PyTorch
English
internlm2
code
custom_code
GeoPixel-7B-RES / geopixel.py
AkashahS's picture
Upload folder using huggingface_hub
1af05d0 verified
from typing import List, Optional, Tuple, Union
import os
import torch
import numpy as np
import torch.nn as nn
import matplotlib.pyplot as plt
from PIL import Image
import torch.nn.functional as F
from transformers.modeling_outputs import CausalLMOutputWithPast
from model.IXC.modeling_internlm_xcomposer2 import InternLMXComposer2ForCausalLM
from model.IXC.modeling_internlm2 import InternLM2Model
from model.sam2.build_sam import build_sam2_hf
from model.sam2.utils.transforms import SAM2Transforms
from transformers import TextStreamer
try:
from transformers.generation.streamers import BaseStreamer
except: # noqa # pylint: disable=bare-except
BaseStreamer = None
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
scale=1000, # 100000.0,
eps=1e-6,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1, 2)
targets = targets.flatten(1, 2)
numerator = 2 * (inputs / scale * targets).sum(-1)
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
loss = 1 - (numerator + eps) / (denominator + eps)
loss = loss.sum() / (num_masks + 1e-8)
return loss
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
return loss
class GeoPixelMetaModel:
def __init__(
self,
config,
**kwargs,
):
super(GeoPixelMetaModel, self).__init__(config)
self.config = config
self.config.train_mask_decoder = getattr(self.config, "train_mask_decoder", kwargs.get("train_mask_decoder", False))
self.config.out_dim = getattr(self.config, "out_dim", kwargs.get("out_dim", 256))
self.vision_pretrained = kwargs.get("vision_pretrained", None)
self.initialize_geopixel_modules(self.config)
def initialize_geopixel_modules(self, config):
# grounding vision model
self.visual_model = build_sam2_hf(self.vision_pretrained)
self._transform = SAM2Transforms(
resolution=self.visual_model.image_size,
mask_threshold=0.0,
max_hole_area=0.0,
max_sprinkle_area=0.0,
)
# Spatial dim for backbone feature maps
self._bb_feat_sizes = [
(256, 256),
(128, 128),
(64, 64),
]
for param in self.visual_model.parameters():
param.requires_grad = False
if config.train_mask_decoder:
self.visual_model.sam_mask_decoder.train()
for param in self.visual_model.sam_mask_decoder.parameters():
param.requires_grad = True
# text projection layer
in_dim = config.hidden_size
out_dim = config.out_dim
text_projection_layers = [
nn.Linear(in_dim, in_dim),
nn.ReLU(inplace=True),
nn.Linear(in_dim, out_dim),
nn.Dropout(0.0),
]
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_projection_layers)])
self.text_hidden_fcs.train()
for param in self.text_hidden_fcs.parameters():
param.requires_grad = True
class GeoPixelModel(GeoPixelMetaModel, InternLM2Model):
def __init__(
self,
config,
**kwargs,
):
super(GeoPixelModel, self).__init__(config, **kwargs)
self.config.use_cache = False
class GeoPixelForCausalLM(InternLMXComposer2ForCausalLM):
def __init__(self,config,**kwargs,):
self.ce_loss_weight = kwargs.pop("ce_loss_weight", None)
self.dice_loss_weight = kwargs.pop("dice_loss_weight", None)
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
self.seg_token_idx = kwargs.pop("seg_token_idx")
super().__init__(config)
self.model = GeoPixelModel(config, **kwargs)
self.vocab_size = config.vocab_size
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def encode_g_img(self, image):
"""
Calculates the image embeddings for the provided image
Arguments:
image (np.ndarray or str)
"""
if image is None:
return None
if isinstance(image, str):
_, ext = os.path.splitext(image)
if ext.lower() in {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp','.tif'}:
image = Image.open(image)
w, h = image.size
_orig_hw = [(h, w)]
else:
print ('Unknow input format', image)
return None
else:
assert isinstance(image, torch.Tensor)
_orig_hw = [image.shape[:2]]
image = self.model._transform(image)
image = image[None, ...].to(self.device)
assert ( len(image.shape) == 4 and image.shape[1] == 3), f"image must be of size 1x3xHxW, got {image.shape}"
features = self.get_visual_embs(image)
return features,_orig_hw
def get_visual_embs(self, img_batch: torch.FloatTensor):
with torch.no_grad():
torch.cuda.empty_cache()
img_batch = img_batch.to(self.device)
batch_size = img_batch.shape[0]
assert (
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
), f"grounding_img_batch must be of size Bx3xHxW, got {img_batch.shape}"
backbone_out = self.model.visual_model.forward_image(img_batch)
_, vision_feats, _, _ = self.model.visual_model._prepare_backbone_features(backbone_out)
if self.model.visual_model.directly_add_no_mem_embed:
vision_feats[-1] = vision_feats[-1] + self.model.visual_model.no_mem_embed
feats = [
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
for feat, feat_size in zip(vision_feats[::-1], self.model._bb_feat_sizes[::-1])
][::-1]
features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
return features
def forward(self, **kwargs):
return super().forward(**kwargs) if "past_key_values" in kwargs else self.model_forward(**kwargs)
def model_forward(
self,
inference: bool = False,
**kwargs,
):
samples = kwargs.get('samples', None)
if samples and samples['data_type'][0] == 'grounding':
kwargs['output_hidden_states'] = True
kwargs['use_cache'] = False
torch.cuda.empty_cache()
outputs = super().forward(**kwargs)
if inference:
assert len(samples['text_input']) == 1 and len(samples['image'][0]) == 1 #single image and single query
output_hidden_states = [outputs.hidden_states]
outputs = None
else:
output_hidden_states = outputs.hidden_states
hidden_states = []
assert len(self.model.text_hidden_fcs) == 1
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states[-1]))
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
seg_token_mask = outputs.seg_token_mask
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
image_g_batch = torch.cat(samples['image_g'][0],dim = 0)
image_g_features = self.get_visual_embs(image_g_batch)
ori_hw = samples['ori_hw'][0]
all_pred_masks = []
for i in range(len(pred_embeddings)): #(bs,)
if (pred_embeddings[i].numel()== 0):
pred_masks.append([])
continue
(sparse_embeddings, dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
points=None,
boxes=None,
masks=None,
text_embeds=pred_embeddings[i].unsqueeze(1),
)
batch_mode = (pred_embeddings[i].shape[0]>1)
high_res_features = [
feat_level[i].unsqueeze(0)
for feat_level in image_g_features["high_res_feats"]
]
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
image_embeddings=image_g_embeds,
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
repeat_image=batch_mode,
multimask_output=False,
high_res_features=high_res_features,
)
pred_masks = self.model._transform.postprocess_masks(
low_res_masks,
ori_hw[i],
)
all_pred_masks.append(pred_masks[:, 0])
model_output = outputs
gt_masks = samples['masks'][0]
pred_masks = all_pred_masks
if inference:
return {
"pred_masks": pred_masks,
"gt_masks": gt_masks,
}
ce_loss = model_output.loss
ce_loss = ce_loss * self.ce_loss_weight
mask_bce_loss = 0
mask_dice_loss = 0
num_masks = 0
for batch_idx in range(len(pred_masks)): # for every image
cur_gt_masks = torch.stack(
[
torch.from_numpy(gt_mask).to(dtype=pred_masks[batch_idx].dtype, device=pred_masks[batch_idx].device)
for gt_mask in gt_masks[batch_idx]
],
dim=0
) # expected (bs,H,W)
cur_pred_masks = pred_masks[batch_idx]
assert (
cur_gt_masks.shape[0] == cur_pred_masks.shape[0]
), "gt_masks.shape: {}, pred_masks.shape: {}".format(
cur_gt_masks.shape, cur_pred_masks.shape
)
mask_bce_loss += (
sigmoid_ce_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
* cur_gt_masks.shape[0]
)
mask_dice_loss += (
dice_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
* cur_gt_masks.shape[0]
)
num_masks += cur_gt_masks.shape[0]
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
mask_loss = mask_bce_loss + mask_dice_loss
loss = ce_loss + mask_loss
outputs = CausalLMOutputWithPast(
loss=loss,
logits=model_output.logits,
past_key_values=model_output.past_key_values,
hidden_states=output_hidden_states,
attentions=model_output.attentions,
)
outputs.ce_loss = ce_loss
outputs.mask_bce_loss = mask_bce_loss
outputs.mask_dice_loss = mask_dice_loss
outputs.mask_loss = mask_loss
else:
outputs = super().forward(**kwargs)
return outputs
def evaluate(
self,
tokenizer,
query: str,
images: List[Tuple[str, str]] = [],
hd_num: int = 9,
history: List[Tuple[str, str]] = [],
max_new_tokens: int = 1024,
stream: bool = False,
**kwargs,
):
with torch.no_grad():
inputs, im_mask, _ = self.interleav_wrap_chat(query, images, history=history, hd_num=hd_num)
inputs = {
k: v.to(self.device)
for k, v in inputs.items() if torch.is_tensor(v)
}
eos_token_id = [
tokenizer.eos_token_id,
#tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
]
all_pred_masks = []
if stream:
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
else:
streamer = None
outputs = self.generate(
**inputs,
max_new_tokens=max_new_tokens,
im_mask=im_mask,
input_ids = None,
streamer= streamer,
num_beams=1,
do_sample=False,
temperature=1.0,
top_p= 1.0,
top_k = 0,
eos_token_id=eos_token_id,
repetition_penalty=1.0,
infer_mode = 'base',
output_hidden_states=True,
return_dict_in_generate=True,
**kwargs,
)
output_ids = outputs['sequences']
response = tokenizer.decode(output_ids[0].cpu().tolist(), skip_special_tokens=True)
response = response.replace("[UNUSED_TOKEN_145]","")
history = history + [(query, response)]
if len(images)==1 and isinstance(images[0], str):
output_hidden_states = outputs.hidden_states[-1]
seg_token_mask = output_ids[:, 1:-1] == self.seg_token_idx
inputs_embeds_len = inputs['inputs_embeds'].size(1)
seg_token_mask = torch.cat(
[
torch.zeros((seg_token_mask.shape[0], inputs_embeds_len)).bool().cuda(),
seg_token_mask,
],
dim=1,
)
hidden_states = []
assert len(self.model.text_hidden_fcs) == 1
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
image_g_features, ori_hw = self.encode_g_img(images[0])
for i in range(len(pred_embeddings)):
if (pred_embeddings[i].numel()== 0):
all_pred_masks.append([])
continue
(sparse_embeddings,dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
points=None,
boxes=None,
masks=None,
text_embeds=pred_embeddings[i].unsqueeze(1),
)
batch_mode = (pred_embeddings[i].shape[0]>1)
high_res_features = [
feat_level[i].unsqueeze(0)
for feat_level in image_g_features["high_res_feats"]
]
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
image_embeddings=image_g_embeds,
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
repeat_image=batch_mode,
multimask_output=False,
high_res_features=high_res_features,
)
pred_masks = self.model._transform.postprocess_masks(
low_res_masks,
ori_hw[i],
)
all_pred_masks.append(pred_masks[:, 0])
return response, all_pred_masks