Upload folder using huggingface_hub
Browse files- added_tokens.json +11 -0
- config.json +39 -0
- configuration_internlm_xcomposer2.py +150 -0
- generation_config.json +9 -0
- geopixel.py +418 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- special_tokens_map.json +32 -0
- tokenization_internlm2.py +236 -0
- tokenizer.model +3 -0
- tokenizer_config.json +99 -0
added_tokens.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</p>": 92552,
|
3 |
+
"<p>": 92551,
|
4 |
+
"<|action_end|>": 92547,
|
5 |
+
"<|action_start|>": 92546,
|
6 |
+
"<|im_end|>": 92545,
|
7 |
+
"<|im_start|>": 92544,
|
8 |
+
"<|interpreter|>": 92548,
|
9 |
+
"<|plugin|>": 92549,
|
10 |
+
"[SEG]": 92550
|
11 |
+
}
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "MBZUAI/GeoPixel-7B-RES",
|
3 |
+
"architectures": [
|
4 |
+
"GeoPixelForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_implementation": "flash_attention_2",
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
|
9 |
+
"AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
|
10 |
+
"AutoModelForCausalLM": "geopixel.GeoPixelForCausalLM"
|
11 |
+
},
|
12 |
+
"bias": false,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 14336,
|
19 |
+
"max_length": 16384,
|
20 |
+
"max_position_embeddings": 24576,
|
21 |
+
"model_type": "internlm2",
|
22 |
+
"num_attention_heads": 32,
|
23 |
+
"num_hidden_layers": 32,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"out_dim": 256,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"rms_norm_eps": 1e-05,
|
28 |
+
"rope_scaling": {
|
29 |
+
"factor": 2.0,
|
30 |
+
"type": "dynamic"
|
31 |
+
},
|
32 |
+
"rope_theta": 1000000,
|
33 |
+
"tie_word_embeddings": false,
|
34 |
+
"torch_dtype": "bfloat16",
|
35 |
+
"train_mask_decoder": true,
|
36 |
+
"transformers_version": "4.33.2",
|
37 |
+
"use_cache": false,
|
38 |
+
"vocab_size": 92553
|
39 |
+
}
|
configuration_internlm_xcomposer2.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" InternLM2 model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
class InternLMXcomposer2Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
56 |
+
`num_attention_heads`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to tie weight embeddings
|
71 |
+
Example:
|
72 |
+
|
73 |
+
"""
|
74 |
+
model_type = "internlm2"
|
75 |
+
_auto_class = "AutoConfig"
|
76 |
+
|
77 |
+
def __init__( # pylint: disable=W0102
|
78 |
+
self,
|
79 |
+
vocab_size=103168,
|
80 |
+
hidden_size=4096,
|
81 |
+
intermediate_size=11008,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_attention_heads=32,
|
84 |
+
num_key_value_heads=None,
|
85 |
+
hidden_act="silu",
|
86 |
+
max_position_embeddings=2048,
|
87 |
+
initializer_range=0.02,
|
88 |
+
rms_norm_eps=1e-6,
|
89 |
+
use_cache=False,
|
90 |
+
pad_token_id=0,
|
91 |
+
bos_token_id=1,
|
92 |
+
eos_token_id=2,
|
93 |
+
tie_word_embeddings=False,
|
94 |
+
bias=True,
|
95 |
+
rope_theta=10000,
|
96 |
+
rope_scaling=None,
|
97 |
+
attn_implementation="flash_attention_2",
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
self.vocab_size = vocab_size
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_hidden_layers = num_hidden_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.bias = bias
|
107 |
+
|
108 |
+
if num_key_value_heads is None:
|
109 |
+
num_key_value_heads = num_attention_heads
|
110 |
+
self.num_key_value_heads = num_key_value_heads
|
111 |
+
|
112 |
+
self.hidden_act = hidden_act
|
113 |
+
self.initializer_range = initializer_range
|
114 |
+
self.rms_norm_eps = rms_norm_eps
|
115 |
+
self.use_cache = use_cache
|
116 |
+
self.rope_theta = rope_theta
|
117 |
+
self.rope_scaling = rope_scaling
|
118 |
+
self._rope_scaling_validation()
|
119 |
+
|
120 |
+
self.attn_implementation = attn_implementation
|
121 |
+
if self.attn_implementation is None:
|
122 |
+
self.attn_implementation = "flash_attention_2"
|
123 |
+
super().__init__(
|
124 |
+
pad_token_id=pad_token_id,
|
125 |
+
bos_token_id=bos_token_id,
|
126 |
+
eos_token_id=eos_token_id,
|
127 |
+
tie_word_embeddings=tie_word_embeddings,
|
128 |
+
**kwargs,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _rope_scaling_validation(self):
|
132 |
+
"""
|
133 |
+
Validate the `rope_scaling` configuration.
|
134 |
+
"""
|
135 |
+
if self.rope_scaling is None:
|
136 |
+
return
|
137 |
+
|
138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
139 |
+
raise ValueError(
|
140 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
141 |
+
f"got {self.rope_scaling}"
|
142 |
+
)
|
143 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
144 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
145 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
146 |
+
raise ValueError(
|
147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
148 |
+
)
|
149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 16384,
|
6 |
+
"pad_token_id": 2,
|
7 |
+
"transformers_version": "4.33.2",
|
8 |
+
"use_cache": false
|
9 |
+
}
|
geopixel.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import torch.nn as nn
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from PIL import Image
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11 |
+
from model.IXC.modeling_internlm_xcomposer2 import InternLMXComposer2ForCausalLM
|
12 |
+
from model.IXC.modeling_internlm2 import InternLM2Model
|
13 |
+
from model.sam2.build_sam import build_sam2_hf
|
14 |
+
from model.sam2.utils.transforms import SAM2Transforms
|
15 |
+
from transformers import TextStreamer
|
16 |
+
try:
|
17 |
+
from transformers.generation.streamers import BaseStreamer
|
18 |
+
except: # noqa # pylint: disable=bare-except
|
19 |
+
BaseStreamer = None
|
20 |
+
|
21 |
+
|
22 |
+
def dice_loss(
|
23 |
+
inputs: torch.Tensor,
|
24 |
+
targets: torch.Tensor,
|
25 |
+
num_masks: float,
|
26 |
+
scale=1000, # 100000.0,
|
27 |
+
eps=1e-6,
|
28 |
+
):
|
29 |
+
"""
|
30 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
31 |
+
Args:
|
32 |
+
inputs: A float tensor of arbitrary shape.
|
33 |
+
The predictions for each example.
|
34 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
35 |
+
classification label for each element in inputs
|
36 |
+
(0 for the negative class and 1 for the positive class).
|
37 |
+
"""
|
38 |
+
inputs = inputs.sigmoid()
|
39 |
+
inputs = inputs.flatten(1, 2)
|
40 |
+
targets = targets.flatten(1, 2)
|
41 |
+
numerator = 2 * (inputs / scale * targets).sum(-1)
|
42 |
+
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
|
43 |
+
loss = 1 - (numerator + eps) / (denominator + eps)
|
44 |
+
loss = loss.sum() / (num_masks + 1e-8)
|
45 |
+
return loss
|
46 |
+
|
47 |
+
|
48 |
+
def sigmoid_ce_loss(
|
49 |
+
inputs: torch.Tensor,
|
50 |
+
targets: torch.Tensor,
|
51 |
+
num_masks: float,
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
Args:
|
55 |
+
inputs: A float tensor of arbitrary shape.
|
56 |
+
The predictions for each example.
|
57 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
58 |
+
classification label for each element in inputs
|
59 |
+
(0 for the negative class and 1 for the positive class).
|
60 |
+
Returns:
|
61 |
+
Loss tensor
|
62 |
+
"""
|
63 |
+
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
64 |
+
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
|
65 |
+
return loss
|
66 |
+
|
67 |
+
|
68 |
+
class GeoPixelMetaModel:
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
config,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
super(GeoPixelMetaModel, self).__init__(config)
|
75 |
+
self.config = config
|
76 |
+
self.config.train_mask_decoder = getattr(self.config, "train_mask_decoder", kwargs.get("train_mask_decoder", False))
|
77 |
+
self.config.out_dim = getattr(self.config, "out_dim", kwargs.get("out_dim", 256))
|
78 |
+
self.vision_pretrained = kwargs.get("vision_pretrained", None)
|
79 |
+
self.initialize_geopixel_modules(self.config)
|
80 |
+
|
81 |
+
def initialize_geopixel_modules(self, config):
|
82 |
+
# grounding vision model
|
83 |
+
self.visual_model = build_sam2_hf(self.vision_pretrained)
|
84 |
+
|
85 |
+
self._transform = SAM2Transforms(
|
86 |
+
resolution=self.visual_model.image_size,
|
87 |
+
mask_threshold=0.0,
|
88 |
+
max_hole_area=0.0,
|
89 |
+
max_sprinkle_area=0.0,
|
90 |
+
)
|
91 |
+
# Spatial dim for backbone feature maps
|
92 |
+
self._bb_feat_sizes = [
|
93 |
+
(256, 256),
|
94 |
+
(128, 128),
|
95 |
+
(64, 64),
|
96 |
+
]
|
97 |
+
|
98 |
+
for param in self.visual_model.parameters():
|
99 |
+
param.requires_grad = False
|
100 |
+
|
101 |
+
if config.train_mask_decoder:
|
102 |
+
self.visual_model.sam_mask_decoder.train()
|
103 |
+
for param in self.visual_model.sam_mask_decoder.parameters():
|
104 |
+
param.requires_grad = True
|
105 |
+
|
106 |
+
# text projection layer
|
107 |
+
in_dim = config.hidden_size
|
108 |
+
out_dim = config.out_dim
|
109 |
+
text_projection_layers = [
|
110 |
+
nn.Linear(in_dim, in_dim),
|
111 |
+
nn.ReLU(inplace=True),
|
112 |
+
nn.Linear(in_dim, out_dim),
|
113 |
+
nn.Dropout(0.0),
|
114 |
+
]
|
115 |
+
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_projection_layers)])
|
116 |
+
self.text_hidden_fcs.train()
|
117 |
+
for param in self.text_hidden_fcs.parameters():
|
118 |
+
param.requires_grad = True
|
119 |
+
|
120 |
+
|
121 |
+
class GeoPixelModel(GeoPixelMetaModel, InternLM2Model):
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
config,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
super(GeoPixelModel, self).__init__(config, **kwargs)
|
128 |
+
self.config.use_cache = False
|
129 |
+
|
130 |
+
|
131 |
+
class GeoPixelForCausalLM(InternLMXComposer2ForCausalLM):
|
132 |
+
def __init__(self,config,**kwargs,):
|
133 |
+
|
134 |
+
self.ce_loss_weight = kwargs.pop("ce_loss_weight", None)
|
135 |
+
self.dice_loss_weight = kwargs.pop("dice_loss_weight", None)
|
136 |
+
self.bce_loss_weight = kwargs.pop("bce_loss_weight", None)
|
137 |
+
self.seg_token_idx = kwargs.pop("seg_token_idx")
|
138 |
+
|
139 |
+
super().__init__(config)
|
140 |
+
self.model = GeoPixelModel(config, **kwargs)
|
141 |
+
self.vocab_size = config.vocab_size
|
142 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
143 |
+
self.post_init()
|
144 |
+
|
145 |
+
def encode_g_img(self, image):
|
146 |
+
"""
|
147 |
+
Calculates the image embeddings for the provided image
|
148 |
+
Arguments:
|
149 |
+
image (np.ndarray or str)
|
150 |
+
"""
|
151 |
+
if image is None:
|
152 |
+
return None
|
153 |
+
if isinstance(image, str):
|
154 |
+
_, ext = os.path.splitext(image)
|
155 |
+
if ext.lower() in {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp','.tif'}:
|
156 |
+
image = Image.open(image)
|
157 |
+
w, h = image.size
|
158 |
+
_orig_hw = [(h, w)]
|
159 |
+
else:
|
160 |
+
print ('Unknow input format', image)
|
161 |
+
return None
|
162 |
+
else:
|
163 |
+
assert isinstance(image, torch.Tensor)
|
164 |
+
_orig_hw = [image.shape[:2]]
|
165 |
+
image = self.model._transform(image)
|
166 |
+
image = image[None, ...].to(self.device)
|
167 |
+
assert ( len(image.shape) == 4 and image.shape[1] == 3), f"image must be of size 1x3xHxW, got {image.shape}"
|
168 |
+
features = self.get_visual_embs(image)
|
169 |
+
return features,_orig_hw
|
170 |
+
|
171 |
+
def get_visual_embs(self, img_batch: torch.FloatTensor):
|
172 |
+
with torch.no_grad():
|
173 |
+
torch.cuda.empty_cache()
|
174 |
+
img_batch = img_batch.to(self.device)
|
175 |
+
batch_size = img_batch.shape[0]
|
176 |
+
assert (
|
177 |
+
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
|
178 |
+
), f"grounding_img_batch must be of size Bx3xHxW, got {img_batch.shape}"
|
179 |
+
backbone_out = self.model.visual_model.forward_image(img_batch)
|
180 |
+
_, vision_feats, _, _ = self.model.visual_model._prepare_backbone_features(backbone_out)
|
181 |
+
if self.model.visual_model.directly_add_no_mem_embed:
|
182 |
+
vision_feats[-1] = vision_feats[-1] + self.model.visual_model.no_mem_embed
|
183 |
+
feats = [
|
184 |
+
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
|
185 |
+
for feat, feat_size in zip(vision_feats[::-1], self.model._bb_feat_sizes[::-1])
|
186 |
+
][::-1]
|
187 |
+
features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
188 |
+
return features
|
189 |
+
|
190 |
+
def forward(self, **kwargs):
|
191 |
+
return super().forward(**kwargs) if "past_key_values" in kwargs else self.model_forward(**kwargs)
|
192 |
+
|
193 |
+
def model_forward(
|
194 |
+
self,
|
195 |
+
inference: bool = False,
|
196 |
+
**kwargs,
|
197 |
+
):
|
198 |
+
samples = kwargs.get('samples', None)
|
199 |
+
if samples and samples['data_type'][0] == 'grounding':
|
200 |
+
kwargs['output_hidden_states'] = True
|
201 |
+
kwargs['use_cache'] = False
|
202 |
+
|
203 |
+
torch.cuda.empty_cache()
|
204 |
+
outputs = super().forward(**kwargs)
|
205 |
+
|
206 |
+
if inference:
|
207 |
+
assert len(samples['text_input']) == 1 and len(samples['image'][0]) == 1 #single image and single query
|
208 |
+
output_hidden_states = [outputs.hidden_states]
|
209 |
+
outputs = None
|
210 |
+
else:
|
211 |
+
output_hidden_states = outputs.hidden_states
|
212 |
+
|
213 |
+
hidden_states = []
|
214 |
+
assert len(self.model.text_hidden_fcs) == 1
|
215 |
+
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states[-1]))
|
216 |
+
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
217 |
+
|
218 |
+
seg_token_mask = outputs.seg_token_mask
|
219 |
+
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
|
220 |
+
image_g_batch = torch.cat(samples['image_g'][0],dim = 0)
|
221 |
+
image_g_features = self.get_visual_embs(image_g_batch)
|
222 |
+
ori_hw = samples['ori_hw'][0]
|
223 |
+
all_pred_masks = []
|
224 |
+
for i in range(len(pred_embeddings)): #(bs,)
|
225 |
+
if (pred_embeddings[i].numel()== 0):
|
226 |
+
pred_masks.append([])
|
227 |
+
continue
|
228 |
+
(sparse_embeddings, dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
|
229 |
+
points=None,
|
230 |
+
boxes=None,
|
231 |
+
masks=None,
|
232 |
+
text_embeds=pred_embeddings[i].unsqueeze(1),
|
233 |
+
)
|
234 |
+
batch_mode = (pred_embeddings[i].shape[0]>1)
|
235 |
+
high_res_features = [
|
236 |
+
feat_level[i].unsqueeze(0)
|
237 |
+
for feat_level in image_g_features["high_res_feats"]
|
238 |
+
]
|
239 |
+
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
240 |
+
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
|
241 |
+
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
|
242 |
+
image_embeddings=image_g_embeds,
|
243 |
+
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
|
244 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
245 |
+
dense_prompt_embeddings=dense_embeddings,
|
246 |
+
repeat_image=batch_mode,
|
247 |
+
multimask_output=False,
|
248 |
+
high_res_features=high_res_features,
|
249 |
+
)
|
250 |
+
pred_masks = self.model._transform.postprocess_masks(
|
251 |
+
low_res_masks,
|
252 |
+
ori_hw[i],
|
253 |
+
)
|
254 |
+
all_pred_masks.append(pred_masks[:, 0])
|
255 |
+
|
256 |
+
|
257 |
+
model_output = outputs
|
258 |
+
gt_masks = samples['masks'][0]
|
259 |
+
pred_masks = all_pred_masks
|
260 |
+
|
261 |
+
if inference:
|
262 |
+
return {
|
263 |
+
"pred_masks": pred_masks,
|
264 |
+
"gt_masks": gt_masks,
|
265 |
+
}
|
266 |
+
|
267 |
+
ce_loss = model_output.loss
|
268 |
+
ce_loss = ce_loss * self.ce_loss_weight
|
269 |
+
mask_bce_loss = 0
|
270 |
+
mask_dice_loss = 0
|
271 |
+
num_masks = 0
|
272 |
+
|
273 |
+
for batch_idx in range(len(pred_masks)): # for every image
|
274 |
+
cur_gt_masks = torch.stack(
|
275 |
+
[
|
276 |
+
torch.from_numpy(gt_mask).to(dtype=pred_masks[batch_idx].dtype, device=pred_masks[batch_idx].device)
|
277 |
+
for gt_mask in gt_masks[batch_idx]
|
278 |
+
],
|
279 |
+
dim=0
|
280 |
+
) # expected (bs,H,W)
|
281 |
+
cur_pred_masks = pred_masks[batch_idx]
|
282 |
+
assert (
|
283 |
+
cur_gt_masks.shape[0] == cur_pred_masks.shape[0]
|
284 |
+
), "gt_masks.shape: {}, pred_masks.shape: {}".format(
|
285 |
+
cur_gt_masks.shape, cur_pred_masks.shape
|
286 |
+
)
|
287 |
+
mask_bce_loss += (
|
288 |
+
sigmoid_ce_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
|
289 |
+
* cur_gt_masks.shape[0]
|
290 |
+
)
|
291 |
+
mask_dice_loss += (
|
292 |
+
dice_loss(cur_pred_masks, cur_gt_masks, num_masks=cur_gt_masks.shape[0])
|
293 |
+
* cur_gt_masks.shape[0]
|
294 |
+
)
|
295 |
+
num_masks += cur_gt_masks.shape[0]
|
296 |
+
|
297 |
+
mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
|
298 |
+
mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
|
299 |
+
mask_loss = mask_bce_loss + mask_dice_loss
|
300 |
+
|
301 |
+
loss = ce_loss + mask_loss
|
302 |
+
outputs = CausalLMOutputWithPast(
|
303 |
+
loss=loss,
|
304 |
+
logits=model_output.logits,
|
305 |
+
past_key_values=model_output.past_key_values,
|
306 |
+
hidden_states=output_hidden_states,
|
307 |
+
attentions=model_output.attentions,
|
308 |
+
)
|
309 |
+
outputs.ce_loss = ce_loss
|
310 |
+
outputs.mask_bce_loss = mask_bce_loss
|
311 |
+
outputs.mask_dice_loss = mask_dice_loss
|
312 |
+
outputs.mask_loss = mask_loss
|
313 |
+
else:
|
314 |
+
outputs = super().forward(**kwargs)
|
315 |
+
return outputs
|
316 |
+
|
317 |
+
def evaluate(
|
318 |
+
self,
|
319 |
+
tokenizer,
|
320 |
+
query: str,
|
321 |
+
images: List[Tuple[str, str]] = [],
|
322 |
+
hd_num: int = 9,
|
323 |
+
history: List[Tuple[str, str]] = [],
|
324 |
+
max_new_tokens: int = 1024,
|
325 |
+
stream: bool = False,
|
326 |
+
**kwargs,
|
327 |
+
):
|
328 |
+
with torch.no_grad():
|
329 |
+
inputs, im_mask, _ = self.interleav_wrap_chat(query, images, history=history, hd_num=hd_num)
|
330 |
+
inputs = {
|
331 |
+
k: v.to(self.device)
|
332 |
+
for k, v in inputs.items() if torch.is_tensor(v)
|
333 |
+
}
|
334 |
+
eos_token_id = [
|
335 |
+
tokenizer.eos_token_id,
|
336 |
+
#tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
|
337 |
+
]
|
338 |
+
all_pred_masks = []
|
339 |
+
|
340 |
+
if stream:
|
341 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
342 |
+
else:
|
343 |
+
streamer = None
|
344 |
+
|
345 |
+
outputs = self.generate(
|
346 |
+
**inputs,
|
347 |
+
max_new_tokens=max_new_tokens,
|
348 |
+
im_mask=im_mask,
|
349 |
+
input_ids = None,
|
350 |
+
streamer= streamer,
|
351 |
+
num_beams=1,
|
352 |
+
do_sample=False,
|
353 |
+
temperature=1.0,
|
354 |
+
top_p= 1.0,
|
355 |
+
top_k = 0,
|
356 |
+
eos_token_id=eos_token_id,
|
357 |
+
repetition_penalty=1.0,
|
358 |
+
infer_mode = 'base',
|
359 |
+
output_hidden_states=True,
|
360 |
+
return_dict_in_generate=True,
|
361 |
+
**kwargs,
|
362 |
+
)
|
363 |
+
output_ids = outputs['sequences']
|
364 |
+
response = tokenizer.decode(output_ids[0].cpu().tolist(), skip_special_tokens=True)
|
365 |
+
response = response.replace("[UNUSED_TOKEN_145]","")
|
366 |
+
history = history + [(query, response)]
|
367 |
+
if len(images)==1 and isinstance(images[0], str):
|
368 |
+
output_hidden_states = outputs.hidden_states[-1]
|
369 |
+
seg_token_mask = output_ids[:, 1:-1] == self.seg_token_idx
|
370 |
+
inputs_embeds_len = inputs['inputs_embeds'].size(1)
|
371 |
+
seg_token_mask = torch.cat(
|
372 |
+
[
|
373 |
+
torch.zeros((seg_token_mask.shape[0], inputs_embeds_len)).bool().cuda(),
|
374 |
+
seg_token_mask,
|
375 |
+
],
|
376 |
+
dim=1,
|
377 |
+
)
|
378 |
+
hidden_states = []
|
379 |
+
assert len(self.model.text_hidden_fcs) == 1
|
380 |
+
hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states))
|
381 |
+
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
|
382 |
+
pred_embeddings = [states[masks] for states, masks in zip(last_hidden_state, seg_token_mask)]
|
383 |
+
image_g_features, ori_hw = self.encode_g_img(images[0])
|
384 |
+
|
385 |
+
for i in range(len(pred_embeddings)):
|
386 |
+
if (pred_embeddings[i].numel()== 0):
|
387 |
+
all_pred_masks.append([])
|
388 |
+
continue
|
389 |
+
(sparse_embeddings,dense_embeddings,) = self.model.visual_model.sam_prompt_encoder(
|
390 |
+
points=None,
|
391 |
+
boxes=None,
|
392 |
+
masks=None,
|
393 |
+
text_embeds=pred_embeddings[i].unsqueeze(1),
|
394 |
+
)
|
395 |
+
batch_mode = (pred_embeddings[i].shape[0]>1)
|
396 |
+
high_res_features = [
|
397 |
+
feat_level[i].unsqueeze(0)
|
398 |
+
for feat_level in image_g_features["high_res_feats"]
|
399 |
+
]
|
400 |
+
sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype)
|
401 |
+
image_g_embeds = image_g_features['image_embed'][i].unsqueeze(0).to(torch.bfloat16)
|
402 |
+
|
403 |
+
low_res_masks, _, _ , _ = self.model.visual_model.sam_mask_decoder(
|
404 |
+
image_embeddings=image_g_embeds,
|
405 |
+
image_pe=self.model.visual_model.sam_prompt_encoder.get_dense_pe(),
|
406 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
407 |
+
dense_prompt_embeddings=dense_embeddings,
|
408 |
+
repeat_image=batch_mode,
|
409 |
+
multimask_output=False,
|
410 |
+
high_res_features=high_res_features,
|
411 |
+
)
|
412 |
+
pred_masks = self.model._transform.postprocess_masks(
|
413 |
+
low_res_masks,
|
414 |
+
ori_hw[i],
|
415 |
+
)
|
416 |
+
all_pred_masks.append(pred_masks[:, 0])
|
417 |
+
|
418 |
+
return response, all_pred_masks
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6eedea61e25c9184b4e2989a3c6d79982a6f4ee263041401cfe443319d04863
|
3 |
+
size 9968330657
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0df18331981448f806bbea1932341d233c2dc9f71a888d16586001efd5c189a4
|
3 |
+
size 9999750322
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cb744be7e9cc162d6947b63c95cad2370d844b6e5aa76a58a66f61f1bb2d54a
|
3 |
+
size 2709063690
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"eos_token": {
|
18 |
+
"content": "</s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": "<unk>",
|
25 |
+
"unk_token": {
|
26 |
+
"content": "<unk>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
}
|
32 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
Path to the vocabulary file.
|
42 |
+
"""
|
43 |
+
|
44 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
45 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
_auto_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vocab_file,
|
52 |
+
unk_token="<unk>",
|
53 |
+
bos_token="<s>",
|
54 |
+
eos_token="</s>",
|
55 |
+
pad_token="</s>",
|
56 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
57 |
+
add_bos_token=True,
|
58 |
+
add_eos_token=False,
|
59 |
+
decode_with_prefix_space=False,
|
60 |
+
clean_up_tokenization_spaces=False,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.add_bos_token = add_bos_token
|
66 |
+
self.add_eos_token = add_eos_token
|
67 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
self._no_prefix_space_tokens = None
|
71 |
+
super().__init__(
|
72 |
+
bos_token=bos_token,
|
73 |
+
eos_token=eos_token,
|
74 |
+
unk_token=unk_token,
|
75 |
+
pad_token=pad_token,
|
76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def no_prefix_space_tokens(self):
|
82 |
+
if self._no_prefix_space_tokens is None:
|
83 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
84 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
85 |
+
return self._no_prefix_space_tokens
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vocab_size(self):
|
89 |
+
"""Returns vocab size"""
|
90 |
+
return self.sp_model.get_piece_size()
|
91 |
+
|
92 |
+
@property
|
93 |
+
def bos_token_id(self) -> Optional[int]:
|
94 |
+
return self.sp_model.bos_id()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.eos_id()
|
99 |
+
|
100 |
+
def get_vocab(self):
|
101 |
+
"""Returns vocab as a dict"""
|
102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
+
vocab.update(self.added_tokens_encoder)
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text):
|
107 |
+
"""Returns a tokenized string."""
|
108 |
+
return self.sp_model.encode(text, out_type=str)
|
109 |
+
|
110 |
+
def _convert_token_to_id(self, token):
|
111 |
+
"""Converts a token (str) in an id using the vocab."""
|
112 |
+
return self.sp_model.piece_to_id(token)
|
113 |
+
|
114 |
+
def _convert_id_to_token(self, index):
|
115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
+
token = self.sp_model.IdToPiece(index)
|
117 |
+
return token
|
118 |
+
|
119 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
120 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
121 |
+
return " " + decoded
|
122 |
+
else:
|
123 |
+
return decoded
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
current_sub_tokens = []
|
128 |
+
out_string = ""
|
129 |
+
prev_is_special = False
|
130 |
+
for token in tokens:
|
131 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
132 |
+
if token in self.all_special_tokens:
|
133 |
+
if not prev_is_special:
|
134 |
+
out_string += " "
|
135 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
136 |
+
prev_is_special = True
|
137 |
+
current_sub_tokens = []
|
138 |
+
else:
|
139 |
+
current_sub_tokens.append(token)
|
140 |
+
prev_is_special = False
|
141 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
142 |
+
out_string = self.clean_up_tokenization(out_string)
|
143 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
144 |
+
return out_string[1:]
|
145 |
+
|
146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
147 |
+
"""
|
148 |
+
Save the vocabulary and special tokens file to a directory.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str`):
|
152 |
+
The directory in which to save the vocabulary.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`Tuple(str)`: Paths to the files saved.
|
156 |
+
"""
|
157 |
+
if not os.path.isdir(save_directory):
|
158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
159 |
+
return
|
160 |
+
out_vocab_file = os.path.join(
|
161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
162 |
+
)
|
163 |
+
|
164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
if self.add_bos_token:
|
175 |
+
bos_token_ids = [self.bos_token_id]
|
176 |
+
else:
|
177 |
+
bos_token_ids = []
|
178 |
+
|
179 |
+
output = bos_token_ids + token_ids_0
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
output = output + token_ids_1
|
183 |
+
|
184 |
+
if self.add_eos_token:
|
185 |
+
output = output + [self.eos_token_id]
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def get_special_tokens_mask(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
194 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
if token_ids_1 is None:
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
214 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
215 |
+
|
216 |
+
def create_token_type_ids_from_sequences(
|
217 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
218 |
+
) -> List[int]:
|
219 |
+
"""
|
220 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
221 |
+
use of token type ids, therefore a list of zeros is returned.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
token_ids_0 (`List[int]`):
|
225 |
+
List of IDs.
|
226 |
+
token_ids_1 (`List[int]`, *optional*):
|
227 |
+
Optional second list of IDs for sequence pairs.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
`List[int]`: List of zeros.
|
231 |
+
"""
|
232 |
+
eos = [self.eos_token_id]
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return len(token_ids_0 + eos) * [0]
|
236 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"92538": {
|
28 |
+
"content": "<|plugin|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"92539": {
|
36 |
+
"content": "<|interpreter|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"92540": {
|
44 |
+
"content": "<|action_end|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"92541": {
|
52 |
+
"content": "<|action_start|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"92542": {
|
60 |
+
"content": "<|im_end|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"92543": {
|
68 |
+
"content": "<|im_start|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
}
|
75 |
+
},
|
76 |
+
"additional_special_tokens": [
|
77 |
+
"<|im_start|>",
|
78 |
+
"<|im_end|>",
|
79 |
+
"<|action_start|>",
|
80 |
+
"<|action_end|>",
|
81 |
+
"<|interpreter|>",
|
82 |
+
"<|plugin|>"
|
83 |
+
],
|
84 |
+
"auto_map": {
|
85 |
+
"AutoTokenizer": [
|
86 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
87 |
+
null
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"bos_token": "<s>",
|
91 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
92 |
+
"clean_up_tokenization_spaces": false,
|
93 |
+
"eos_token": "</s>",
|
94 |
+
"model_max_length": 1000000000000000019884624838656,
|
95 |
+
"pad_token": "</s>",
|
96 |
+
"padding_side": "right",
|
97 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
98 |
+
"unk_token": "<unk>"
|
99 |
+
}
|