SentenceTransformer based on Snowflake/snowflake-arctic-embed-s

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-s. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-s
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/model-snowflake-s_20250226_110619")
# Run inference
sentences = [
    'Fornitori di sistemi di pagamento e soluzioni fintech per aziende',
    'Corpay ||~~|| Corpay si specializza in pagamenti internazionali, gestione del rischio, tecnologie di pagamento, automazione della fatturazione globale, soluzioni valutarie e transazioni transfrontaliere semplificate. tecnologie di pagamento',
    'linee di imbottigliamento automatiche per acqua minerale',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric custom_dataset stsbenchmark
pearson_cosine 0.7037 0.7477
spearman_cosine 0.7287 0.7432

Triplet

Metric Value
cosine_accuracy 0.8163

Training Details

Training Dataset

Unnamed Dataset

  • Size: 25,535 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 4 tokens
    • mean: 13.2 tokens
    • max: 34 tokens
    • min: 3 tokens
    • mean: 53.05 tokens
    • max: 154 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    hermetic seed storage containers plastic bins 0.2
    aziende attive in altri settori Descrizione Azienda: BioFood s.r.l. è un'azienda impegnata nella vendita di prodotti alimentari biologici e naturali. Anche se attiva nel settore alimentare, non fornisce informazioni che riguardano settori non classificati. Prodotti che azienda vende: Prodotti biologici, alimenti senza glutine, superfood. 0.2
    servizi di consulenza per la comunicazione aziendale Descrizione Azienda: Comunica Srl è specializzata in servizi di consulenza per la comunicazione aziendale, aiutando le aziende a migliorare la loro immagine pubblica e strategie comunicative. Prodotti che azienda vende: ['Servizi di consulenza per la comunicazione aziendale', 'Strategie di branding', 'Gestione della comunicazione interna ed esterna']. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 260 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 260 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 5 tokens
    • mean: 14.4 tokens
    • max: 34 tokens
    • min: 4 tokens
    • mean: 59.75 tokens
    • max: 148 tokens
    • min: 0.0
    • mean: 0.53
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    produttori di colonne sonore Descrizione Azienda: Media Group Srl è un'agenzia di comunicazione che offre servizi nel settore audiovisivo, tra cui la produzione di spot pubblicitari e documentari. Prodotti che azienda vende: ['Produzione di video promozionali', 'Servizi di montaggio video', 'Consulenza per campagne pubblicitarie']. 0.2
    fornitori di articoli di seconda mano Descrizione Azienda: Vintage Shop Srl è un commerciante all'ingrosso di oggetti usati e vintage, fornendo un'ampia gamma di articoli per rivenditori. Prodotti che azienda vende: ['Abbigliamento usato', 'Mobili vintage', 'Accessori d'epoca']. 0.6
    consulenti di gestione aziendale Descrizione Azienda: ABC Group è un'agenzia di marketing che offre strategie di comunicazione e branding per aziende. Prodotti che azienda vende: Servizi di marketing digitale, Gestione dei social media, Branding e design, Pubblicità. 0.2
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss custom_dataset_spearman_cosine all_nli_dataset_cosine_accuracy stsbenchmark_spearman_cosine
-1 -1 - - 0.7287 0.8163 0.7432
0.1253 200 0.0817 0.0669 - - -
0.2506 400 0.0525 0.0593 - - -
0.3759 600 0.0475 0.0572 - - -
0.5013 800 0.0476 0.0562 - - -
0.6266 1000 0.0416 0.0507 - - -
0.7519 1200 0.0426 0.0450 - - -
0.8772 1400 0.0379 0.0426 - - -
1.0025 1600 0.04 0.0437 - - -
1.1278 1800 0.0327 0.0436 - - -
1.2531 2000 0.0323 0.0435 - - -
1.3784 2200 0.0305 0.0429 - - -
1.5038 2400 0.0314 0.0415 - - -
1.6291 2600 0.0301 0.0389 - - -
1.7544 2800 0.0307 0.0442 - - -
1.8797 3000 0.0294 0.0405 - - -
2.0044 3200 0.0291 0.0404 - - -
2.1297 3400 0.0238 0.0379 - - -

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
23
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for LucaZilli/model-snowflake-s_20250226_110619

Finetuned
(11)
this model

Evaluation results