finetune-instance-segmentation-ade20k-mini-mask2former
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 7.5549
- Map: 1.0
- Map 50: 1.0
- Map 75: 1.0
- Map Small: -1.0
- Map Medium: -1.0
- Map Large: 1.0
- Mar 1: 1.0
- Mar 10: 1.0
- Mar 100: 1.0
- Mar Small: -1.0
- Mar Medium: -1.0
- Mar Large: 1.0
- Map Node 0: 1.0
- Mar 100 Node 0: 1.0
- Map Node 1: -1.0
- Mar 100 Node 1: -1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 40.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Node 0 | Mar 100 Node 0 | Map Node 1 | Mar 100 Node 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12.0634 | 1.0 | 1 | 34.0342 | 0.0388 | 0.1429 | 0.0128 | -1.0 | -1.0 | 0.083 | 0.0 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.0388 | 1.0 | -1.0 | -1.0 |
14.6891 | 2.0 | 2 | 27.5947 | 0.0378 | 0.125 | 0.0159 | -1.0 | -1.0 | 0.0707 | 0.0 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.0378 | 1.0 | -1.0 | -1.0 |
12.1372 | 3.0 | 3 | 24.3069 | 0.0538 | 0.2 | 0.0172 | -1.0 | -1.0 | 0.225 | 0.0 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.0538 | 1.0 | -1.0 | -1.0 |
10.1768 | 4.0 | 4 | 21.7997 | 0.0325 | 0.0909 | 0.0179 | -1.0 | -1.0 | 0.0952 | 0.0 | 0.0 | 1.0 | -1.0 | -1.0 | 1.0 | 0.0325 | 1.0 | -1.0 | -1.0 |
10.9674 | 5.0 | 5 | 20.0476 | 0.0507 | 0.1667 | 0.0185 | -1.0 | -1.0 | 0.1833 | 0.0 | 0.3 | 1.0 | -1.0 | -1.0 | 1.0 | 0.0507 | 1.0 | -1.0 | -1.0 |
8.2576 | 6.0 | 6 | 19.0059 | 0.0582 | 0.25 | 0.0185 | -1.0 | -1.0 | 0.2054 | 0.0 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.0582 | 1.0 | -1.0 | -1.0 |
8.2583 | 7.0 | 7 | 18.1974 | 0.0629 | 0.3333 | 0.0204 | -1.0 | -1.0 | 0.195 | 0.0 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.0629 | 1.0 | -1.0 | -1.0 |
7.3192 | 8.0 | 8 | 17.3621 | 0.1302 | 0.5 | 0.0435 | -1.0 | -1.0 | 0.2841 | 0.0 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.1302 | 1.0 | -1.0 | -1.0 |
7.0464 | 9.0 | 9 | 16.5316 | 0.2514 | 1.0 | 0.0625 | -1.0 | -1.0 | 0.3417 | 0.2 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.2514 | 1.0 | -1.0 | -1.0 |
6.8925 | 10.0 | 10 | 15.5454 | 0.2157 | 1.0 | 0.0196 | -1.0 | -1.0 | 0.2333 | 0.2 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.2157 | 1.0 | -1.0 | -1.0 |
6.9519 | 11.0 | 11 | 14.5089 | 0.225 | 1.0 | 0.0312 | -1.0 | -1.0 | 0.2667 | 0.2 | 0.2 | 1.0 | -1.0 | -1.0 | 1.0 | 0.225 | 1.0 | -1.0 | -1.0 |
6.2326 | 12.0 | 12 | 13.8831 | 0.3733 | 1.0 | 0.2 | -1.0 | -1.0 | 0.4114 | 0.3 | 0.6 | 1.0 | -1.0 | -1.0 | 1.0 | 0.3733 | 1.0 | -1.0 | -1.0 |
6.1844 | 13.0 | 13 | 13.3770 | 0.6667 | 1.0 | 0.3333 | -1.0 | -1.0 | 0.6667 | 0.5 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 0.6667 | 1.0 | -1.0 | -1.0 |
5.7356 | 14.0 | 14 | 12.8322 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
5.466 | 15.0 | 15 | 12.5074 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
5.4641 | 16.0 | 16 | 11.8883 | 0.65 | 1.0 | 0.5 | -1.0 | -1.0 | 0.65 | 0.3 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 0.65 | 1.0 | -1.0 | -1.0 |
5.3664 | 17.0 | 17 | 11.4002 | 0.65 | 1.0 | 0.5 | -1.0 | -1.0 | 0.65 | 0.3 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 0.65 | 1.0 | -1.0 | -1.0 |
4.9014 | 18.0 | 18 | 10.9808 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
4.7852 | 19.0 | 19 | 10.7451 | 0.65 | 1.0 | 0.5 | -1.0 | -1.0 | 0.65 | 0.3 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 0.65 | 1.0 | -1.0 | -1.0 |
4.7773 | 20.0 | 20 | 10.5880 | 0.6167 | 1.0 | 0.3333 | -1.0 | -1.0 | 0.6167 | 0.4 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 0.6167 | 1.0 | -1.0 | -1.0 |
4.6423 | 21.0 | 21 | 10.3569 | 0.75 | 1.0 | 0.5 | -1.0 | -1.0 | 0.75 | 0.5 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 0.75 | 1.0 | -1.0 | -1.0 |
4.6973 | 22.0 | 22 | 10.0560 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
4.5107 | 23.0 | 23 | 9.9010 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
4.3641 | 24.0 | 24 | 9.8444 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
4.3039 | 25.0 | 25 | 9.7284 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
4.2061 | 26.0 | 26 | 9.4944 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
4.1906 | 27.0 | 27 | 9.3099 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.9988 | 28.0 | 28 | 9.0558 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.9956 | 29.0 | 29 | 8.9970 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.9154 | 30.0 | 30 | 8.8224 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.8152 | 31.0 | 31 | 8.6420 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.7358 | 32.0 | 32 | 8.4847 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.7624 | 33.0 | 33 | 8.4232 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.6491 | 34.0 | 34 | 8.2848 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.5853 | 35.0 | 35 | 8.0934 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.5897 | 36.0 | 36 | 8.1184 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.4895 | 37.0 | 37 | 7.9605 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.415 | 38.0 | 38 | 7.8289 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.3717 | 39.0 | 39 | 7.7094 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
3.3056 | 40.0 | 40 | 7.5549 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.3.0
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 39
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.