File size: 3,790 Bytes
c96b3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
license: mpl-2.0
language:
- en
base_model:
- LunaStev/FlowModel
tags:
- python
- lightweight
- machine-lerning
- framework
- ai
- model
- numpy
- torch
- beginner-friendly
- plugin-architecture
- flow-model
- torchvision
- ai-model
- '-ai-models'
- flow-models
- flowmodel
---

# FlowModel

FlowModel is a lightweight and extensible machine learning framework designed for beginners who want to explore AI development. With its modular plugin-based architecture, users can easily extend its functionality while keeping the core simple and maintainable.

---

## Table of Contents
1. [Introduction](#introduction)
2. [Installation](#installation)
3. [Directory Structure](#directory-structure)
4. [Usage](#usage)
    - [Training a Model](#training-a-model)
    - [Adding Plugins](#adding-plugins)
5. [Creating Plugins](#creating-plugins)
6. [Command-Line Interface](#command-line-interface)
7. [Contributing](#contributing)
8. [License](#license)

---

## Introduction
FlowModel provides a simple entry point for experimenting with AI and machine learning. It allows users to start with a minimal framework and extend it by creating and adding plugins. The framework is designed to focus on simplicity, modularity, and extensibility.

---

## Installation

### Prerequisites
- Python 3.8 or higher
- `pip` package manager

### Steps
1. Clone the repository:
   ```bash
   git clone https://github.com/LunaStev/FlowModel.git
   cd FlowModel
   ```

2. Create and activate a virtual environment:
   ```bash
   python -m venv .venv
   source .venv/bin/activate  # For Unix/MacOS
   .venv\Scripts\activate   # For Windows
   ```

3. Install dependencies:
   ```bash
   pip install -r requirements.txt
   ```

---

## Directory Structure
```plaintext
FlowModel/
β”œβ”€β”€ main.py             # Entry point for the application
β”œβ”€β”€ plugins/            # Directory for plugins
β”‚   β”œβ”€β”€ __init__.py     # Initializes the plugin package
β”‚   β”œβ”€β”€ example_plugin.py # Example plugin
β”œβ”€β”€ data/               # Placeholder for datasets
β”œβ”€β”€ requirements.txt    # Python dependencies
```

---

## Usage

### Training a Model
To train a model using FlowModel, run:
```bash
python main.py train
```
This will load any available plugins from the `plugins/` directory and apply their logic during the training process.

### Adding Plugins
To add a plugin, place a `.py` file with your plugin class in the `plugins/` directory. FlowModel automatically detects and loads plugins at runtime.

---

## Creating Plugins
Plugins extend the functionality of FlowModel. To create a plugin:

1. **Create a new Python file in the `plugins/` directory**:
   ```bash
   plugins/my_plugin.py
   ```

2. **Define your plugin class**:
   ```python
   class MyPlugin:
       def __init__(self):
           print("MyPlugin initialized.")

       def modify_model(self, model):
           print("MyPlugin: Modifying the model.")
           return model

       def on_train_start(self):
           print("MyPlugin: Training started.")

       def on_train_end(self):
           print("MyPlugin: Training finished.")
   ```

3. **Use your plugin during training**:
   When `main.py` runs, it automatically loads your plugin and calls its methods.

---

## Command-Line Interface
FlowModel includes a simple CLI for interacting with the framework.

### Commands
- **Train**: Start the training process with plugins.
  ```bash
  python main.py train
  ```

---

## Contributing
Contributions are welcome! To contribute:
1. Fork the repository.
2. Create a new branch for your feature.
3. Commit your changes and push them.
4. Open a pull request.

---

## License
FlowModel is released under the MPL-2.0 License. See [LICENSE](LICENSE) for details.

---

Happy experimenting with FlowModel! πŸš€