distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0609
- Precision: 0.9270
- Recall: 0.9367
- F1: 0.9318
- Accuracy: 0.9837
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2383 | 1.0 | 878 | 0.0677 | 0.9187 | 0.9231 | 0.9209 | 0.9817 |
0.0538 | 2.0 | 1756 | 0.0609 | 0.9283 | 0.9356 | 0.9319 | 0.9832 |
0.0298 | 3.0 | 2634 | 0.0609 | 0.9270 | 0.9367 | 0.9318 | 0.9837 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 106
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train LinaSaba/distilbert-base-uncased-finetuned-ner
Evaluation results
- Precision on conll2003validation set self-reported0.927
- Recall on conll2003validation set self-reported0.937
- F1 on conll2003validation set self-reported0.932
- Accuracy on conll2003validation set self-reported0.984