File size: 47,406 Bytes
89f5628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7552
- loss:CoSENTLoss
base_model: intfloat/multilingual-e5-large-instruct
widget:
- source_sentence: How are calibration points linked to equipment?
  sentences:
  - 'How are flow computers and measurement systems related?

    Flow computers can have multiple systems assigned to them. However, a measurement
    system can only be assigned to one flow computer.


    Database terminology:

    In the database, this relationship is referred to as:

    - Meter streams

    - Meter runs

    - Sections


    Storage of the relationship:

    The relationship between a flow computer and its assigned measurement system is
    stored in a special table.


    User context:

    When a user refers to a "meter stream," they are indicating that they are searching
    for a measurement system assigned to a specific flow computer.'
  - "How does a flow computer generate and store reports?\nA flow computer generates\
    \ daily or hourly reports to provide users with operational data. These reports\
    \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
    - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
    \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
    \ tables:\n1. Main table (Index):\n    - Stores the date, time, and flow computer\
    \ identifier.\n2. Detail table:\n    - Stores the measured values associated with\
    \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
    \ are linked to a Modbus table. This table contains the names corresponding to\
    \ each value in the reports, making it easier to interpret the data."
  - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
    \ and reliability of results obtained from equipment or measurement systems. It\
    \ quantifies the potential error or margin of error in measurements.\n\nTypes\
    \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
    \ magnitudes (variables):\n    - Refers to the uncertainty of specific variables,\
    \ such as temperature or pressure.\n    - It is calculated after calibrating a\
    \ device or obtained from the equipment manufacturer's manual.\n    - This uncertainty\
    \ serves as a starting point for further calculations related to the equipment.\n\
    \n2. Uncertainty of the measurement system:\n    - Refers to the uncertainty calculated\
    \ for the overall flow measurement.\n    - It depends on the uncertainties of\
    \ the individual variables (magnitudes) and represents the combined margin of\
    \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
    \ (variables) are the foundation for calculating the uncertainty of the measurement\
    \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
    \ types of uncertainty:\n    - **Uncertainty of magnitudes/variables**: Specific\
    \ to individual variables (e.g., temperature, pressure).\n    - **Uncertainty\
    \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
    \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
    \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n    - Stores\
    \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
    \n2. Uncertainty of the measurement system:\n    - Stores the uncertainty values\
    \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
    - To find the uncertainty of the measurement system, join the measurement systems\
    \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
    \ of a specific variable (magnitude), join the measurement systems table with\
    \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
    \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
    \ of the measurement system, use the first join (measurement systems table + uncertainty\
    \ of the measurement system table).\n- If the user requests the uncertainty of\
    \ a specific variable (magnitude) in a report, use the second join (measurement\
    \ systems table + uncertainty of magnitudes table)."
- source_sentence: What is the primary key of the flow computer table?
  sentences:
  - 'What is equipment calibration?

    Calibration is a metrological verification process used to ensure the accuracy
    of measurement equipment. It is performed periodically, based on intervals set
    by the company or a regulatory body.


    Purpose of calibration:

    The calibration process corrects any deviations in how the equipment measures
    physical magnitudes (variables). This ensures the equipment provides accurate
    and reliable data.


    Calibration cycles:

    There are two main calibration cycles:

    1. As-found: Represents the equipment''s measurement accuracy before any adjustments
    are made. This cycle is almost always implemented.

    2. As-left: Represents the equipment''s measurement accuracy after adjustments
    are made. This cycle is used depending on regulatory requirements.


    Calibration uncertainty:

    - Uncertainty is included in the results of a calibration.

    - Calibration uncertainty refers to the margin of error in the device''s measurements,
    which also affects the uncertainty of the measured variable or magnitude.'
  - 'What is equipment calibration?

    Calibration is a metrological verification process used to ensure the accuracy
    of measurement equipment. It is performed periodically, based on intervals set
    by the company or a regulatory body.


    Purpose of calibration:

    The calibration process corrects any deviations in how the equipment measures
    physical magnitudes (variables). This ensures the equipment provides accurate
    and reliable data.


    Calibration cycles:

    There are two main calibration cycles:

    1. As-found: Represents the equipment''s measurement accuracy before any adjustments
    are made. This cycle is almost always implemented.

    2. As-left: Represents the equipment''s measurement accuracy after adjustments
    are made. This cycle is used depending on regulatory requirements.


    Calibration uncertainty:

    - Uncertainty is included in the results of a calibration.

    - Calibration uncertainty refers to the margin of error in the device''s measurements,
    which also affects the uncertainty of the measured variable or magnitude.'
  - "How does a flow computer generate and store reports?\nA flow computer generates\
    \ daily or hourly reports to provide users with operational data. These reports\
    \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
    - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
    \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
    \ tables:\n1. Main table (Index):\n    - Stores the date, time, and flow computer\
    \ identifier.\n2. Detail table:\n    - Stores the measured values associated with\
    \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
    \ are linked to a Modbus table. This table contains the names corresponding to\
    \ each value in the reports, making it easier to interpret the data."
- source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
    result for the specified tag and date?
  sentences:
  - 'What is equipment calibration?

    Calibration is a metrological verification process used to ensure the accuracy
    of measurement equipment. It is performed periodically, based on intervals set
    by the company or a regulatory body.


    Purpose of calibration:

    The calibration process corrects any deviations in how the equipment measures
    physical magnitudes (variables). This ensures the equipment provides accurate
    and reliable data.


    Calibration cycles:

    There are two main calibration cycles:

    1. As-found: Represents the equipment''s measurement accuracy before any adjustments
    are made. This cycle is almost always implemented.

    2. As-left: Represents the equipment''s measurement accuracy after adjustments
    are made. This cycle is used depending on regulatory requirements.


    Calibration uncertainty:

    - Uncertainty is included in the results of a calibration.

    - Calibration uncertainty refers to the margin of error in the device''s measurements,
    which also affects the uncertainty of the measured variable or magnitude.'
  - 'What kind of data store an equipment?

    Equipments can capture meteorological data, such as pressure, temperature, and
    volume (magnitudes). This data is essential for users to perform various calculations.


    Data storage:

    - The measured values are stored in a special table in the database for magnitudes.
    This table contains the values of the variables captured by the equipments.

    - These values are **direct measurements** from the fluid (e.g., raw pressure,
    temperature, or volume readings). **They are not calculated values**, such as
    uncertainty.

    - The values stored in the variable values table are **different** from variable
    uncertainty values, which are calculated separately and represent the margin of
    error.


    Accessing the data:

    - Users typically access the data by referring to the readings from the measurement
    system, not directly from the individual equipments.

    - The readings are stored in a "variable values" table within the database.


    Linking variable names:

    If the user needs to know the name of a variable, they must link the data to another
    table that stores information about the types of variables.'
  - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
    \ and reliability of results obtained from equipment or measurement systems. It\
    \ quantifies the potential error or margin of error in measurements.\n\nTypes\
    \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
    \ magnitudes (variables):\n    - Refers to the uncertainty of specific variables,\
    \ such as temperature or pressure.\n    - It is calculated after calibrating a\
    \ device or obtained from the equipment manufacturer's manual.\n    - This uncertainty\
    \ serves as a starting point for further calculations related to the equipment.\n\
    \n2. Uncertainty of the measurement system:\n    - Refers to the uncertainty calculated\
    \ for the overall flow measurement.\n    - It depends on the uncertainties of\
    \ the individual variables (magnitudes) and represents the combined margin of\
    \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
    \ (variables) are the foundation for calculating the uncertainty of the measurement\
    \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
    \ types of uncertainty:\n    - **Uncertainty of magnitudes/variables**: Specific\
    \ to individual variables (e.g., temperature, pressure).\n    - **Uncertainty\
    \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
    \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
    \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n    - Stores\
    \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
    \n2. Uncertainty of the measurement system:\n    - Stores the uncertainty values\
    \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
    - To find the uncertainty of the measurement system, join the measurement systems\
    \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
    \ of a specific variable (magnitude), join the measurement systems table with\
    \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
    \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
    \ of the measurement system, use the first join (measurement systems table + uncertainty\
    \ of the measurement system table).\n- If the user requests the uncertainty of\
    \ a specific variable (magnitude) in a report, use the second join (measurement\
    \ systems table + uncertainty of magnitudes table)."
- source_sentence: How are the secondary equipment and measurement system related?
  sentences:
  - 'What kind of data store an equipment?

    Equipments can capture meteorological data, such as pressure, temperature, and
    volume (magnitudes). This data is essential for users to perform various calculations.


    Data storage:

    - The measured values are stored in a special table in the database for magnitudes.
    This table contains the values of the variables captured by the equipments.

    - These values are **direct measurements** from the fluid (e.g., raw pressure,
    temperature, or volume readings). **They are not calculated values**, such as
    uncertainty.

    - The values stored in the variable values table are **different** from variable
    uncertainty values, which are calculated separately and represent the margin of
    error.


    Accessing the data:

    - Users typically access the data by referring to the readings from the measurement
    system, not directly from the individual equipments.

    - The readings are stored in a "variable values" table within the database.


    Linking variable names:

    If the user needs to know the name of a variable, they must link the data to another
    table that stores information about the types of variables.'
  - 'What do measurement equipment measure?

    Each equipment measures a physical magnitude, also known as a variable. Based
    on the type of variable they measure, devices are classified into different categories.


    Equipment classification:

    - Primary meter: Assigned by default to equipments like orifice plates.

    - Secondary meter: Assigned by default to equipments like transmitters.

    - Tertiary meter: Used for other types of equipments.


    Equipment types in the database:

    The database includes a table listing all equipment types. Examples of equipment
    types are:

    - Differential pressure transmitters

    - RTDs (Resistance Temperature Detectors)

    - Orifice plates

    - Multivariable transmitters

    - Ultrasonic meters


    Meteorological checks for equipments:

    Each equipment type is assigned a meteorological check, which can be either:

    - Calibration: To ensure measurement accuracy.

    - Inspection: To verify proper functioning.


    Data storage in tables:

    The database also includes a separate table for equipment classifications, which
    are:

    - Primary meter

    - Secondary meter

    - Tertiary meter

    So, an equipment has equipment types and this types has classifications.'
  - 'What kind of data store an equipment?

    Equipments can capture meteorological data, such as pressure, temperature, and
    volume (magnitudes). This data is essential for users to perform various calculations.


    Data storage:

    - The measured values are stored in a special table in the database for magnitudes.
    This table contains the values of the variables captured by the equipments.

    - These values are **direct measurements** from the fluid (e.g., raw pressure,
    temperature, or volume readings). **They are not calculated values**, such as
    uncertainty.

    - The values stored in the variable values table are **different** from variable
    uncertainty values, which are calculated separately and represent the margin of
    error.


    Accessing the data:

    - Users typically access the data by referring to the readings from the measurement
    system, not directly from the individual equipments.

    - The readings are stored in a "variable values" table within the database.


    Linking variable names:

    If the user needs to know the name of a variable, they must link the data to another
    table that stores information about the types of variables.'
- source_sentence: What is the table structure for secondary equipment?
  sentences:
  - 'What kind of data store an equipment?

    Equipments can capture meteorological data, such as pressure, temperature, and
    volume (magnitudes). This data is essential for users to perform various calculations.


    Data storage:

    - The measured values are stored in a special table in the database for magnitudes.
    This table contains the values of the variables captured by the equipments.

    - These values are **direct measurements** from the fluid (e.g., raw pressure,
    temperature, or volume readings). **They are not calculated values**, such as
    uncertainty.

    - The values stored in the variable values table are **different** from variable
    uncertainty values, which are calculated separately and represent the margin of
    error.


    Accessing the data:

    - Users typically access the data by referring to the readings from the measurement
    system, not directly from the individual equipments.

    - The readings are stored in a "variable values" table within the database.


    Linking variable names:

    If the user needs to know the name of a variable, they must link the data to another
    table that stores information about the types of variables.'
  - 'How are flow computers and measurement systems related?

    Flow computers can have multiple systems assigned to them. However, a measurement
    system can only be assigned to one flow computer.


    Database terminology:

    In the database, this relationship is referred to as:

    - Meter streams

    - Meter runs

    - Sections


    Storage of the relationship:

    The relationship between a flow computer and its assigned measurement system is
    stored in a special table.


    User context:

    When a user refers to a "meter stream," they are indicating that they are searching
    for a measurement system assigned to a specific flow computer.'
  - 'How are flow computers and measurement systems related?

    Flow computers can have multiple systems assigned to them. However, a measurement
    system can only be assigned to one flow computer.


    Database terminology:

    In the database, this relationship is referred to as:

    - Meter streams

    - Meter runs

    - Sections


    Storage of the relationship:

    The relationship between a flow computer and its assigned measurement system is
    stored in a special table.


    User context:

    When a user refers to a "meter stream," they are indicating that they are searching
    for a measurement system assigned to a specific flow computer.'
datasets:
- Lauther/measuring-embeddings-v3
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on intfloat/multilingual-e5-large-instruct

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What is the table structure for secondary equipment?',
    'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
    'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### measuring-embeddings-v3

* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
* Size: 7,552 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                             | score                                                           |
  |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                                | float                                                           |
  | details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
* Samples:
  | sentence1                                                                                              | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | score             |
  |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code>  |
  | <code>What is the column name for the calibration date in the calibration table?</code>                | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                            | <code>0.1</code>  |
  | <code>What is the name of the table that contains the flow computer tags?</code>                       | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code>                            | <code>0.05</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### measuring-embeddings-v3

* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
* Size: 1,618 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                             | score                                                           |
  |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                                | float                                                           |
  | details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
* Samples:
  | sentence1                                                                                               | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | score            |
  |:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Identify any additional tables or columns that might be needed for the query.</code>              | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code>                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>0.2</code> |
  | <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br>    - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br>    - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code>                                                                                                                                                                                                                                    | <code>0.1</code> |
  | <code>Identify the column that stores the calibration number.</code>                                    | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 7
- `per_device_eval_batch_size`: 7
- `gradient_accumulation_steps`: 4
- `learning_rate`: 3e-05
- `num_train_epochs`: 20
- `warmup_ratio`: 0.1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 7
- `per_device_eval_batch_size`: 7
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 9.5153  | 2560 | 6.782         | -               |
| 9.5524  | 2570 | 7.3027        | -               |
| 9.5894  | 2580 | 7.3348        | -               |
| 9.6265  | 2590 | 7.7864        | -               |
| 9.6636  | 2600 | 6.3552        | -               |
| 9.7006  | 2610 | 7.151         | -               |
| 9.7377  | 2620 | 6.1664        | -               |
| 9.7748  | 2630 | 6.0398        | -               |
| 9.8119  | 2640 | 7.0452        | -               |
| 9.8489  | 2650 | 7.2457        | -               |
| 9.8860  | 2660 | 6.7531        | -               |
| 9.9231  | 2670 | 6.7149        | -               |
| 9.9601  | 2680 | 6.4635        | -               |
| 9.9972  | 2690 | 6.2237        | -               |
| 10.0371 | 2700 | 6.1798        | 2.9939          |
| 10.0741 | 2710 | 7.2224        | -               |
| 10.1112 | 2720 | 6.5327        | -               |
| 10.1483 | 2730 | 7.4686        | -               |
| 10.1854 | 2740 | 6.1404        | -               |
| 10.2224 | 2750 | 7.0005        | -               |
| 10.2595 | 2760 | 5.7726        | -               |
| 10.2966 | 2770 | 6.5327        | -               |
| 10.3336 | 2780 | 7.5015        | -               |
| 10.3707 | 2790 | 6.5526        | -               |
| 10.4078 | 2800 | 6.2078        | -               |
| 10.4449 | 2810 | 6.1           | -               |
| 10.4819 | 2820 | 7.1027        | -               |
| 10.5190 | 2830 | 8.639         | -               |
| 10.5561 | 2840 | 6.9937        | -               |
| 10.5931 | 2850 | 7.2734        | 2.8532          |
| 10.6302 | 2860 | 7.6321        | -               |
| 10.6673 | 2870 | 7.5788        | -               |
| 10.7044 | 2880 | 6.7864        | -               |
| 10.7414 | 2890 | 7.4237        | -               |
| 10.7785 | 2900 | 6.9813        | -               |
| 10.8156 | 2910 | 6.6884        | -               |
| 10.8526 | 2920 | 6.7464        | -               |
| 10.8897 | 2930 | 7.7989        | -               |
| 10.9268 | 2940 | 7.3568        | -               |
| 10.9639 | 2950 | 8.6706        | -               |
| 11.0    | 2960 | 6.5687        | -               |
| 11.0371 | 2970 | 5.8992        | -               |
| 11.0741 | 2980 | 6.4543        | -               |
| 11.1112 | 2990 | 6.1386        | -               |
| 11.1483 | 3000 | 6.9047        | 2.9147          |


### Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->