Upload sac BipedalWalker-v3 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- logs/events.out.tfevents.1704045945.7f224148deca.381.0 +3 -0
- replay.mp4 +0 -0
- results.json +1 -0
- sac-BipedalWalker-v3.zip +3 -0
- sac-BipedalWalker-v3/_stable_baselines3_version +1 -0
- sac-BipedalWalker-v3/actor.optimizer.pth +3 -0
- sac-BipedalWalker-v3/critic.optimizer.pth +3 -0
- sac-BipedalWalker-v3/data +130 -0
- sac-BipedalWalker-v3/ent_coef_optimizer.pth +3 -0
- sac-BipedalWalker-v3/policy.pth +3 -0
- sac-BipedalWalker-v3/pytorch_variables.pth +3 -0
- sac-BipedalWalker-v3/system_info.txt +9 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: sac
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalker-v3
|
16 |
+
type: BipedalWalker-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -99.46 +/- 46.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **sac** Agent playing **BipedalWalker-v3**
|
25 |
+
This is a trained model of a **sac** agent playing **BipedalWalker-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7964a088fc70>", "_build": "<function SACPolicy._build at 0x7964a088fd00>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7964a088fd90>", "reset_noise": "<function SACPolicy.reset_noise at 0x7964a088fe20>", "make_actor": "<function SACPolicy.make_actor at 0x7964a088feb0>", "make_critic": "<function SACPolicy.make_critic at 0x7964a088ff40>", "forward": "<function SACPolicy.forward at 0x7964a08b4040>", "_predict": "<function SACPolicy._predict at 0x7964a08b40d0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7964a08b4160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7964a08ae640>"}, "verbose": 5, "policy_kwargs": {"log_std_init": -3, "net_arch": [400, 300], "use_sde": true}, "num_timesteps": 500736, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704045945719916661, "learning_rate": 0.00073, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAMzzbT1U6KU7d0BLvURGMz5AFp4/+7O7PGu6hz/lyos8201pP2PxpL/x6S275VKmvxMNHzxrOQY/jlEAv4pRAL+SUQC/n1EAv8VRAL8rUwC/KVQAvzV7AL9OVhC/mU1UPiKzgb7z56U7TEBLvUJGMz7wrmy/+7O7PI7Pgj/lyos8201pP4a+UD/x6S27Xqejvw0NHzxrOQY//pWePwWWnj8Ylp4/MJaePx2Wnj/Akp4/+JGeP8aRnj/yDdA/mU1UPmdzor7k56U7bkBLvUdGMz4oYGe/+7O7PCXCgj/lyos8201pP+bXVT/x6S27Zu+lvw0NHzxrOQY/c/icP3z4nD+L+Jw/pvicP5H4nD869Zw/bvScPx/0nD9codE/mU1UPgi7Cz7R6KU7eUBLvSRGMz7T7Zk/AbS7PJTBgz/lyos8201pPx8uob/z6S27WDGhvwsNHzxrOQY/tgPHvq8Dx761A8e+xQPHvhcEx76TB8e+pgnHvr5Sx75wEvK+mU1UPno6Rj4FBeO+1kOTP/EwSb9tqHY+SvD1PsdZBb90xO++201pP7Z9VD/x6S279a56P2n1gEDxIPS/5CIkQOsiJED5IiRAESMkQAwjJEBXICRA1h8kQBsnJEADYg9AmU1UPpRADj2356U7T0BLvTpGMz6v5p0//LO7PGiPhz/lyos8rXOMv6dSoL/y6S27p8SjvwwNHzxrOQY/4STjvtwk477hJOO+/iTjvkAl475rKOO+eirjvgJ2477rfBi/eOC1vx7GFL51HuK7WMMUvTapVz6enmm/eLS9PO0jkz1Omgs9201pP/DLWT+WEiy79j5yPxyfGTzxIPS//IpHv/uKR78Ii0e/HYtHv0aLR7/Wi0e/uIxHv/S5R79u7GK/mU1UPtCeGz2E6KU7ekBLvUdGMz7/D54/+7O7PEfQhz/lyos8201pP1y+ob/x6S27v1Wkvw0NHzxrOQY/y8PovsrD6L7Ow+i+3cPovi3E6L5Kx+i+VMnovlQV6b4aFAu/mU1UPiGibD426KU7uT9LvThGMz7/AJ4/oLO7PHKnlb+Myos8201pP8ubtL7+7S27ZjagvwoNHzxrOQY/vxiGP8kYhj/WGIY/6RiGP9cYhj+eao4/PweOP6RMgz8gsLw/mU1UPk9W6b5+46U7kz5LvURGMz4yF54/77O7PHz6lb8zyos8201pP3jIdT076y278b6gvwwNHzxrOQY/55K5P/GSuT8Dk7k/H5O5Pw6TuT9fj7k/io65P1rvtz91pPE/mU1UPr1hzT2b6KU7hUBLvUdGMz4j+Zw/+7O7POHMgT/lyos8201pP9Vdob/x6S27rbSlvw0NHzxrOQY/IsTWvh/E1r4ixNa+NcTWvobE1r7Vx9a+3cnWvlgU177Od+C+mU1UPnFdbT2f56U7R0BLvU1GMz5wGJ4/+7O7PN7ehz/lyos8rXOMv87xpL/x6S27lQ6mvw0NHzxrOQY/TC8Bv0svAb9PLwG/Wy8Bv4YvAb/rMAG/6TEBvwRZAb/Cwhy/Gu0ZwECmrL7w6KU7kUBLvTxGMz7VIWS/+7O7POZ7gj/lyos8201pP3vvUz/x6S27XZOlvw0NHzxrOQY/mm6gP6RuoD+1bqA/zW6gP7luoD9Ya6A/i2qgP4RqoD9kZcQ/mU1UPl9MsT1p56U7REBLvUZGMz7rJJw/+7O7PArGhz/lyos8201pP69VpL/x6S277GKkvw0NHzxrOQY//q7uvgCv7r4Hr+6+Gq/uvmWv7r5xsu6+ebTuvvYA775xdJe+mU1UPhiPaj2P56U7U0BLvUlGMz7qF54/+7O7PNbehz/lyos8201pP23xpL/x6S27SFOmvw0NHzzxIPS/rM0Av63NAL+uzQC/u80Av+DNAL9LzwC/R9AAv2D3AL8R5Aq/mU1UPkg9rj2+5aU7zD9LvVtGMz4IRJs/G7S7PG6EhT/lyos8201pP5YZpL/56S27VeCNvjUNHzxrOQY/F+vCvhXrwr4c68K+I+vCvnfrwr4B78K+FPHCvtE5w74wldW+mU1UPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAACwn9z0KsZyu/4g0r0oIFbAqQ5E/EFErr94ibz8AAAAAAACAP2u8Vb/AkgAtdIgiv4lPvjAAAIA/5wJxPpa/cz5sR3w+JtSFPhECkj77saQ+T9zBPhgw8j53hCU/AACAP82v9jyTb6OwENsKMlTn8bCUAlW/AAAgp2c5aD8AAAAAAACAP58ajT8AAAAAxMwevwAAgCYAAIA/tyWrPkkXrT4UJrM+vRG+PvBdzz5B6Ok+IaoJP5n7Kz9vKGw/AACAPxCUPDystLqwK9PlMJdfwTAFLVC/AADgJ40maD8AAAAAAACAP5Vzjz8AAAAAVv0hv6uqKqYAAIA/sseqPjO4rD6pw7I+U6m9PgXszj7CZ+k+gF4JPx+dKz8hjmw/AACAP8DpEj69wbowGxHNr6AYrrKzeY0/kF0XMZiNaT+rqiqmAACAP5DOTr8AtIeu5Fsbv2v4xK8AAIA/yY93PoNfej5akYE+SneJPvL5lT7hK6k+ISHHPinF+D5TdCg/AACAP/7sIz6IlTS8Q7h4PQqOIb1f4mo+DWC8PchzNb65EvW9AACAPzXUjj8AAAAAgkN1PwEAgD8AAAAA27nRPpYb1D7xh9s+x+noPigc/j7+UA8/IbIoP/O/Uj8AAIA/AACAP6w86T1qZACxpAP9MZ9K77HXF5E/QIm7L2jmbj8AAAAAAAAAAGk6Tb8A8CuttvUev2t1gq8AAIA/L110Pp0jdz7VyX8+vLCHPgcKlD59/KY+rY7EPpCO9T52fSQ/dz15P8wIfD3dKJq54HEwOggpvzo7OFK/oBlOOCwhdT7sfIk7AACAP4BFkT8A87w2fl1vPwverLgAAAAAfdFgPhhfYz40VGs+kqx5PrcyiD41oZk+5NW0PnHq4T6kGxs/AACAP08u6z3PgwEwEwgjsAC9ejB4PZE/AABQJ5hBbz8AAAAAAACAPy7YT78AAAAAlMAfv6uqKqUAAIA/nblzPi9+dj6dHn8+6VWHPu+mkz62jKY+GwvEPjLq9D4lLiY/AACAP0oYLz4BEOivK18ZMzFbCLLOL5E/KEETs5L/Ib/MvC6zAACAP7572zwVsE+zBv0Zv9XmEbAAAIA/Y5SlPsZ1pz4dUq0+0+K3PvieyD4C4+Q+rKMGPyPBJT+iRmc/AACAP1WP67z0sHSyPLvDM5gCcrAGRJE/sG6WsUp0Ir9LjK+zAACAPyFN0D5ITISy8Lsav6seBK8AAIA/eUixPuJLsz5Fkrk+KOLEPh3N1j4DS/I+lpkOP7TGMT8BoHQ/AACAPxgkCD6DGEswq7dAsfhlgzB8P5A/AEDgKs7NZj8AAAAAAACAP2wmT78AAEioPKshvwAABqoAAIA/ZcV1PuqPeD5xoYA+wXiIPj/klD6j8qc+a7DFPoj49j5XkCk/AACAP08R9z0LhBOx314bMtGpsTEoRZE/AACAJhpWbz8AAAAAAAAAADC9Vb8AAAAA8Cgiv6uq6qcAAIA/fdBwPpmMcz6nEnw+KLiFPobjkT6Hj6Q+wbPBPm/98T6X8yM/cyd1P9hUuzstQOowKiiusRQexLHFOE2/AAAwqNDDZz8AAAAAAACAP7qSjj8AAAAAqHwhv6uqKiYAAIA/KpGrPvWDrT6NlrM+EYm+PiDgzz4be+o+jgAKP5JnLD8ROGk/AACAP6sOBD4PSD6xkZUiMq18FTAzfo8/AADAJzQzbz8AAAAAAACAP7GdVL8AAAAAANMfv6uqKqcAAIA/Xw1zPvzPdT5Ran4+RPaGPpY+kz4CF6Y+j4DDPh099D5NKi4/AACAP9qo9j1D2h+xRJroMbHoLzGuRJE/AADgpw5Wbz8AAAAAAACAP368Vb8AAAAA/ogivwAAACcAAAAAr+ZwPgujcz7jKXw+e8SFPvnwkT6ynqQ+nMXBPrwT8j4zNCY/AACAP8ycAz5ZcAOy42YKM6afajJgsY4/DGhNMlAHbD+rqiqnAACAPwYvVL8AN8avgGOjPQN1IDIAAIA//QZ4PhHYej69z4E+e7mJPilClj5Wfak+A4HHPvI8+T71Pyo/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_episode_num": 643, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEFzxYJVsDaMAWyUTUAGjAF0lEdAmB/i8nNPg3V9lChoBkfAUKq2b5M10mgHTUAGaAhHQJhAmWD6Fdt1fZQoaAZHwEoCfDk2gnNoB01ABmgIR0CYZIoNd7fIdX2UKGgGR8BI/Hk92X9jaAdNQAZoCEdAmGZzRQaaTnV9lChoBkfAQzkCcPOIImgHTUAGaAhHQJh2E7A+IM11fZQoaAZHwEYxGEwnH/9oB01ABmgIR0CYdlGlhw2mdX2UKGgGR8BPedonKGL2aAdNQAZoCEdAmJ7JlSS/03V9lChoBkfAUGt8VpKzzGgHTUAGaAhHQJiuwyzolld1fZQoaAZHwEf0BXjlxOtoB01ABmgIR0CYw2g9Net0dX2UKGgGR8BH6LMcIZ62aAdNQAZoCEdAmPfyu2Zy/HV9lChoBkfARprB/I8yOGgHTUAGaAhHQJkMZomG/N91fZQoaAZHwEkkjUNKAaxoB01ABmgIR0CZG8abWmP6dX2UKGgGR8BPwrYXfqHHaAdNQAZoCEdAmRzkDlo11nV9lChoBkfASSrtG/etS2gHTUAGaAhHQJlDlmyxA0N1fZQoaAZHwEX3bM5fdARoB01ABmgIR0CZZTlnyup0dX2UKGgGR8BKlSrYGt6paAdNQAZoCEdAmZmje0ojOnV9lChoBkfARszkIX0oSmgHTUAGaAhHQJni/3dsSCh1fZQoaAZHwEHvvbXYlIFoB01ABmgIR0CaBbLl3hXKdX2UKGgGR8BGOjHOryUcaAdNQAZoCEdAmiiMzuWrwXV9lChoBkfAQc1YQrc0tWgHTUAGaAhHQJoqM2kzoEB1fZQoaAZHwEb8ep4rz5JoB01ABmgIR0CaOiIHC4z8dX2UKGgGR8BNI/QSi/O/aAdNQAZoCEdAmjp9fkWAPXV9lChoBkfARgyuMdcSoWgHTUAGaAhHQJph9aA4GUx1fZQoaAZHwElAf7rLQoloB01ABmgIR0Cacfjwx33YdX2UKGgGR8BIx9lNDc/MaAdNQAZoCEdAmoUXZK3/gnV9lChoBkfARzHX5FgDzWgHTUAGaAhHQJq6/CYTkAB1fZQoaAZHwEX7TVDrqt5oB01ABmgIR0Caz1dPtUn5dX2UKGgGR8BIvRAjY7JXaAdNQAZoCEdAmt802Hck+3V9lChoBkfATJA0sOG0u2gHTUAGaAhHQJrgL6UJOWV1fZQoaAZHwE0AgctGus9oB01ABmgIR0CbBYEzfrKOdX2UKGgGR8BDyDPOY6XCaAdNQAZoCEdAmyit6gM+eXV9lChoBkfAQ53tBv73wmgHTUAGaAhHQJte71AZ88d1fZQoaAZHwECrkNnXd0toB01ABmgIR0Cbp+rELpiadX2UKGgGR8BN5BX8wYceaAdNQAZoCEdAm8zZJsfq5nV9lChoBkfAUYFK3/givGgHTUAGaAhHQJvzBLytmth1fZQoaAZHwEV65YHPeHloB01ABmgIR0Cb9LbSqlxfdX2UKGgGR8BG3ZqVQhwEaAdNQAZoCEdAnALSeyzHCHV9lChoBkfARQF0xM36ymgHTUAGaAhHQJwDEtZmqYJ1fZQoaAZHwER/zDn/1g9oB01ABmgIR0CcK2t4zJp4dX2UKGgGR8BCQrQw9JSSaAdNQAZoCEdAnDoqz7di2HV9lChoBkfAQ7DjNpudgGgHTUAGaAhHQJxNDuw5eZ51fZQoaAZHwEOzxTbWVeNoB01ABmgIR0CcgDOLzf78dX2UKGgGR8BCTTXjENvwaAdNQAZoCEdAnJWpSWJJoXV9lChoBkfAQtA/gR9PUWgHTUAGaAhHQJykQjJMg2Z1fZQoaAZHwEG1UBnzxw1oB01ABmgIR0CcpT4YJmdzdX2UKGgGR8A+BJT2nKnvaAdNQAZoCEdAnMocRUWEb3V9lChoBkfATw7+kxh2GWgHTUAGaAhHQJzp7ufEn9h1fZQoaAZHwEKQaBqbjLloB01ABmgIR0CdIDs90RvndX2UKGgGR8A/kh4+r2g4aAdNQAZoCEdAnWOQVbiZOXV9lChoBkfAPsw3tKIznGgHTUAGaAhHQJ2IlyYG+sZ1fZQoaAZHwD3FOuaF23doB01ABmgIR0Cdq8r8R+SbdX2UKGgGR8BSU0HdGiHqaAdNQAZoCEdAna1r0Bfa6HV9lChoBkfARSCVW0Z3tGgHTUAGaAhHQJ29DCXQdCF1fZQoaAZHwDhSXUpd8iRoB01ABmgIR0CdvVhbGFSLdX2UKGgGR8BYTtH+ZPVNaAdLYWgIR0Cdvm779AHFdX2UKGgGR8BAEim2sq8UaAdNQAZoCEdAneO+8PFvRHV9lChoBkfAPaEqhDgIhWgHTUAGaAhHQJ3ybgwXZXd1fZQoaAZHwD/q2x6fJ3hoB01ABmgIR0CeAT3N9ph4dX2UKGgGR8BA4TsyBTXKaAdNQAZoCEdAnjaX/1g6VHV9lChoBkfAQZoAdXDFZWgHTUAGaAhHQJ5KF01ZTyd1fZQoaAZHwE/s3S8an75oB01ABmgIR0CeW75d4VyndX2UKGgGR8BAG+7cwg1WaAdNQAZoCEdAnlzW4d6syXV9lChoBkfAQOXfl6qsEWgHTUAGaAhHQJ59vps41gp1fZQoaAZHwEL4Az544ZNoB01ABmgIR0Ceom2OAAhjdX2UKGgGR8BCzVqesgdPaAdNQAZoCEdAntk/BvaURnV9lChoBkfASKI3WFvhqGgHTUAGaAhHQJ8bdQl8gIR1fZQoaAZHwFUN6hQFcIJoB01ABmgIR0CfQCnF5v9+dX2UKGgGR8BCfmoJiRW+aAdNQAZoCEdAn2C034sVcnV9lChoBkfAN5DuF6AvtmgHTUAGaAhHQJ91CY/mknF1fZQoaAZHwEKVq6e5Fw1oB01ABmgIR0CfdU08vEjxdX2UKGgGR8BByN0FKTStaAdNQAZoCEdAn3ZzIV/MGHV9lChoBkfAN+x0uDjBEmgHTUAGaAhHQJ+WgrYoRZl1fZQoaAZHwDsL1rZamoBoB01ABmgIR0Cfq4xsEaESdX2UKGgGR8A9IbYbsF+vaAdNQAZoCEdAn7qhr8BMjHV9lChoBkfARmF3hXKbKGgHTUAGaAhHQJ/wg8/2TPl1fZQoaAZHwEzVeLvTgEVoB01ABmgIR0CgAlWdmQKbdX2UKGgGR8BAkYDDCP6saAdNQAZoCEdAoAtEIC2c8XV9lChoBkfAP/kliSaEz2gHTUAGaAhHQKAMHxiG34N1fZQoaAZHwEAdZaFEiMZoB01ABmgIR0CgHPI6jnFHdX2UKGgGR8BB8QLeANG3aAdNQAZoCEdAoC8Ao3JgcHV9lChoBkfAVJ7yWiUPhGgHTUAGaAhHQKBKTGWldkd1fZQoaAZHwFZqdwvQF9toB01ABmgIR0CgbHcDB/I9dX2UKGgGR8BE6RXGOuJUaAdNQAZoCEdAoH4RGe+VT3V9lChoBkfARvCg00m+kGgHTUAGaAhHQKCPVt1IRRN1fZQoaAZHwEExFPznRsxoB01ABmgIR0Cgmh6Lfk3kdX2UKGgGR8BG5VC5VfeDaAdNQAZoCEdAoJpZiTdLx3V9lChoBkfAQVhDVpblimgHTUAGaAhHQKCbOmYSg5B1fZQoaAZHwF4MjLjghr5oB007AmgIR0Cgm6kV32VWdX2UKGgGR8Bic8HjZL7GaAdNHARoCEdAoKV72i+L33V9lChoBkfAXdVmDlHSW2gHS05oCEdAoK5qrxRVInV9lChoBkfARIXHo5ggHWgHTUAGaAhHQKCupigCfYl1fZQoaAZHwEFBYukDZDloB01ABmgIR0Cgt6bpu/DcdX2UKGgGR8BdLN5D7ZWaaAdLPGgIR0Cgt6tayKNydX2UKGgGR8Blwu9SMtK7aAdNXAVoCEdAoLhVj/dZaHV9lChoBkfAW1ktkFwDNmgHTYYBaAhHQKC4aOwPiDN1fZQoaAZHwDPTAeq7yx1oB01ABmgIR0CgwWGy5Zr6dX2UKGgGR8A74jPOY6XCaAdNQAZoCEdAoOhb6YVqOHV9lChoBkfAUQMRBeHBUWgHTUAGaAhHQKDwawHqu8t1fZQoaAZHwGj17YChew9oB018BWgIR0Cg+vTnq3VkdX2UKGgGR8A0eakAPuohaAdNQAZoCEdAoQQ2dXko4XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30720, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVSQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQHdg1v4HdDctYSRADeIkFU4wDaW5jlIoQMw7CWAStVoBimj/659hGA3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 300000, "batch_size": 256, "learning_starts": 10000, "tau": 0.02, "gamma": 0.98, "gradient_steps": 64, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7964a09a3d00>", "add": "<function ReplayBuffer.add at 0x7964a09a3d90>", "sample": "<function ReplayBuffer.sample at 0x7964a09a3e20>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7964a09a3eb0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7964a09a3f40>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7964a09b3280>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLQGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
logs/events.out.tfevents.1704045945.7f224148deca.381.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5808470206fb26c935db76273d8997ae0fe9fd472541b7290f13b1df8a47ebdd
|
3 |
+
size 441
|
replay.mp4
ADDED
Binary file (93.9 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -99.46183679999999, "std_reward": 46.602285853256525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-31T18:42:32.813851"}
|
sac-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b008d1befb5d9773982e8989699e6e99e0435a4b996d39c0b428afed64cbf38d
|
3 |
+
size 5873841
|
sac-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.2.1
|
sac-BipedalWalker-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f56c47ad53f7c205d11cff3c2ba10eca3ebb0d1a8863850061924cfa57f4c33
|
3 |
+
size 1067607
|
sac-BipedalWalker-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4df37e8a12830adbd79f3250206d8971f8f62923345031994be211fe3c2d601d
|
3 |
+
size 2124522
|
sac-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x7964a088fc70>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x7964a088fd00>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7964a088fd90>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7964a088fe20>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7964a088feb0>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7964a088ff40>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x7964a08b4040>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x7964a08b40d0>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7964a08b4160>",
|
17 |
+
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc._abc_data object at 0x7964a08ae640>"
|
19 |
+
},
|
20 |
+
"verbose": 5,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"log_std_init": -3,
|
23 |
+
"net_arch": [
|
24 |
+
400,
|
25 |
+
300
|
26 |
+
],
|
27 |
+
"use_sde": true
|
28 |
+
},
|
29 |
+
"num_timesteps": 500736,
|
30 |
+
"_total_timesteps": 500000.0,
|
31 |
+
"_num_timesteps_at_start": 0,
|
32 |
+
"seed": null,
|
33 |
+
"action_noise": null,
|
34 |
+
"start_time": 1704045945719916661,
|
35 |
+
"learning_rate": 0.00073,
|
36 |
+
"tensorboard_log": null,
|
37 |
+
"_last_obs": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAMzzbT1U6KU7d0BLvURGMz5AFp4/+7O7PGu6hz/lyos8201pP2PxpL/x6S275VKmvxMNHzxrOQY/jlEAv4pRAL+SUQC/n1EAv8VRAL8rUwC/KVQAvzV7AL9OVhC/mU1UPiKzgb7z56U7TEBLvUJGMz7wrmy/+7O7PI7Pgj/lyos8201pP4a+UD/x6S27Xqejvw0NHzxrOQY//pWePwWWnj8Ylp4/MJaePx2Wnj/Akp4/+JGeP8aRnj/yDdA/mU1UPmdzor7k56U7bkBLvUdGMz4oYGe/+7O7PCXCgj/lyos8201pP+bXVT/x6S27Zu+lvw0NHzxrOQY/c/icP3z4nD+L+Jw/pvicP5H4nD869Zw/bvScPx/0nD9codE/mU1UPgi7Cz7R6KU7eUBLvSRGMz7T7Zk/AbS7PJTBgz/lyos8201pPx8uob/z6S27WDGhvwsNHzxrOQY/tgPHvq8Dx761A8e+xQPHvhcEx76TB8e+pgnHvr5Sx75wEvK+mU1UPno6Rj4FBeO+1kOTP/EwSb9tqHY+SvD1PsdZBb90xO++201pP7Z9VD/x6S279a56P2n1gEDxIPS/5CIkQOsiJED5IiRAESMkQAwjJEBXICRA1h8kQBsnJEADYg9AmU1UPpRADj2356U7T0BLvTpGMz6v5p0//LO7PGiPhz/lyos8rXOMv6dSoL/y6S27p8SjvwwNHzxrOQY/4STjvtwk477hJOO+/iTjvkAl475rKOO+eirjvgJ2477rfBi/eOC1vx7GFL51HuK7WMMUvTapVz6enmm/eLS9PO0jkz1Omgs9201pP/DLWT+WEiy79j5yPxyfGTzxIPS//IpHv/uKR78Ii0e/HYtHv0aLR7/Wi0e/uIxHv/S5R79u7GK/mU1UPtCeGz2E6KU7ekBLvUdGMz7/D54/+7O7PEfQhz/lyos8201pP1y+ob/x6S27v1Wkvw0NHzxrOQY/y8PovsrD6L7Ow+i+3cPovi3E6L5Kx+i+VMnovlQV6b4aFAu/mU1UPiGibD426KU7uT9LvThGMz7/AJ4/oLO7PHKnlb+Myos8201pP8ubtL7+7S27ZjagvwoNHzxrOQY/vxiGP8kYhj/WGIY/6RiGP9cYhj+eao4/PweOP6RMgz8gsLw/mU1UPk9W6b5+46U7kz5LvURGMz4yF54/77O7PHz6lb8zyos8201pP3jIdT076y278b6gvwwNHzxrOQY/55K5P/GSuT8Dk7k/H5O5Pw6TuT9fj7k/io65P1rvtz91pPE/mU1UPr1hzT2b6KU7hUBLvUdGMz4j+Zw/+7O7POHMgT/lyos8201pP9Vdob/x6S27rbSlvw0NHzxrOQY/IsTWvh/E1r4ixNa+NcTWvobE1r7Vx9a+3cnWvlgU177Od+C+mU1UPnFdbT2f56U7R0BLvU1GMz5wGJ4/+7O7PN7ehz/lyos8rXOMv87xpL/x6S27lQ6mvw0NHzxrOQY/TC8Bv0svAb9PLwG/Wy8Bv4YvAb/rMAG/6TEBvwRZAb/Cwhy/Gu0ZwECmrL7w6KU7kUBLvTxGMz7VIWS/+7O7POZ7gj/lyos8201pP3vvUz/x6S27XZOlvw0NHzxrOQY/mm6gP6RuoD+1bqA/zW6gP7luoD9Ya6A/i2qgP4RqoD9kZcQ/mU1UPl9MsT1p56U7REBLvUZGMz7rJJw/+7O7PArGhz/lyos8201pP69VpL/x6S277GKkvw0NHzxrOQY//q7uvgCv7r4Hr+6+Gq/uvmWv7r5xsu6+ebTuvvYA775xdJe+mU1UPhiPaj2P56U7U0BLvUlGMz7qF54/+7O7PNbehz/lyos8201pP23xpL/x6S27SFOmvw0NHzzxIPS/rM0Av63NAL+uzQC/u80Av+DNAL9LzwC/R9AAv2D3AL8R5Aq/mU1UPkg9rj2+5aU7zD9LvVtGMz4IRJs/G7S7PG6EhT/lyos8201pP5YZpL/56S27VeCNvjUNHzxrOQY/F+vCvhXrwr4c68K+I+vCvnfrwr4B78K+FPHCvtE5w74wldW+mU1UPpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'numpy.ndarray'>",
|
47 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAACwn9z0KsZyu/4g0r0oIFbAqQ5E/EFErr94ibz8AAAAAAACAP2u8Vb/AkgAtdIgiv4lPvjAAAIA/5wJxPpa/cz5sR3w+JtSFPhECkj77saQ+T9zBPhgw8j53hCU/AACAP82v9jyTb6OwENsKMlTn8bCUAlW/AAAgp2c5aD8AAAAAAACAP58ajT8AAAAAxMwevwAAgCYAAIA/tyWrPkkXrT4UJrM+vRG+PvBdzz5B6Ok+IaoJP5n7Kz9vKGw/AACAPxCUPDystLqwK9PlMJdfwTAFLVC/AADgJ40maD8AAAAAAACAP5Vzjz8AAAAAVv0hv6uqKqYAAIA/sseqPjO4rD6pw7I+U6m9PgXszj7CZ+k+gF4JPx+dKz8hjmw/AACAP8DpEj69wbowGxHNr6AYrrKzeY0/kF0XMZiNaT+rqiqmAACAP5DOTr8AtIeu5Fsbv2v4xK8AAIA/yY93PoNfej5akYE+SneJPvL5lT7hK6k+ISHHPinF+D5TdCg/AACAP/7sIz6IlTS8Q7h4PQqOIb1f4mo+DWC8PchzNb65EvW9AACAPzXUjj8AAAAAgkN1PwEAgD8AAAAA27nRPpYb1D7xh9s+x+noPigc/j7+UA8/IbIoP/O/Uj8AAIA/AACAP6w86T1qZACxpAP9MZ9K77HXF5E/QIm7L2jmbj8AAAAAAAAAAGk6Tb8A8CuttvUev2t1gq8AAIA/L110Pp0jdz7VyX8+vLCHPgcKlD59/KY+rY7EPpCO9T52fSQ/dz15P8wIfD3dKJq54HEwOggpvzo7OFK/oBlOOCwhdT7sfIk7AACAP4BFkT8A87w2fl1vPwverLgAAAAAfdFgPhhfYz40VGs+kqx5PrcyiD41oZk+5NW0PnHq4T6kGxs/AACAP08u6z3PgwEwEwgjsAC9ejB4PZE/AABQJ5hBbz8AAAAAAACAPy7YT78AAAAAlMAfv6uqKqUAAIA/nblzPi9+dj6dHn8+6VWHPu+mkz62jKY+GwvEPjLq9D4lLiY/AACAP0oYLz4BEOivK18ZMzFbCLLOL5E/KEETs5L/Ib/MvC6zAACAP7572zwVsE+zBv0Zv9XmEbAAAIA/Y5SlPsZ1pz4dUq0+0+K3PvieyD4C4+Q+rKMGPyPBJT+iRmc/AACAP1WP67z0sHSyPLvDM5gCcrAGRJE/sG6WsUp0Ir9LjK+zAACAPyFN0D5ITISy8Lsav6seBK8AAIA/eUixPuJLsz5Fkrk+KOLEPh3N1j4DS/I+lpkOP7TGMT8BoHQ/AACAPxgkCD6DGEswq7dAsfhlgzB8P5A/AEDgKs7NZj8AAAAAAACAP2wmT78AAEioPKshvwAABqoAAIA/ZcV1PuqPeD5xoYA+wXiIPj/klD6j8qc+a7DFPoj49j5XkCk/AACAP08R9z0LhBOx314bMtGpsTEoRZE/AACAJhpWbz8AAAAAAAAAADC9Vb8AAAAA8Cgiv6uq6qcAAIA/fdBwPpmMcz6nEnw+KLiFPobjkT6Hj6Q+wbPBPm/98T6X8yM/cyd1P9hUuzstQOowKiiusRQexLHFOE2/AAAwqNDDZz8AAAAAAACAP7qSjj8AAAAAqHwhv6uqKiYAAIA/KpGrPvWDrT6NlrM+EYm+PiDgzz4be+o+jgAKP5JnLD8ROGk/AACAP6sOBD4PSD6xkZUiMq18FTAzfo8/AADAJzQzbz8AAAAAAACAP7GdVL8AAAAAANMfv6uqKqcAAIA/Xw1zPvzPdT5Ran4+RPaGPpY+kz4CF6Y+j4DDPh099D5NKi4/AACAP9qo9j1D2h+xRJroMbHoLzGuRJE/AADgpw5Wbz8AAAAAAACAP368Vb8AAAAA/ogivwAAACcAAAAAr+ZwPgujcz7jKXw+e8SFPvnwkT6ynqQ+nMXBPrwT8j4zNCY/AACAP8ycAz5ZcAOy42YKM6afajJgsY4/DGhNMlAHbD+rqiqnAACAPwYvVL8AN8avgGOjPQN1IDIAAIA//QZ4PhHYej69z4E+e7mJPilClj5Wfak+A4HHPvI8+T71Pyo/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
48 |
+
},
|
49 |
+
"_episode_num": 643,
|
50 |
+
"use_sde": true,
|
51 |
+
"sde_sample_freq": -1,
|
52 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
53 |
+
"_stats_window_size": 100,
|
54 |
+
"ep_info_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEFzxYJVsDaMAWyUTUAGjAF0lEdAmB/i8nNPg3V9lChoBkfAUKq2b5M10mgHTUAGaAhHQJhAmWD6Fdt1fZQoaAZHwEoCfDk2gnNoB01ABmgIR0CYZIoNd7fIdX2UKGgGR8BI/Hk92X9jaAdNQAZoCEdAmGZzRQaaTnV9lChoBkfAQzkCcPOIImgHTUAGaAhHQJh2E7A+IM11fZQoaAZHwEYxGEwnH/9oB01ABmgIR0CYdlGlhw2mdX2UKGgGR8BPedonKGL2aAdNQAZoCEdAmJ7JlSS/03V9lChoBkfAUGt8VpKzzGgHTUAGaAhHQJiuwyzolld1fZQoaAZHwEf0BXjlxOtoB01ABmgIR0CYw2g9Net0dX2UKGgGR8BH6LMcIZ62aAdNQAZoCEdAmPfyu2Zy/HV9lChoBkfARprB/I8yOGgHTUAGaAhHQJkMZomG/N91fZQoaAZHwEkkjUNKAaxoB01ABmgIR0CZG8abWmP6dX2UKGgGR8BPwrYXfqHHaAdNQAZoCEdAmRzkDlo11nV9lChoBkfASSrtG/etS2gHTUAGaAhHQJlDlmyxA0N1fZQoaAZHwEX3bM5fdARoB01ABmgIR0CZZTlnyup0dX2UKGgGR8BKlSrYGt6paAdNQAZoCEdAmZmje0ojOnV9lChoBkfARszkIX0oSmgHTUAGaAhHQJni/3dsSCh1fZQoaAZHwEHvvbXYlIFoB01ABmgIR0CaBbLl3hXKdX2UKGgGR8BGOjHOryUcaAdNQAZoCEdAmiiMzuWrwXV9lChoBkfAQc1YQrc0tWgHTUAGaAhHQJoqM2kzoEB1fZQoaAZHwEb8ep4rz5JoB01ABmgIR0CaOiIHC4z8dX2UKGgGR8BNI/QSi/O/aAdNQAZoCEdAmjp9fkWAPXV9lChoBkfARgyuMdcSoWgHTUAGaAhHQJph9aA4GUx1fZQoaAZHwElAf7rLQoloB01ABmgIR0Cacfjwx33YdX2UKGgGR8BIx9lNDc/MaAdNQAZoCEdAmoUXZK3/gnV9lChoBkfARzHX5FgDzWgHTUAGaAhHQJq6/CYTkAB1fZQoaAZHwEX7TVDrqt5oB01ABmgIR0Caz1dPtUn5dX2UKGgGR8BIvRAjY7JXaAdNQAZoCEdAmt802Hck+3V9lChoBkfATJA0sOG0u2gHTUAGaAhHQJrgL6UJOWV1fZQoaAZHwE0AgctGus9oB01ABmgIR0CbBYEzfrKOdX2UKGgGR8BDyDPOY6XCaAdNQAZoCEdAmyit6gM+eXV9lChoBkfAQ53tBv73wmgHTUAGaAhHQJte71AZ88d1fZQoaAZHwECrkNnXd0toB01ABmgIR0Cbp+rELpiadX2UKGgGR8BN5BX8wYceaAdNQAZoCEdAm8zZJsfq5nV9lChoBkfAUYFK3/givGgHTUAGaAhHQJvzBLytmth1fZQoaAZHwEV65YHPeHloB01ABmgIR0Cb9LbSqlxfdX2UKGgGR8BG3ZqVQhwEaAdNQAZoCEdAnALSeyzHCHV9lChoBkfARQF0xM36ymgHTUAGaAhHQJwDEtZmqYJ1fZQoaAZHwER/zDn/1g9oB01ABmgIR0CcK2t4zJp4dX2UKGgGR8BCQrQw9JSSaAdNQAZoCEdAnDoqz7di2HV9lChoBkfAQ7DjNpudgGgHTUAGaAhHQJxNDuw5eZ51fZQoaAZHwEOzxTbWVeNoB01ABmgIR0CcgDOLzf78dX2UKGgGR8BCTTXjENvwaAdNQAZoCEdAnJWpSWJJoXV9lChoBkfAQtA/gR9PUWgHTUAGaAhHQJykQjJMg2Z1fZQoaAZHwEG1UBnzxw1oB01ABmgIR0CcpT4YJmdzdX2UKGgGR8A+BJT2nKnvaAdNQAZoCEdAnMocRUWEb3V9lChoBkfATw7+kxh2GWgHTUAGaAhHQJzp7ufEn9h1fZQoaAZHwEKQaBqbjLloB01ABmgIR0CdIDs90RvndX2UKGgGR8A/kh4+r2g4aAdNQAZoCEdAnWOQVbiZOXV9lChoBkfAPsw3tKIznGgHTUAGaAhHQJ2IlyYG+sZ1fZQoaAZHwD3FOuaF23doB01ABmgIR0Cdq8r8R+SbdX2UKGgGR8BSU0HdGiHqaAdNQAZoCEdAna1r0Bfa6HV9lChoBkfARSCVW0Z3tGgHTUAGaAhHQJ29DCXQdCF1fZQoaAZHwDhSXUpd8iRoB01ABmgIR0CdvVhbGFSLdX2UKGgGR8BYTtH+ZPVNaAdLYWgIR0Cdvm779AHFdX2UKGgGR8BAEim2sq8UaAdNQAZoCEdAneO+8PFvRHV9lChoBkfAPaEqhDgIhWgHTUAGaAhHQJ3ybgwXZXd1fZQoaAZHwD/q2x6fJ3hoB01ABmgIR0CeAT3N9ph4dX2UKGgGR8BA4TsyBTXKaAdNQAZoCEdAnjaX/1g6VHV9lChoBkfAQZoAdXDFZWgHTUAGaAhHQJ5KF01ZTyd1fZQoaAZHwE/s3S8an75oB01ABmgIR0CeW75d4VyndX2UKGgGR8BAG+7cwg1WaAdNQAZoCEdAnlzW4d6syXV9lChoBkfAQOXfl6qsEWgHTUAGaAhHQJ59vps41gp1fZQoaAZHwEL4Az544ZNoB01ABmgIR0Ceom2OAAhjdX2UKGgGR8BCzVqesgdPaAdNQAZoCEdAntk/BvaURnV9lChoBkfASKI3WFvhqGgHTUAGaAhHQJ8bdQl8gIR1fZQoaAZHwFUN6hQFcIJoB01ABmgIR0CfQCnF5v9+dX2UKGgGR8BCfmoJiRW+aAdNQAZoCEdAn2C034sVcnV9lChoBkfAN5DuF6AvtmgHTUAGaAhHQJ91CY/mknF1fZQoaAZHwEKVq6e5Fw1oB01ABmgIR0CfdU08vEjxdX2UKGgGR8BByN0FKTStaAdNQAZoCEdAn3ZzIV/MGHV9lChoBkfAN+x0uDjBEmgHTUAGaAhHQJ+WgrYoRZl1fZQoaAZHwDsL1rZamoBoB01ABmgIR0Cfq4xsEaESdX2UKGgGR8A9IbYbsF+vaAdNQAZoCEdAn7qhr8BMjHV9lChoBkfARmF3hXKbKGgHTUAGaAhHQJ/wg8/2TPl1fZQoaAZHwEzVeLvTgEVoB01ABmgIR0CgAlWdmQKbdX2UKGgGR8BAkYDDCP6saAdNQAZoCEdAoAtEIC2c8XV9lChoBkfAP/kliSaEz2gHTUAGaAhHQKAMHxiG34N1fZQoaAZHwEAdZaFEiMZoB01ABmgIR0CgHPI6jnFHdX2UKGgGR8BB8QLeANG3aAdNQAZoCEdAoC8Ao3JgcHV9lChoBkfAVJ7yWiUPhGgHTUAGaAhHQKBKTGWldkd1fZQoaAZHwFZqdwvQF9toB01ABmgIR0CgbHcDB/I9dX2UKGgGR8BE6RXGOuJUaAdNQAZoCEdAoH4RGe+VT3V9lChoBkfARvCg00m+kGgHTUAGaAhHQKCPVt1IRRN1fZQoaAZHwEExFPznRsxoB01ABmgIR0Cgmh6Lfk3kdX2UKGgGR8BG5VC5VfeDaAdNQAZoCEdAoJpZiTdLx3V9lChoBkfAQVhDVpblimgHTUAGaAhHQKCbOmYSg5B1fZQoaAZHwF4MjLjghr5oB007AmgIR0Cgm6kV32VWdX2UKGgGR8Bic8HjZL7GaAdNHARoCEdAoKV72i+L33V9lChoBkfAXdVmDlHSW2gHS05oCEdAoK5qrxRVInV9lChoBkfARIXHo5ggHWgHTUAGaAhHQKCupigCfYl1fZQoaAZHwEFBYukDZDloB01ABmgIR0Cgt6bpu/DcdX2UKGgGR8BdLN5D7ZWaaAdLPGgIR0Cgt6tayKNydX2UKGgGR8Blwu9SMtK7aAdNXAVoCEdAoLhVj/dZaHV9lChoBkfAW1ktkFwDNmgHTYYBaAhHQKC4aOwPiDN1fZQoaAZHwDPTAeq7yx1oB01ABmgIR0CgwWGy5Zr6dX2UKGgGR8A74jPOY6XCaAdNQAZoCEdAoOhb6YVqOHV9lChoBkfAUQMRBeHBUWgHTUAGaAhHQKDwawHqu8t1fZQoaAZHwGj17YChew9oB018BWgIR0Cg+vTnq3VkdX2UKGgGR8A0eakAPuohaAdNQAZoCEdAoQQ2dXko4XVlLg=="
|
57 |
+
},
|
58 |
+
"ep_success_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
61 |
+
},
|
62 |
+
"_n_updates": 30720,
|
63 |
+
"observation_space": {
|
64 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
65 |
+
":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
66 |
+
"dtype": "float32",
|
67 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
68 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
69 |
+
"_shape": [
|
70 |
+
24
|
71 |
+
],
|
72 |
+
"low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
73 |
+
"high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
74 |
+
"low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
75 |
+
"high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
76 |
+
"_np_random": null
|
77 |
+
},
|
78 |
+
"action_space": {
|
79 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
80 |
+
":serialized:": "gAWVSQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQHdg1v4HdDctYSRADeIkFU4wDaW5jlIoQMw7CWAStVoBimj/659hGA3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
81 |
+
"dtype": "float32",
|
82 |
+
"bounded_below": "[ True True True True]",
|
83 |
+
"bounded_above": "[ True True True True]",
|
84 |
+
"_shape": [
|
85 |
+
4
|
86 |
+
],
|
87 |
+
"low": "[-1. -1. -1. -1.]",
|
88 |
+
"high": "[1. 1. 1. 1.]",
|
89 |
+
"low_repr": "-1.0",
|
90 |
+
"high_repr": "1.0",
|
91 |
+
"_np_random": "Generator(PCG64)"
|
92 |
+
},
|
93 |
+
"n_envs": 16,
|
94 |
+
"buffer_size": 300000,
|
95 |
+
"batch_size": 256,
|
96 |
+
"learning_starts": 10000,
|
97 |
+
"tau": 0.02,
|
98 |
+
"gamma": 0.98,
|
99 |
+
"gradient_steps": 64,
|
100 |
+
"optimize_memory_usage": false,
|
101 |
+
"replay_buffer_class": {
|
102 |
+
":type:": "<class 'abc.ABCMeta'>",
|
103 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
104 |
+
"__module__": "stable_baselines3.common.buffers",
|
105 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
106 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
107 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7964a09a3d00>",
|
108 |
+
"add": "<function ReplayBuffer.add at 0x7964a09a3d90>",
|
109 |
+
"sample": "<function ReplayBuffer.sample at 0x7964a09a3e20>",
|
110 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7964a09a3eb0>",
|
111 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7964a09a3f40>)>",
|
112 |
+
"__abstractmethods__": "frozenset()",
|
113 |
+
"_abc_impl": "<_abc._abc_data object at 0x7964a09b3280>"
|
114 |
+
},
|
115 |
+
"replay_buffer_kwargs": {},
|
116 |
+
"train_freq": {
|
117 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
118 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLQGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
119 |
+
},
|
120 |
+
"use_sde_at_warmup": false,
|
121 |
+
"target_entropy": -4.0,
|
122 |
+
"ent_coef": "auto",
|
123 |
+
"target_update_interval": 1,
|
124 |
+
"lr_schedule": {
|
125 |
+
":type:": "<class 'function'>",
|
126 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
127 |
+
},
|
128 |
+
"batch_norm_stats": [],
|
129 |
+
"batch_norm_stats_target": []
|
130 |
+
}
|
sac-BipedalWalker-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76e5c62689cd0f285ee0fd26a2870541ddd08258db0c50e63216c88447c773b5
|
3 |
+
size 1940
|
sac-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc60b0553ca0ae488948c9b8064f4ee18a9def4cc0ae2c8af74ade64a22a7ea4
|
3 |
+
size 2656313
|
sac-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:936ca3d86e3e5182a363a5322c2ca0c1325288f169824a8e7afe56b5e6800645
|
3 |
+
size 1180
|
sac-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.2.1
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:769741094ceffa237f1550917f9ca3e852a36319e9bb46cf8ccbad427b7fde7e
|
3 |
+
size 2911
|