LunaStev commited on
Commit
c96b3d6
Β·
verified Β·
1 Parent(s): ccf339e
Files changed (1) hide show
  1. README.md +160 -140
README.md CHANGED
@@ -1,140 +1,160 @@
1
- ---
2
- license: mpl-2.0
3
- ---
4
-
5
- # FlowModel
6
-
7
- FlowModel is a lightweight and extensible machine learning framework designed for beginners who want to explore AI development. With its modular plugin-based architecture, users can easily extend its functionality while keeping the core simple and maintainable.
8
-
9
- ---
10
-
11
- ## Table of Contents
12
- 1. [Introduction](#introduction)
13
- 2. [Installation](#installation)
14
- 3. [Directory Structure](#directory-structure)
15
- 4. [Usage](#usage)
16
- - [Training a Model](#training-a-model)
17
- - [Adding Plugins](#adding-plugins)
18
- 5. [Creating Plugins](#creating-plugins)
19
- 6. [Command-Line Interface](#command-line-interface)
20
- 7. [Contributing](#contributing)
21
- 8. [License](#license)
22
-
23
- ---
24
-
25
- ## Introduction
26
- FlowModel provides a simple entry point for experimenting with AI and machine learning. It allows users to start with a minimal framework and extend it by creating and adding plugins. The framework is designed to focus on simplicity, modularity, and extensibility.
27
-
28
- ---
29
-
30
- ## Installation
31
-
32
- ### Prerequisites
33
- - Python 3.8 or higher
34
- - `pip` package manager
35
-
36
- ### Steps
37
- 1. Clone the repository:
38
- ```bash
39
- git clone https://github.com/LunaStev/FlowModel.git
40
- cd FlowModel
41
- ```
42
-
43
- 2. Create and activate a virtual environment:
44
- ```bash
45
- python -m venv .venv
46
- source .venv/bin/activate # For Unix/MacOS
47
- .venv\Scripts\activate # For Windows
48
- ```
49
-
50
- 3. Install dependencies:
51
- ```bash
52
- pip install -r requirements.txt
53
- ```
54
-
55
- ---
56
-
57
- ## Directory Structure
58
- ```plaintext
59
- FlowModel/
60
- β”œβ”€β”€ main.py # Entry point for the application
61
- β”œβ”€β”€ plugins/ # Directory for plugins
62
- β”‚ β”œβ”€β”€ __init__.py # Initializes the plugin package
63
- β”‚ β”œβ”€β”€ example_plugin.py # Example plugin
64
- β”œβ”€β”€ data/ # Placeholder for datasets
65
- β”œβ”€β”€ requirements.txt # Python dependencies
66
- ```
67
-
68
- ---
69
-
70
- ## Usage
71
-
72
- ### Training a Model
73
- To train a model using FlowModel, run:
74
- ```bash
75
- python main.py train
76
- ```
77
- This will load any available plugins from the `plugins/` directory and apply their logic during the training process.
78
-
79
- ### Adding Plugins
80
- To add a plugin, place a `.py` file with your plugin class in the `plugins/` directory. FlowModel automatically detects and loads plugins at runtime.
81
-
82
- ---
83
-
84
- ## Creating Plugins
85
- Plugins extend the functionality of FlowModel. To create a plugin:
86
-
87
- 1. **Create a new Python file in the `plugins/` directory**:
88
- ```bash
89
- plugins/my_plugin.py
90
- ```
91
-
92
- 2. **Define your plugin class**:
93
- ```python
94
- class MyPlugin:
95
- def __init__(self):
96
- print("MyPlugin initialized.")
97
-
98
- def modify_model(self, model):
99
- print("MyPlugin: Modifying the model.")
100
- return model
101
-
102
- def on_train_start(self):
103
- print("MyPlugin: Training started.")
104
-
105
- def on_train_end(self):
106
- print("MyPlugin: Training finished.")
107
- ```
108
-
109
- 3. **Use your plugin during training**:
110
- When `main.py` runs, it automatically loads your plugin and calls its methods.
111
-
112
- ---
113
-
114
- ## Command-Line Interface
115
- FlowModel includes a simple CLI for interacting with the framework.
116
-
117
- ### Commands
118
- - **Train**: Start the training process with plugins.
119
- ```bash
120
- python main.py train
121
- ```
122
-
123
- ---
124
-
125
- ## Contributing
126
- Contributions are welcome! To contribute:
127
- 1. Fork the repository.
128
- 2. Create a new branch for your feature.
129
- 3. Commit your changes and push them.
130
- 4. Open a pull request.
131
-
132
- ---
133
-
134
- ## License
135
- FlowModel is released under the MPL-2.0 License. See [LICENSE](LICENSE) for details.
136
-
137
- ---
138
-
139
- Happy experimenting with FlowModel! πŸš€
140
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mpl-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - LunaStev/FlowModel
7
+ tags:
8
+ - python
9
+ - lightweight
10
+ - machine-lerning
11
+ - framework
12
+ - ai
13
+ - model
14
+ - numpy
15
+ - torch
16
+ - beginner-friendly
17
+ - plugin-architecture
18
+ - flow-model
19
+ - torchvision
20
+ - ai-model
21
+ - '-ai-models'
22
+ - flow-models
23
+ - flowmodel
24
+ ---
25
+
26
+ # FlowModel
27
+
28
+ FlowModel is a lightweight and extensible machine learning framework designed for beginners who want to explore AI development. With its modular plugin-based architecture, users can easily extend its functionality while keeping the core simple and maintainable.
29
+
30
+ ---
31
+
32
+ ## Table of Contents
33
+ 1. [Introduction](#introduction)
34
+ 2. [Installation](#installation)
35
+ 3. [Directory Structure](#directory-structure)
36
+ 4. [Usage](#usage)
37
+ - [Training a Model](#training-a-model)
38
+ - [Adding Plugins](#adding-plugins)
39
+ 5. [Creating Plugins](#creating-plugins)
40
+ 6. [Command-Line Interface](#command-line-interface)
41
+ 7. [Contributing](#contributing)
42
+ 8. [License](#license)
43
+
44
+ ---
45
+
46
+ ## Introduction
47
+ FlowModel provides a simple entry point for experimenting with AI and machine learning. It allows users to start with a minimal framework and extend it by creating and adding plugins. The framework is designed to focus on simplicity, modularity, and extensibility.
48
+
49
+ ---
50
+
51
+ ## Installation
52
+
53
+ ### Prerequisites
54
+ - Python 3.8 or higher
55
+ - `pip` package manager
56
+
57
+ ### Steps
58
+ 1. Clone the repository:
59
+ ```bash
60
+ git clone https://github.com/LunaStev/FlowModel.git
61
+ cd FlowModel
62
+ ```
63
+
64
+ 2. Create and activate a virtual environment:
65
+ ```bash
66
+ python -m venv .venv
67
+ source .venv/bin/activate # For Unix/MacOS
68
+ .venv\Scripts\activate # For Windows
69
+ ```
70
+
71
+ 3. Install dependencies:
72
+ ```bash
73
+ pip install -r requirements.txt
74
+ ```
75
+
76
+ ---
77
+
78
+ ## Directory Structure
79
+ ```plaintext
80
+ FlowModel/
81
+ β”œβ”€β”€ main.py # Entry point for the application
82
+ β”œβ”€β”€ plugins/ # Directory for plugins
83
+ β”‚ β”œβ”€β”€ __init__.py # Initializes the plugin package
84
+ β”‚ β”œβ”€β”€ example_plugin.py # Example plugin
85
+ β”œβ”€β”€ data/ # Placeholder for datasets
86
+ β”œβ”€β”€ requirements.txt # Python dependencies
87
+ ```
88
+
89
+ ---
90
+
91
+ ## Usage
92
+
93
+ ### Training a Model
94
+ To train a model using FlowModel, run:
95
+ ```bash
96
+ python main.py train
97
+ ```
98
+ This will load any available plugins from the `plugins/` directory and apply their logic during the training process.
99
+
100
+ ### Adding Plugins
101
+ To add a plugin, place a `.py` file with your plugin class in the `plugins/` directory. FlowModel automatically detects and loads plugins at runtime.
102
+
103
+ ---
104
+
105
+ ## Creating Plugins
106
+ Plugins extend the functionality of FlowModel. To create a plugin:
107
+
108
+ 1. **Create a new Python file in the `plugins/` directory**:
109
+ ```bash
110
+ plugins/my_plugin.py
111
+ ```
112
+
113
+ 2. **Define your plugin class**:
114
+ ```python
115
+ class MyPlugin:
116
+ def __init__(self):
117
+ print("MyPlugin initialized.")
118
+
119
+ def modify_model(self, model):
120
+ print("MyPlugin: Modifying the model.")
121
+ return model
122
+
123
+ def on_train_start(self):
124
+ print("MyPlugin: Training started.")
125
+
126
+ def on_train_end(self):
127
+ print("MyPlugin: Training finished.")
128
+ ```
129
+
130
+ 3. **Use your plugin during training**:
131
+ When `main.py` runs, it automatically loads your plugin and calls its methods.
132
+
133
+ ---
134
+
135
+ ## Command-Line Interface
136
+ FlowModel includes a simple CLI for interacting with the framework.
137
+
138
+ ### Commands
139
+ - **Train**: Start the training process with plugins.
140
+ ```bash
141
+ python main.py train
142
+ ```
143
+
144
+ ---
145
+
146
+ ## Contributing
147
+ Contributions are welcome! To contribute:
148
+ 1. Fork the repository.
149
+ 2. Create a new branch for your feature.
150
+ 3. Commit your changes and push them.
151
+ 4. Open a pull request.
152
+
153
+ ---
154
+
155
+ ## License
156
+ FlowModel is released under the MPL-2.0 License. See [LICENSE](LICENSE) for details.
157
+
158
+ ---
159
+
160
+ Happy experimenting with FlowModel! πŸš€