|
---
|
|
license: mit
|
|
---
|
|
# Unique3d-Normal-Diffuser Model Card
|
|
|
|
[🌟GitHub](https://github.com/TingtingLiao/unique3d_diffuser) | [🦸 Project Page](https://wukailu.github.io/Unique3D/) | [🔋MVImage Diffuser](https://huggingface.co/Luffuly/unique3d-mvimage-diffuser)
|
|
|
|

|
|
|
|
## Example
|
|
Note the input image is suppose to be **white background**.
|
|
|
|

|
|
|
|
|
|
```bash
|
|
import torch
|
|
import numpy as np
|
|
from PIL import Image
|
|
from pipeline import Unique3dDiffusionPipeline
|
|
|
|
# opts
|
|
seed = -1
|
|
generator = torch.Generator(device='cuda').manual_seed(-1)
|
|
forward_args = dict(
|
|
width=512,
|
|
height=512,
|
|
width_cond=512,
|
|
height_cond=512,
|
|
generator=generator,
|
|
guidance_scale=1.5,
|
|
num_inference_steps=30,
|
|
num_images_per_prompt=1,
|
|
)
|
|
|
|
# load
|
|
pipe = Unique3dDiffusionPipeline.from_pretrained(
|
|
"Luffuly/unique3d-normal-diffuser",
|
|
torch_dtype=torch.bfloat16,
|
|
trust_remote_code=True,
|
|
).to("cuda")
|
|
|
|
# load image
|
|
image = Image.open('image.png').convert("RGB")
|
|
|
|
# forward
|
|
out = pipe(image, **forward_args).images
|
|
out[0].save(f"out.png")
|
|
```
|
|
|
|
## Citation
|
|
```bash
|
|
@misc{wu2024unique3d,
|
|
title={Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image},
|
|
author={Kailu Wu and Fangfu Liu and Zhihan Cai and Runjie Yan and Hanyang Wang and Yating Hu and Yueqi Duan and Kaisheng Ma},
|
|
year={2024},
|
|
eprint={2405.20343},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CV}
|
|
}
|
|
``` |