Delete LOAD_THIS_MODEL.py
Browse files- LOAD_THIS_MODEL.py +0 -126
LOAD_THIS_MODEL.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
import torch
|
7 |
-
n_ahead_talk_global = 4
|
8 |
-
n_passes_global = 2
|
9 |
-
n_ahead_global = 8
|
10 |
-
n_examples = 0
|
11 |
-
|
12 |
-
def model_init(params):
|
13 |
-
original = False
|
14 |
-
if params is None:
|
15 |
-
params = {}
|
16 |
-
else:
|
17 |
-
params = params.params
|
18 |
-
# save params to file
|
19 |
-
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
20 |
-
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
21 |
-
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
22 |
-
gumbel_temperature = params.get("gumbel_temperature", 1)
|
23 |
-
use_start_thought_token = params.get("use_start_thought_token", True)
|
24 |
-
use_end_thought_token = params.get("use_end_thought_token", True)
|
25 |
-
include_policy_loss = params.get("include_policy_loss", True)
|
26 |
-
gumbel_detach = params.get("gumbel_detach", True)
|
27 |
-
merged_talk_heads = params.get("merged_talk_heads", True)
|
28 |
-
residual_think_head = params.get("residual_think_head", False)
|
29 |
-
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
30 |
-
|
31 |
-
model_id = "LeroyDyer/_Spydaz_Web_AI_V2_Aligned"
|
32 |
-
tokenizer_id = model_id
|
33 |
-
print("Loading model")
|
34 |
-
|
35 |
-
model = AutoModelForCausalLM.from_pretrained(
|
36 |
-
model_id,
|
37 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
38 |
-
max_thoughts=n_ahead + n_ahead_talk + 1,
|
39 |
-
merged_talk_heads=merged_talk_heads,
|
40 |
-
merged_lm_and_talk_heads=False,
|
41 |
-
merged_lm_and_think_heads=True,
|
42 |
-
use_concat_talk_head=True,
|
43 |
-
use_shallow_think=True,
|
44 |
-
use_shallow_talk=False,
|
45 |
-
use_complex_think_head=False,
|
46 |
-
use_complex_talk_head=True,
|
47 |
-
use_weighted_talk_head=True,
|
48 |
-
trust_remote_code=True,
|
49 |
-
device_map="auto",
|
50 |
-
)
|
51 |
-
print("Loaded model")
|
52 |
-
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
|
54 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
55 |
-
|
56 |
-
special_tokens_to_add = []
|
57 |
-
if model.use_start_thought_token:
|
58 |
-
special_tokens_to_add.append("<|startthought|>")
|
59 |
-
if model.use_end_thought_token:
|
60 |
-
special_tokens_to_add.append("<|endthought|>")
|
61 |
-
if special_tokens_to_add:
|
62 |
-
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
63 |
-
model.resize_token_embeddings(len(tokenizer))
|
64 |
-
model.tokenizer = tokenizer
|
65 |
-
for name, module in model.named_modules():
|
66 |
-
if "embed" in name:
|
67 |
-
print(module, flush=True)
|
68 |
-
|
69 |
-
model.gumbel_detach = gumbel_detach
|
70 |
-
model.include_policy_loss = include_policy_loss
|
71 |
-
model.use_end_thought_token = use_end_thought_token
|
72 |
-
model.use_start_thought_token = use_start_thought_token
|
73 |
-
model.n_ahead = n_ahead
|
74 |
-
model.n_ahead_talk = n_ahead_talk
|
75 |
-
model.n_passes = n_passes
|
76 |
-
model.residual_think_head = residual_think_head
|
77 |
-
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
78 |
-
model.gumbel_temperature = gumbel_temperature
|
79 |
-
model.original_mode = original
|
80 |
-
model.config_params = params
|
81 |
-
model.run_start = int(time.time())
|
82 |
-
model.train()
|
83 |
-
return model,tokenizer
|
84 |
-
|
85 |
-
model,tokenizer = model_init(None)
|
86 |
-
tokenizer.save_pretrained("IModel")
|
87 |
-
model.save_pretrained("IModel")
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
from datasets import load_dataset
|
94 |
-
|
95 |
-
### DATA SET FOR TRAINING
|
96 |
-
|
97 |
-
|
98 |
-
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
99 |
-
|
100 |
-
### Instruction:
|
101 |
-
{}
|
102 |
-
|
103 |
-
### Input:
|
104 |
-
{}
|
105 |
-
|
106 |
-
### Response:
|
107 |
-
{}"""
|
108 |
-
|
109 |
-
|
110 |
-
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
111 |
-
def formatting_prompts_func(examples):
|
112 |
-
instructions = examples["instruction"]
|
113 |
-
inputs = examples["input"]
|
114 |
-
outputs = examples["output"]
|
115 |
-
texts = []
|
116 |
-
for instruction, input, output in zip(instructions, inputs, outputs):
|
117 |
-
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
118 |
-
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
|
119 |
-
texts.append(text)
|
120 |
-
return { "text" : texts, }
|
121 |
-
pass
|
122 |
-
|
123 |
-
from datasets import load_dataset
|
124 |
-
dataset = load_dataset("gate369/Alpaca-Star", split = "train[:2000]")
|
125 |
-
dataset = dataset.shuffle(seed=3704)
|
126 |
-
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|