Delete SpydazWebAI_Examples.py
Browse files- SpydazWebAI_Examples.py +0 -235
SpydazWebAI_Examples.py
DELETED
@@ -1,235 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
################################ language examples ##############################
|
11 |
-
|
12 |
-
## LlamaTokenizerFast
|
13 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mistral-7B-v0.1")
|
14 |
-
tokenizer.encode("Hello this is a test")
|
15 |
-
|
16 |
-
################################ INITIALIZE Mistral MODEL ##############################
|
17 |
-
## INITIALIZE MistralStarConfig
|
18 |
-
|
19 |
-
# Initializing a Mistral 7B style configuration
|
20 |
-
configuration = MistralStarConfig()
|
21 |
-
|
22 |
-
# Initializing a model from the Mistral 7B style configuration
|
23 |
-
model = MistralModel(configuration)
|
24 |
-
|
25 |
-
# Accessing the model configuration
|
26 |
-
configuration = model.config
|
27 |
-
|
28 |
-
## INITIALIZE MistralStarConfig
|
29 |
-
|
30 |
-
# Initializing a Mistral 7B style configuration
|
31 |
-
configuration = MistralQuietConfig()
|
32 |
-
|
33 |
-
# Initializing a model from the Mistral 7B style configuration
|
34 |
-
model = MistralModel(configuration)
|
35 |
-
|
36 |
-
# Accessing the model configuration
|
37 |
-
configuration = model.config
|
38 |
-
|
39 |
-
|
40 |
-
## INITIALIZE MODEL
|
41 |
-
|
42 |
-
# Initializing a Mistral 7B style configuration
|
43 |
-
configuration = MistralConfig()
|
44 |
-
|
45 |
-
# Initializing a model from the Mistral 7B style configuration
|
46 |
-
model = MistralModel(configuration)
|
47 |
-
|
48 |
-
# Accessing the model configuration
|
49 |
-
configuration = model.config
|
50 |
-
|
51 |
-
|
52 |
-
## INITIALIZE MODEL-Examples
|
53 |
-
|
54 |
-
# Download model and configuration from huggingface.co and cache.
|
55 |
-
model = MistralModel.from_pretrained("mistralai/Mistral-7B-v0.1")
|
56 |
-
# Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
|
57 |
-
model = MistralModel.from_pretrained("./test/saved_model/")
|
58 |
-
# Update configuration during loading.
|
59 |
-
model = MistralModel.from_pretrained("mistralai/Mistral-7B-v0.1", output_attentions=True)
|
60 |
-
assert model.config.output_attentions == True
|
61 |
-
# Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
|
62 |
-
config = MistralConfig.from_json_file("./tf_model/my_tf_model_config.json")
|
63 |
-
model = MistralModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
|
64 |
-
# Loading from a Flax checkpoint file instead of a PyTorch model (slower)
|
65 |
-
model = MistralModel.from_pretrained("mistralai/Mistral-7B-v0.1", from_flax=True)
|
66 |
-
################################ MistralForCausalLM ##############################
|
67 |
-
|
68 |
-
## MistralForCausalLM
|
69 |
-
|
70 |
-
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
71 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mistral-7B-v0.1")
|
72 |
-
|
73 |
-
prompt = "Hey, are you conscious? Can you talk to me?"
|
74 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
75 |
-
|
76 |
-
# Generate
|
77 |
-
generate_ids = model.generate(inputs.input_ids, max_length=30)
|
78 |
-
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
79 |
-
## "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
80 |
-
|
81 |
-
################################ MistralForSequenceClassification ##############################
|
82 |
-
|
83 |
-
### MistralForSequenceClassification - single-label classification:
|
84 |
-
|
85 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mistral-7B-v0.1")
|
86 |
-
model = MistralForSequenceClassification.from_pretrained("mistralai/Mistral-7B-v0.1")
|
87 |
-
|
88 |
-
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
89 |
-
|
90 |
-
with torch.no_grad():
|
91 |
-
logits = model(**inputs).logits
|
92 |
-
|
93 |
-
predicted_class_id = logits.argmax().item()
|
94 |
-
|
95 |
-
# To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
|
96 |
-
num_labels = len(model.config.id2label)
|
97 |
-
model = MistralForSequenceClassification.from_pretrained("mistralai/Mistral-7B-v0.1", num_labels=num_labels)
|
98 |
-
|
99 |
-
labels = torch.tensor([1])
|
100 |
-
loss = model(**inputs, labels=labels).loss
|
101 |
-
|
102 |
-
|
103 |
-
### MistralForSequenceClassification - multi-label classification:
|
104 |
-
|
105 |
-
|
106 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mistral-7B-v0.1")
|
107 |
-
model = MistralForSequenceClassification.from_pretrained("mistralai/Mistral-7B-v0.1", problem_type="multi_label_classification")
|
108 |
-
|
109 |
-
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
110 |
-
|
111 |
-
with torch.no_grad():
|
112 |
-
logits = model(**inputs).logits
|
113 |
-
|
114 |
-
predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
|
115 |
-
|
116 |
-
# To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
|
117 |
-
num_labels = len(model.config.id2label)
|
118 |
-
model = MistralForSequenceClassification.from_pretrained(
|
119 |
-
"mistralai/Mistral-7B-v0.1", num_labels=num_labels, problem_type="multi_label_classification"
|
120 |
-
)
|
121 |
-
|
122 |
-
labels = torch.sum(
|
123 |
-
torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
|
124 |
-
).to(torch.float)
|
125 |
-
loss = model(**inputs, labels=labels).loss
|
126 |
-
|
127 |
-
################################ MistralForTokenClassification ##############################
|
128 |
-
|
129 |
-
|
130 |
-
### MistralForTokenClassification
|
131 |
-
|
132 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mistral-7B-v0.1")
|
133 |
-
model = MistralForTokenClassification.from_pretrained("mistralai/Mistral-7B-v0.1")
|
134 |
-
|
135 |
-
inputs = tokenizer(
|
136 |
-
"HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
|
137 |
-
)
|
138 |
-
|
139 |
-
with torch.no_grad():
|
140 |
-
logits = model(**inputs).logits
|
141 |
-
|
142 |
-
predicted_token_class_ids = logits.argmax(-1)
|
143 |
-
|
144 |
-
# Note that tokens are classified rather then input words which means that
|
145 |
-
# there might be more predicted token classes than words.
|
146 |
-
# Multiple token classes might account for the same word
|
147 |
-
predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
|
148 |
-
predicted_tokens_classes
|
149 |
-
|
150 |
-
labels = predicted_token_class_ids
|
151 |
-
loss = model(**inputs, labels=labels).loss
|
152 |
-
round(loss.item(), 2)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
################################ MistralForQuestionAnswering ##############################
|
158 |
-
|
159 |
-
|
160 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mistral-7B-v0.1")
|
161 |
-
model = MistralForQuestionAnswering.from_pretrained("mistralai/Mistral-7B-v0.1")
|
162 |
-
|
163 |
-
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
164 |
-
|
165 |
-
inputs = tokenizer(question, text, return_tensors="pt")
|
166 |
-
with torch.no_grad():
|
167 |
-
outputs = model(**inputs)
|
168 |
-
|
169 |
-
answer_start_index = outputs.start_logits.argmax()
|
170 |
-
answer_end_index = outputs.end_logits.argmax()
|
171 |
-
|
172 |
-
predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
|
173 |
-
|
174 |
-
# target is "nice puppet"
|
175 |
-
target_start_index = torch.tensor([14])
|
176 |
-
target_end_index = torch.tensor([15])
|
177 |
-
|
178 |
-
outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
|
179 |
-
loss = outputs.loss
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
################################ Mixtral MOA Models ##############################
|
188 |
-
|
189 |
-
################################################################
|
190 |
-
# Initializing a Mixtral 7B style configuration
|
191 |
-
################################################################
|
192 |
-
|
193 |
-
configuration = MixtralConfig()
|
194 |
-
|
195 |
-
# Initializing a model from the Mixtral 7B style configuration
|
196 |
-
model = MixtralModel(configuration)
|
197 |
-
|
198 |
-
# Accessing the model configuration
|
199 |
-
configuration = model.config
|
200 |
-
|
201 |
-
################################################################
|
202 |
-
### The base model can be used as follows:
|
203 |
-
################################################################
|
204 |
-
|
205 |
-
model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1", device_map="auto")
|
206 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
207 |
-
|
208 |
-
prompt = "My favourite condiment is"
|
209 |
-
|
210 |
-
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
211 |
-
model.to("cpu")
|
212 |
-
|
213 |
-
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
|
214 |
-
tokenizer.batch_decode(generated_ids)[0]
|
215 |
-
|
216 |
-
|
217 |
-
################################################################
|
218 |
-
### The instruction tuned model can be used as follows:
|
219 |
-
################################################################
|
220 |
-
|
221 |
-
model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", device_map="auto")
|
222 |
-
tokenizer = MistralTokenizerFast.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
223 |
-
|
224 |
-
messages = [
|
225 |
-
{"role": "user", "content": "What is your favourite condiment?"},
|
226 |
-
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
227 |
-
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
228 |
-
]
|
229 |
-
|
230 |
-
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
231 |
-
|
232 |
-
generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
|
233 |
-
tokenizer.batch_decode(generated_ids)[0]
|
234 |
-
################################ end of language examples ##############################
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|