SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-s. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-s
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/model-snowflake-s_20250226_110619")
# Run inference
sentences = [
'Fornitori di sistemi di pagamento e soluzioni fintech per aziende',
'Corpay ||~~|| Corpay si specializza in pagamenti internazionali, gestione del rischio, tecnologie di pagamento, automazione della fatturazione globale, soluzioni valutarie e transazioni transfrontaliere semplificate. tecnologie di pagamento',
'linee di imbottigliamento automatiche per acqua minerale',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
custom_dataset
andstsbenchmark
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | custom_dataset | stsbenchmark |
---|---|---|
pearson_cosine | 0.7037 | 0.7477 |
spearman_cosine | 0.7287 | 0.7432 |
Triplet
- Dataset:
all_nli_dataset
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8163 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,535 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 13.2 tokens
- max: 34 tokens
- min: 3 tokens
- mean: 53.05 tokens
- max: 154 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score hermetic seed storage containers
plastic bins
0.2
aziende attive in altri settori
Descrizione Azienda: BioFood s.r.l. è un'azienda impegnata nella vendita di prodotti alimentari biologici e naturali. Anche se attiva nel settore alimentare, non fornisce informazioni che riguardano settori non classificati. Prodotti che azienda vende: Prodotti biologici, alimenti senza glutine, superfood.
0.2
servizi di consulenza per la comunicazione aziendale
Descrizione Azienda: Comunica Srl è specializzata in servizi di consulenza per la comunicazione aziendale, aiutando le aziende a migliorare la loro immagine pubblica e strategie comunicative. Prodotti che azienda vende: ['Servizi di consulenza per la comunicazione aziendale', 'Strategie di branding', 'Gestione della comunicazione interna ed esterna'].
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 260 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 260 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.4 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 59.75 tokens
- max: 148 tokens
- min: 0.0
- mean: 0.53
- max: 1.0
- Samples:
sentence1 sentence2 score produttori di colonne sonore
Descrizione Azienda: Media Group Srl è un'agenzia di comunicazione che offre servizi nel settore audiovisivo, tra cui la produzione di spot pubblicitari e documentari. Prodotti che azienda vende: ['Produzione di video promozionali', 'Servizi di montaggio video', 'Consulenza per campagne pubblicitarie'].
0.2
fornitori di articoli di seconda mano
Descrizione Azienda: Vintage Shop Srl è un commerciante all'ingrosso di oggetti usati e vintage, fornendo un'ampia gamma di articoli per rivenditori. Prodotti che azienda vende: ['Abbigliamento usato', 'Mobili vintage', 'Accessori d'epoca'].
0.6
consulenti di gestione aziendale
Descrizione Azienda: ABC Group è un'agenzia di marketing che offre strategie di comunicazione e branding per aziende. Prodotti che azienda vende: Servizi di marketing digitale, Gestione dei social media, Branding e design, Pubblicità.
0.2
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | custom_dataset_spearman_cosine | all_nli_dataset_cosine_accuracy | stsbenchmark_spearman_cosine |
---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.7287 | 0.8163 | 0.7432 |
0.1253 | 200 | 0.0817 | 0.0669 | - | - | - |
0.2506 | 400 | 0.0525 | 0.0593 | - | - | - |
0.3759 | 600 | 0.0475 | 0.0572 | - | - | - |
0.5013 | 800 | 0.0476 | 0.0562 | - | - | - |
0.6266 | 1000 | 0.0416 | 0.0507 | - | - | - |
0.7519 | 1200 | 0.0426 | 0.0450 | - | - | - |
0.8772 | 1400 | 0.0379 | 0.0426 | - | - | - |
1.0025 | 1600 | 0.04 | 0.0437 | - | - | - |
1.1278 | 1800 | 0.0327 | 0.0436 | - | - | - |
1.2531 | 2000 | 0.0323 | 0.0435 | - | - | - |
1.3784 | 2200 | 0.0305 | 0.0429 | - | - | - |
1.5038 | 2400 | 0.0314 | 0.0415 | - | - | - |
1.6291 | 2600 | 0.0301 | 0.0389 | - | - | - |
1.7544 | 2800 | 0.0307 | 0.0442 | - | - | - |
1.8797 | 3000 | 0.0294 | 0.0405 | - | - | - |
2.0044 | 3200 | 0.0291 | 0.0404 | - | - | - |
2.1297 | 3400 | 0.0238 | 0.0379 | - | - | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 23
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for LucaZilli/model-snowflake-s_20250226_110619
Base model
Snowflake/snowflake-arctic-embed-sEvaluation results
- Pearson Cosine on custom datasetself-reported0.704
- Spearman Cosine on custom datasetself-reported0.729
- Cosine Accuracy on all nli datasetself-reported0.816
- Pearson Cosine on stsbenchmarkself-reported0.748
- Spearman Cosine on stsbenchmarkself-reported0.743