedalWalker-v3/data
CHANGED
@@ -5,38 +5,33 @@
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
-
"__init__": "<function SACPolicy.__init__ at
|
9 |
-
"_build": "<function SACPolicy._build at
|
10 |
-
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at
|
11 |
-
"reset_noise": "<function SACPolicy.reset_noise at
|
12 |
-
"make_actor": "<function SACPolicy.make_actor at
|
13 |
-
"make_critic": "<function SACPolicy.make_critic at
|
14 |
-
"forward": "<function SACPolicy.forward at
|
15 |
-
"_predict": "<function SACPolicy._predict at
|
16 |
-
"set_training_mode": "<function SACPolicy.set_training_mode at
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
-
"_abc_impl": "<_abc._abc_data object at
|
19 |
},
|
20 |
"verbose": 5,
|
21 |
"policy_kwargs": {
|
22 |
-
"
|
23 |
-
"net_arch": [
|
24 |
-
400,
|
25 |
-
300
|
26 |
-
],
|
27 |
-
"use_sde": true
|
28 |
},
|
29 |
-
"num_timesteps":
|
30 |
"_total_timesteps": 500000.0,
|
31 |
"_num_timesteps_at_start": 0,
|
32 |
"seed": null,
|
33 |
"action_noise": null,
|
34 |
-
"start_time":
|
35 |
-
"learning_rate": 0.
|
36 |
-
"tensorboard_log":
|
37 |
"_last_obs": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
39 |
-
":serialized:": "
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,25 +39,25 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'numpy.ndarray'>",
|
47 |
-
":serialized:": "
|
48 |
},
|
49 |
-
"_episode_num":
|
50 |
-
"use_sde":
|
51 |
"sde_sample_freq": -1,
|
52 |
-
"_current_progress_remaining":
|
53 |
"_stats_window_size": 100,
|
54 |
"ep_info_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
-
":serialized:": "
|
57 |
},
|
58 |
"ep_success_buffer": {
|
59 |
":type:": "<class 'collections.deque'>",
|
60 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
61 |
},
|
62 |
-
"_n_updates":
|
63 |
"observation_space": {
|
64 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
65 |
-
":serialized:": "
|
66 |
"dtype": "float32",
|
67 |
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
68 |
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
@@ -77,7 +72,7 @@
|
|
77 |
},
|
78 |
"action_space": {
|
79 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
80 |
-
":serialized:": "
|
81 |
"dtype": "float32",
|
82 |
"bounded_below": "[ True True True True]",
|
83 |
"bounded_above": "[ True True True True]",
|
@@ -91,12 +86,12 @@
|
|
91 |
"_np_random": "Generator(PCG64)"
|
92 |
},
|
93 |
"n_envs": 16,
|
94 |
-
"buffer_size":
|
95 |
"batch_size": 256,
|
96 |
-
"learning_starts":
|
97 |
-
"tau": 0.
|
98 |
-
"gamma": 0.
|
99 |
-
"gradient_steps":
|
100 |
"optimize_memory_usage": false,
|
101 |
"replay_buffer_class": {
|
102 |
":type:": "<class 'abc.ABCMeta'>",
|
@@ -104,18 +99,18 @@
|
|
104 |
"__module__": "stable_baselines3.common.buffers",
|
105 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
106 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
107 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
108 |
-
"add": "<function ReplayBuffer.add at
|
109 |
-
"sample": "<function ReplayBuffer.sample at
|
110 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
111 |
-
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at
|
112 |
"__abstractmethods__": "frozenset()",
|
113 |
-
"_abc_impl": "<_abc._abc_data object at
|
114 |
},
|
115 |
"replay_buffer_kwargs": {},
|
116 |
"train_freq": {
|
117 |
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
118 |
-
":serialized:": "
|
119 |
},
|
120 |
"use_sde_at_warmup": false,
|
121 |
"target_entropy": -4.0,
|
@@ -123,7 +118,7 @@
|
|
123 |
"target_update_interval": 1,
|
124 |
"lr_schedule": {
|
125 |
":type:": "<class 'function'>",
|
126 |
-
":serialized:": "
|
127 |
},
|
128 |
"batch_norm_stats": [],
|
129 |
"batch_norm_stats_target": []
|
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x0000028A8DCBD900>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x0000028A8DCBD990>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x0000028A8DCBDA20>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x0000028A8DCBDAB0>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x0000028A8DCBDB40>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x0000028A8DCBDBD0>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x0000028A8DCBDC60>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x0000028A8DCBDCF0>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x0000028A8DCBDD80>",
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000028A8DCC1200>"
|
19 |
},
|
20 |
"verbose": 5,
|
21 |
"policy_kwargs": {
|
22 |
+
"use_sde": false
|
|
|
|
|
|
|
|
|
|
|
23 |
},
|
24 |
+
"num_timesteps": 500000,
|
25 |
"_total_timesteps": 500000.0,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1704479263185889100,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": "runs/BipedalWalker-v3__sac-BipedalWalker-v3__1__1704479249",
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAE7Ntz4vP2W7pbbFPJHaB7vC548/AMCjtmjlUj+Ab3C/AAAAAAe8Vb8AACY18MUcv6sqzDgAAIA/OOeDPrqIhT4fVYs++nmVPkChpz5kt8A+t6LmPs0iGj8hrVU/AACAP1ukzD4dWVO8PnxkPZZ0ELxvD40/AHhVOJKJHD+p/3+/AAAAACDpU78AAPS1djATv7VqtLwAAIA/NnOJPoqjjD6rhZE+COSZPo9Ipj6wqrk+5ojaPv2+Cj/5BkI/AACAPzzIxD6dkkK8rRVtPeR3+LtIT5E/QC7NutZXbz8AAAAAAAAAANjBVb8AIFM4sMwdvwA97joAAAAAxqSJPipkjT6YS5M+vkOcPp57qj7FyMA+6+DlPoFvET/Cd0I/AACAPzGazD6NkYE9S/4zPekhJj31mZA/AACAs+BSIz0AAIC/AAAAABG4Vb8AAAAACKkcv6uqqjIAAAAABIqHPhEUiT404I0+NoaWPho5pD7SPbk+PdvZPn4yBD9QtzM/AACAPzL+zz43vSm8KpVaPYSwqrsOeY8/gJ3+ugxWbz8AAAAAAAAAAHqoVb8ApIM4DHUhv7VFJDsAAIA/M2qHPuPziD7nvo0+4WKWPj62oz4OULg+UiTbPojXDT/OeEg/AACAP8F/0D6Tn5u7p+edPHLiqLvIupA/wHYduupuXT8b/H8/AAAAAH/rUr8AWMk3ogchv/2lqjsAAAAAfCCIPj6siT61fY4+US2XPhfKpT4m9r0+D6LnPusLHD9qHF8/AACAP48riz74wBO94sfmPd8CqLznI44/rhg3vn5kJD/sqI0/AACAPxPAVb8AAIi1iqUTv/367z4AAIA/JbSBPmjZgj4rl4c+fAuQPgZFnD7L664+HknLPic4+T5o8ik/AACAPzFE6D4EEQS8E24LPWmdhrvlR5A/AIg0OPwiNz8hAIA/AAAAAJXAVL8AAPO1oJghv1UF6bkAAAAA9/mIPsP/ij6OX5A+swuZPt7/pj5DRb4+P1bfPowYCT9PnTs/AACAP7RQbD59/B29kZvfPfrMlry+aIk/qkqIvrelJz8PIKQ/AACAP8FVVL8AAIAzAGPZvgAeZz8AAIA/4mN+PuWCgT4Hy4c+kemRPlIeoT5nV7Y+tljaPm70ET8T9Fc/AACAP6OmiT5xHoc8lauIPdD3hjyrRJE/IJ4AO2ovAj8o/WG+AACAP3OLU78AcFa4hBobvwC467gAAAAAsE2CPj+rgz7Kyoc+UIKPPpKQnD6cILA+HvPNPmARAT+1Ayo/AACAP+mUdD6vucS8rLQGPpqnZbxYH44/AADQtHHDLz8/0HO/AAAAADHTTr9Actk7WmMUv1S1uD4AAIA/PZmCPujFhD7OOIo+/JyTPki+oj5Mxrk+SifcPkxbCT/zYD4/AACAP/p5wj5fqye87d4rPQQ8CbwmEY0/AFzSuVqKMz9LAYC/AAAAAHAXVb8AoHs3Dmwhv2vAJDsAAAAAnO2GPqdQiT7yMI8+acOZPvFuqT7oA8A+wnzfPuiRCj/BIjQ/AACAPx+RsT4KDsu8LsvQPZNApbz19o0/AAB7N1SJTD8MAIA/AAAAAFm/Vb8AACC1tJMivwCQBrkAAIA/A7CGPqpbiT6NLJA+3Y2bPvsbqz4q3cI+bcDnPup0ET+2TFU/AACAPznfhT7qrN47rj+WPcFHCD24RJE/8BULO/7B/z51bCm+AACAP6+8Vb8AnGy4+HjpvrD1fz8AAIA/BjCCPoSqgz4qRog+wZSQPi29nT5z7bE+p2/RPrjSAj+8ozM/AACAP7KcsT60BTy8Ozc/PfF9JrwGaY8/AB2wuYbkLT8ZAYC/AAAAAFG7Vb8AYE83lFEiv6t0/zoAAAAAFTaHPi2/iD5YiI0+6JuZPsD0qz4zEsc+evrqPo24ET8KDkE/AACAP4qy4T6pbZy7t56iPM9mQDuqRJE/cOK0Oj5CaD+EBIA/AAAAAJG8Vb8A1Gu4LIYhv9U/qTsAAIA/3o+IPrENij7MzI4+LoiWPlWBoj7zb7M+OHzNPlRa+z4Gfy4/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
39 |
},
|
40 |
"_last_original_obs": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAI6yuD6RGQK8ulEMPT8EZrtSApA/4HuNOgxWbz8AAAAAAAAAAHu8Vb8A5C+4psYcv1spBbwAAIA/BfSDPrCVhT7fXIs+SoKVPgChpz7HycA+0KfmPo8pGj/ix1U/AACAP7Dizz5ydWa8b6pcPYkVCLwhUY0/AGB3t4bwOT/JvC+/AAAAADjXU78AgBA2uJQSvym2hz0AAIA/C5qJPkbLjD5wxZE+eCeaPpOZpj5U/rk+69DaPhr4Cj+QTEI/AACAP/qZxT5KYoW8mCaKPUT1VLwcHJE/AGCPufxQfz8//n8/AAAAAHW8Vb8AwEM3+m4dv9XaRjsAAAAAuaeJPjJnjT5yZ5M+SmGcPsObqj5P5MA+O/nlPgyJET+ooUI/AACAPyRhvD6I34I9AjQwPTJabD2AwZA/wIZTvGTOHz4LlYC/AACAP86pVb8AcKM5kAcdv1U/aTsAAAAAX4SGPnMLiD5Uzow+pGOVPhX8oj472Lc+rmbYPglKAz9yTTI/AACAP1Sw0j7yUHe8uFiBPSr2HLzf6o0/AOhcOCB2eT8rAIA/AAAAAIG8Vb8AgBS2/nohvwDZD7oAAIA/0ZKHPvcciT5r6Y0+/I+WPirroz6Qgbg+x1TbPm/zDT9zsUg/AACAPwKz0T4hfia7ip5fPLxT1rok15A/ADgKt1JsPj/w/38/AAAAAOPfUr8AAI00BBQhv1VFJjcAAAAABEGIPiXNiT7Dn44+clGXPkrtpT7IG74+gM3nPlgqHD+ESV8/AACAP2dXlD5UTNy8ZEHbPY/IAL1wdpA/ANRUuv0UCT9PAoC/AAAAACOXVb8AMCE4tHYiv/V2SDwAAIA/5kKCPh5hgz45IIg+Fp2QPr/0nD7ds68+xjzMPtNF+j4ypyo/AACAP9RD6j6KhNO7oNHePHepfLvMZZA/ABq6uIDEFz+U/38/AAAAAHiwVL8AQIM2bKYhv5VZijoAAAAArxOJPkUXiz74d5A+GSqZPqAZpz6cYr4+N4PfPkUyCT+9wzs/AACAP3Dmfz62Fg29O9vhPSXSYLyno4w/1CfLvYkkID8BAIC/AAAAANLgU78AAIAyzPwIv59FQT8AAIA/2ld/PoXbgT70J4g+T1iSPpqYoT4aALc+zfHaPhtMEj9UoVg/AACAPyaThD46+Mm8s3nKPXgz1rwoKZM/+/9cP8b1/D6//X+/AACAP8M0U78AAFA0mEcbv6uY1joAAAAAENSBPpw1gz54UYc+GQKPPvD7mz7Ghq8+VivNPtCQAD/RiCk/AACAP0RdgD57MF692lYBPleWkLz/Vo4/AHWIOnrOSz9fA4A/AAAAAFHRTr90wzY+rrAfv6u+C7wAAIA/FOOCPvsQhT5mhYo+yO6TPoQNoz49Mbo+esHcPpG3CT/u8z4/AACAP0cGxT7U9nG7F5YqPZcKMbsbSo0/AMDUth4aUT8CAIC/AAAAAHMGVb8AAFY0OnQhv6vKBjcAAAAAExyHPvB/iT6SXY8+VPOZPrqrqT7+U8A+XdPfPnXLCj91cTQ/AACAP+Xutz7pOLu8WS3BPfzokbyoFo4/AADvN6BLLT8VAIA/AAAAADfAVb8AAKC1qJciv1W5lbkAAIA/8BeHPqfFiT4di5A+4/ObPnamqz7UesM+WYPoPhXqET+a/FU/AACAPx15gz5xoOO8YGDOPbiTWrw4iJM/58tYP8b19T4NAIC/AACAP3G8Vb8AALg0EEITvxBPDz8AAIA/SUuBPi7Dgj67Voc+upaPPgionD7VtLA+rf/PPt3sAT8caDI/AACAP0Z6tD4Osoa78Wo/PbBKj7uepI8/ABjut7xjSz8WAIC/AAAAAOuqVb8AAHU1BFsiv6sSGDgAAAAAQ3eHPhkBiT6SzI0+hMuZPl0urD5faMc+cWjrPg36ET8jbEE/AACAP6XR4j79WBy8Kz7kPIwAFrzqh5E/8cr+PlpMSD89/H8/AAAAAEq8Vb8AgLs2Ojciv83lVTwAAIA/fn2IPnT7iT7vuY4+anmWPmVxoj57Y7M+z2zNPo05+z6rZS4/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
43 |
},
|
44 |
+
"_episode_num": 448,
|
45 |
+
"use_sde": false,
|
46 |
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": 0.0,
|
48 |
"_stats_window_size": 100,
|
49 |
"ep_info_buffer": {
|
50 |
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEJmlwcYIjaMAWyUTUAGjAF0lEdAgn98ABDG+HV9lChoBkfAM4qVlf7aZmgHTUAGaAhHQIKKkX7+DOF1fZQoaAZHwDHrAAQxvehoB01ABmgIR0CCkhWIXTEzdX2UKGgGR8BHG7CiyprDaAdNQAZoCEdAgqD07bL2YnV9lChoBkfAOaIJzDGcWmgHTUAGaAhHQILi6g00m+l1fZQoaAZHwCwftjTa0yBoB01ABmgIR0CC4xZV4oqkdX2UKGgGR8BSULUgB91EaAdNQAZoCEdAgvN4Wk8A73V9lChoBkfASu2SMcZLqWgHTUAGaAhHQIMKggmqo611fZQoaAZHwEljI3BHkLhoB01ABmgIR0CDHTYnOSntdX2UKGgGR8BV8jR6Ww/xaAdNQAZoCEdAgzjqT8pCr3V9lChoBkfARr3Heaa1C2gHTUAGaAhHQINAC/XXiBJ1fZQoaAZHwF+jv5P/JeVoB0v+aAhHQINzsknkT6B1fZQoaAZHwFz+h3qzJIVoB0tJaAhHQIOCv4sVclh1fZQoaAZHwEY5ysCDEm9oB01ABmgIR0CDkpZPEbYLdX2UKGgGR8A9lv60pmVaaAdNQAZoCEdAg5Qz1CgK4XV9lChoBkfAUz727FsHjmgHTUAGaAhHQIO2QJ9iMHd1fZQoaAZHwFVHkSElE7ZoB01ABmgIR0CDt01hLGrCdX2UKGgGR8A6ux/NJOFhaAdNQAZoCEdAg7wPqC6H03V9lChoBkfAVp88PnSv1WgHTUAGaAhHQIPGZgG8mKJ1fZQoaAZHwFjLwkxASnNoB01ABmgIR0CD0d4Pf8/EdX2UKGgGR8BQ3kBfa6BiaAdNQAZoCEdAg9l0gjhUBHV9lChoBkfAQ6I482aUimgHTUAGaAhHQIPn6Oo5xR51fZQoaAZHwGFAEM1CPZJoB01LAWgIR0CEHQ/Zdv87dX2UKGgGR8BDO9I5HVgAaAdNQAZoCEdAhCkLnkkrw3V9lChoBkfAQx0JIDoyK2gHTUAGaAhHQIQpXbuc+aB1fZQoaAZHwEZ3hgmZ3LVoB01ABmgIR0CEOdgSeyzHdX2UKGgGR8BCTQN9YwIuaAdNQAZoCEdAhFApqh11XHV9lChoBkfAR0I2wV0tAmgHTUAGaAhHQIRiuE9Mbm51fZQoaAZHwEO4FwkxASpoB01ABmgIR0CEfqmoBJZodX2UKGgGR8BOcwdsBQvYaAdNQAZoCEdAhMjkJSiudXV9lChoBkfAScJH7P6bfGgHTUAGaAhHQITZNH2AXl91fZQoaAZHwEqXMTN+so5oB01ABmgIR0CE2uD+zdDZdX2UKGgGR8BJY5j6N2kjaAdNQAZoCEdAhP3mGEf1YnV9lChoBkfASdGjwhGH6GgHTUAGaAhHQIT+39tMwlB1fZQoaAZHwE0huZTho/RoB01ABmgIR0CFA6K+BYmtdX2UKGgGR8BOeiDujRD1aAdNQAZoCEdAhQ254W1twnV9lChoBkfATSgEU0vXb2gHTUAGaAhHQIUZUmF8G9p1fZQoaAZHwE7986V+qipoB01ABmgIR0CFLy2nbZezdX2UKGgGR8BOtxiobXHzaAdNQAZoCEdAhWQwtjCpFXV9lChoBkfAThoB/7SApmgHTUAGaAhHQIVxIT0xubZ1fZQoaAZHwFAmSXMQmNRoB01ABmgIR0CFcVboKUmldX2UKGgGR8BQOPKMefZmaAdNQAZoCEdAhYJVs+FDfHV9lChoBkfAUJtylvZRK2gHTUAGaAhHQIWaPjp9qlB1fZQoaAZHwFGgJu2qkuZoB01ABmgIR0CFrb2LYPGydX2UKGgGR8BQ+cTnJT2naAdNQAZoCEdAhcxpz1bqyHV9lChoBkfAUlAPsiSq2mgHTUAGaAhHQIYdAqoZQ551fZQoaAZHwFFhFDv3JxNoB01ABmgIR0CGLyIvalDXdX2UKGgGR8BPRtZmqYJFaAdNQAZoCEdAhjDrwOOKfnV9lChoBkfAUkD2AXl8xGgHTUAGaAhHQIZWZ+YtxuN1fZQoaAZHwFDXqREF4cFoB01ABmgIR0CGV3NSqEOBdX2UKGgGR8BSA7wWnCO4aAdNQAZoCEdAhlzGb1AZ9HV9lChoBkfAUeY8ifQKKGgHTUAGaAhHQIZoVFDv3Jx1fZQoaAZHwFInvStvGZNoB01ABmgIR0CGdbVxS5y3dX2UKGgGR8BShhzaK1ohaAdNQAZoCEdAho0SJCSid3V9lChoBkfAUiAmNR3u/mgHTUAGaAhHQIbChzxPO6d1fZQoaAZHwFD96/Zdv89oB01ABmgIR0CGz075mAbydX2UKGgGR8BQ+B5TqB3BaAdNQAZoCEdAhs+Unw5NoXV9lChoBkfAT+xKxs2vS2gHTUAGaAhHQIbggd+5OJt1fZQoaAZHwGGPBYvFm4BoB0ucaAhHQIbvVwWFev91fZQoaAZHwFFdg5BC2MNoB01ABmgIR0CG9q8Hv+fidX2UKGgGR8BSBqmTC+DfaAdNQAZoCEdAhwkf+bVjJHV9lChoBkfAV+mWgOBlMGgHS+JoCEdAhySeWv8qF3V9lChoBkfAUMCADq4YrWgHTUAGaAhHQIclNr/Khct1fZQoaAZHwF9lAjY7JXBoB0uGaAhHQIdABUvPC2t1fZQoaAZHwGJl5nL7oB9oB00fAWgIR0CHQ6YGdI5HdX2UKGgGR8BO5ClBQemvaAdNQAZoCEdAh2+DOLR8dHV9lChoBkfAT1JnWattAWgHTUAGaAhHQId/7AzpHI91fZQoaAZHwEuTInSfDk5oB01ABmgIR0CHgXeN1hb4dX2UKGgGR8BacpVfeDWcaAdLdWgIR0CHh91r6+FldX2UKGgGR8BgK6kTHsC1aAdLUGgIR0CHmDV+Zw4sdX2UKGgGR8BO6tw71ZkkaAdNQAZoCEdAh6O4d6sySHV9lChoBkfATwPb212JSGgHTUAGaAhHQIeks1fmcON1fZQoaAZHwErxO+IuXeFoB01ABmgIR0CHqcZPVNHpdX2UKGgGR8BKIgntv4ucaAdNQAZoCEdAh7PP4dp7C3V9lChoBkfAR/dGsmv4d2gHTUAGaAhHQIe/CgkC3gF1fZQoaAZHwEuqj/uLJjloB01ABmgIR0CH1RwmVqvedX2UKGgGR8BhmYfp2U0OaAdNDQFoCEdAh+rsdcSoO3V9lChoBkfATPQcxTKkmGgHTUAGaAhHQIgJmx2St/51fZQoaAZHwEkQg8KXv6VoB01ABmgIR0CIFkqG1x82dX2UKGgGR8BNeBZ6lchUaAdNQAZoCEdAiCdBqbjLjnV9lChoBkfASVC9Gqgh82gHTUAGaAhHQIg2cxmCiAV1fZQoaAZHwF+HxrzoUztoB0t8aAhHQIhPAHcDbJx1fZQoaAZHQBcnSF49ovloB01ABmgIR0CIa1pA2Q4kdX2UKGgGR8BD7WKVII4VaAdNQAZoCEdAiIcPeYUnHHV9lChoBkfARKkfcN6PbWgHTUAGaAhHQIiKZfYzzmR1fZQoaAZHwEJsIMz/IbRoB01ABmgIR0CIxSKE384xdX2UKGgGR8BHDPxhDw6RaAdNQAZoCEdAiMa6Ogg5inV9lChoBkfAXsM2GZeAu2gHS3RoCEdAiNz3wTdtVXV9lChoBkfAQpypm29cr2gHTUAGaAhHQIjdreO4oZ11fZQoaAZHwFEspNsWO6xoB01ABmgIR0CI6RqX4TK1dX2UKGgGR8BEHjM/yGzsaAdNQAZoCEdAiOoal+EytXV9lChoBkfATin7FbVz62gHTUAGaAhHQIjvEOAiFCd1fZQoaAZHwFwZCJ40Mw1oB0s6aAhHQIj07T6SDAd1fZQoaAZHwFMUQBPsRg9oB01ABmgIR0CJBEEB8x9HdX2UKGgGR8BGevWH1vl2aAdNQAZoCEdAiRkz5wfhdnV9lChoBkfAUgyZof0VamgHTUAGaAhHQIkuqYE4ecR1fZQoaAZHwFLEn5SFXaJoB01ABmgIR0CJTmDOC5EudX2UKGgGR8BRczC+De0paAdNQAZoCEdAiVsUo8ZDRnV9lChoBkfATwYq0+kgwGgHTUAGaAhHQIlsG7Wd3B51fZQoaAZHwE6VO7g88tBoB01ABmgIR0CJlDdyDIzWdWUu"
|
52 |
},
|
53 |
"ep_success_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
56 |
},
|
57 |
+
"_n_updates": 31244,
|
58 |
"observation_space": {
|
59 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
60 |
+
":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
61 |
"dtype": "float32",
|
62 |
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
63 |
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
|
|
72 |
},
|
73 |
"action_space": {
|
74 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
75 |
+
":serialized:": "gAWVagIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQIpJmzQ/ce2PdA/uVxS4la4wDaW5jlIoQHaE7yCpzGC82Rs7C12PLJHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
76 |
"dtype": "float32",
|
77 |
"bounded_below": "[ True True True True]",
|
78 |
"bounded_above": "[ True True True True]",
|
|
|
86 |
"_np_random": "Generator(PCG64)"
|
87 |
},
|
88 |
"n_envs": 16,
|
89 |
+
"buffer_size": 1000000,
|
90 |
"batch_size": 256,
|
91 |
+
"learning_starts": 100,
|
92 |
+
"tau": 0.005,
|
93 |
+
"gamma": 0.99,
|
94 |
+
"gradient_steps": 1,
|
95 |
"optimize_memory_usage": false,
|
96 |
"replay_buffer_class": {
|
97 |
":type:": "<class 'abc.ABCMeta'>",
|
|
|
99 |
"__module__": "stable_baselines3.common.buffers",
|
100 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
101 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
102 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x0000028A8D9DC5E0>",
|
103 |
+
"add": "<function ReplayBuffer.add at 0x0000028A8D9DC670>",
|
104 |
+
"sample": "<function ReplayBuffer.sample at 0x0000028A8D9DC700>",
|
105 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x0000028A8D9DC790>",
|
106 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x0000028A8D9DC820>)>",
|
107 |
"__abstractmethods__": "frozenset()",
|
108 |
+
"_abc_impl": "<_abc._abc_data object at 0x0000028A8D9D2100>"
|
109 |
},
|
110 |
"replay_buffer_kwargs": {},
|
111 |
"train_freq": {
|
112 |
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
113 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
114 |
},
|
115 |
"use_sde_at_warmup": false,
|
116 |
"target_entropy": -4.0,
|
|
|
118 |
"target_update_interval": 1,
|
119 |
"lr_schedule": {
|
120 |
":type:": "<class 'function'>",
|
121 |
+
":serialized:": "gAWVaAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMU2M6XFVzZXJzXHByaWNvXC5jb25kYVxlbnZzXEFUTk5cbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
122 |
},
|
123 |
"batch_norm_stats": [],
|
124 |
"batch_norm_stats_target": []
|
sac-BipedalWalker-v3/ent_coef_optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1940
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d8eb4caae675dd0f08b605d42bbf0271078260d21a4df6d36cb7f380b98635b
|
3 |
size 1940
|
sac-BipedalWalker-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d14371f4748d92da6a98b8fd15a3029b8a44201f27cf1262614fa1efcb42f41
|
3 |
+
size 1483510
|
sac-BipedalWalker-v3/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1180
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91991ff2cb83caba4a8976e8f101cebe46e9f96148691ce4b8d12f26f1c24c42
|
3 |
size 1180
|
sac-BipedalWalker-v3/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS:
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.2.1
|
4 |
-
- PyTorch: 2.1.0
|
5 |
- GPU Enabled: False
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
- Gymnasium: 0.28.1
|
9 |
-
- OpenAI Gym: 0.
|
|
|
1 |
+
- OS: Windows-10-10.0.22621-SP0 10.0.22621
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.2.1
|
4 |
+
- PyTorch: 2.1.0
|
5 |
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.0
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.21.0
|