Lauther commited on
Commit
89f5628
·
verified ·
1 Parent(s): 46e84c1

Uploaded model checkpoints

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoints/checkpoint-2100/1_Pooling/config.json +10 -0
  2. checkpoints/checkpoint-2100/README.md +917 -0
  3. checkpoints/checkpoint-2100/config.json +28 -0
  4. checkpoints/checkpoint-2100/config_sentence_transformers.json +10 -0
  5. checkpoints/checkpoint-2100/model.safetensors +3 -0
  6. checkpoints/checkpoint-2100/modules.json +20 -0
  7. checkpoints/checkpoint-2100/optimizer.pt +3 -0
  8. checkpoints/checkpoint-2100/rng_state.pth +3 -0
  9. checkpoints/checkpoint-2100/scheduler.pt +3 -0
  10. checkpoints/checkpoint-2100/sentence_bert_config.json +4 -0
  11. checkpoints/checkpoint-2100/special_tokens_map.json +51 -0
  12. checkpoints/checkpoint-2100/tokenizer.json +3 -0
  13. checkpoints/checkpoint-2100/tokenizer_config.json +56 -0
  14. checkpoints/checkpoint-2100/trainer_state.json +1615 -0
  15. checkpoints/checkpoint-2100/training_args.bin +3 -0
  16. checkpoints/checkpoint-2550/1_Pooling/config.json +10 -0
  17. checkpoints/checkpoint-2550/README.md +839 -0
  18. checkpoints/checkpoint-2550/config.json +28 -0
  19. checkpoints/checkpoint-2550/config_sentence_transformers.json +10 -0
  20. checkpoints/checkpoint-2550/model.safetensors +3 -0
  21. checkpoints/checkpoint-2550/modules.json +20 -0
  22. checkpoints/checkpoint-2550/optimizer.pt +3 -0
  23. checkpoints/checkpoint-2550/rng_state.pth +3 -0
  24. checkpoints/checkpoint-2550/scheduler.pt +3 -0
  25. checkpoints/checkpoint-2550/sentence_bert_config.json +4 -0
  26. checkpoints/checkpoint-2550/special_tokens_map.json +51 -0
  27. checkpoints/checkpoint-2550/tokenizer.json +3 -0
  28. checkpoints/checkpoint-2550/tokenizer_config.json +56 -0
  29. checkpoints/checkpoint-2550/trainer_state.json +1954 -0
  30. checkpoints/checkpoint-2550/training_args.bin +3 -0
  31. checkpoints/checkpoint-3000/1_Pooling/config.json +10 -0
  32. checkpoints/checkpoint-3000/README.md +854 -0
  33. checkpoints/checkpoint-3000/config.json +28 -0
  34. checkpoints/checkpoint-3000/config_sentence_transformers.json +10 -0
  35. checkpoints/checkpoint-3000/model.safetensors +3 -0
  36. checkpoints/checkpoint-3000/modules.json +20 -0
  37. checkpoints/checkpoint-3000/optimizer.pt +3 -0
  38. checkpoints/checkpoint-3000/rng_state.pth +3 -0
  39. checkpoints/checkpoint-3000/scheduler.pt +3 -0
  40. checkpoints/checkpoint-3000/sentence_bert_config.json +4 -0
  41. checkpoints/checkpoint-3000/special_tokens_map.json +51 -0
  42. checkpoints/checkpoint-3000/tokenizer.json +3 -0
  43. checkpoints/checkpoint-3000/tokenizer_config.json +56 -0
  44. checkpoints/checkpoint-3000/trainer_state.json +2293 -0
  45. checkpoints/checkpoint-3000/training_args.bin +3 -0
  46. checkpoints/checkpoint-4050/1_Pooling/config.json +10 -0
  47. checkpoints/checkpoint-4050/README.md +962 -0
  48. checkpoints/checkpoint-4050/config.json +28 -0
  49. checkpoints/checkpoint-4050/config_sentence_transformers.json +10 -0
  50. checkpoints/checkpoint-4050/model.safetensors +3 -0
checkpoints/checkpoint-2100/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoints/checkpoint-2100/README.md ADDED
@@ -0,0 +1,917 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7552
8
+ - loss:CoSENTLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: How are calibration points linked to equipment?
12
+ sentences:
13
+ - 'How are flow computers and measurement systems related?
14
+
15
+ Flow computers can have multiple systems assigned to them. However, a measurement
16
+ system can only be assigned to one flow computer.
17
+
18
+
19
+ Database terminology:
20
+
21
+ In the database, this relationship is referred to as:
22
+
23
+ - Meter streams
24
+
25
+ - Meter runs
26
+
27
+ - Sections
28
+
29
+
30
+ Storage of the relationship:
31
+
32
+ The relationship between a flow computer and its assigned measurement system is
33
+ stored in a special table.
34
+
35
+
36
+ User context:
37
+
38
+ When a user refers to a "meter stream," they are indicating that they are searching
39
+ for a measurement system assigned to a specific flow computer.'
40
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
41
+ \ daily or hourly reports to provide users with operational data. These reports\
42
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
43
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
44
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
45
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
46
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
47
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
48
+ \ are linked to a Modbus table. This table contains the names corresponding to\
49
+ \ each value in the reports, making it easier to interpret the data."
50
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
51
+ \ and reliability of results obtained from equipment or measurement systems. It\
52
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
53
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
54
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
55
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
56
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
57
+ \ serves as a starting point for further calculations related to the equipment.\n\
58
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
59
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
60
+ \ the individual variables (magnitudes) and represents the combined margin of\
61
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
62
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
63
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
64
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
65
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
66
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
67
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
68
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
69
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
70
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
71
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
72
+ - To find the uncertainty of the measurement system, join the measurement systems\
73
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
74
+ \ of a specific variable (magnitude), join the measurement systems table with\
75
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
76
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
77
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
78
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
79
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
80
+ \ systems table + uncertainty of magnitudes table)."
81
+ - source_sentence: What is the primary key of the flow computer table?
82
+ sentences:
83
+ - 'What is equipment calibration?
84
+
85
+ Calibration is a metrological verification process used to ensure the accuracy
86
+ of measurement equipment. It is performed periodically, based on intervals set
87
+ by the company or a regulatory body.
88
+
89
+
90
+ Purpose of calibration:
91
+
92
+ The calibration process corrects any deviations in how the equipment measures
93
+ physical magnitudes (variables). This ensures the equipment provides accurate
94
+ and reliable data.
95
+
96
+
97
+ Calibration cycles:
98
+
99
+ There are two main calibration cycles:
100
+
101
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
102
+ are made. This cycle is almost always implemented.
103
+
104
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
105
+ are made. This cycle is used depending on regulatory requirements.
106
+
107
+
108
+ Calibration uncertainty:
109
+
110
+ - Uncertainty is included in the results of a calibration.
111
+
112
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
113
+ which also affects the uncertainty of the measured variable or magnitude.'
114
+ - 'What is equipment calibration?
115
+
116
+ Calibration is a metrological verification process used to ensure the accuracy
117
+ of measurement equipment. It is performed periodically, based on intervals set
118
+ by the company or a regulatory body.
119
+
120
+
121
+ Purpose of calibration:
122
+
123
+ The calibration process corrects any deviations in how the equipment measures
124
+ physical magnitudes (variables). This ensures the equipment provides accurate
125
+ and reliable data.
126
+
127
+
128
+ Calibration cycles:
129
+
130
+ There are two main calibration cycles:
131
+
132
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
133
+ are made. This cycle is almost always implemented.
134
+
135
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
136
+ are made. This cycle is used depending on regulatory requirements.
137
+
138
+
139
+ Calibration uncertainty:
140
+
141
+ - Uncertainty is included in the results of a calibration.
142
+
143
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
144
+ which also affects the uncertainty of the measured variable or magnitude.'
145
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
146
+ \ daily or hourly reports to provide users with operational data. These reports\
147
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
148
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
149
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
150
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
151
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
152
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
153
+ \ are linked to a Modbus table. This table contains the names corresponding to\
154
+ \ each value in the reports, making it easier to interpret the data."
155
+ - source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
156
+ result for the specified tag and date?
157
+ sentences:
158
+ - 'What is equipment calibration?
159
+
160
+ Calibration is a metrological verification process used to ensure the accuracy
161
+ of measurement equipment. It is performed periodically, based on intervals set
162
+ by the company or a regulatory body.
163
+
164
+
165
+ Purpose of calibration:
166
+
167
+ The calibration process corrects any deviations in how the equipment measures
168
+ physical magnitudes (variables). This ensures the equipment provides accurate
169
+ and reliable data.
170
+
171
+
172
+ Calibration cycles:
173
+
174
+ There are two main calibration cycles:
175
+
176
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
177
+ are made. This cycle is almost always implemented.
178
+
179
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
180
+ are made. This cycle is used depending on regulatory requirements.
181
+
182
+
183
+ Calibration uncertainty:
184
+
185
+ - Uncertainty is included in the results of a calibration.
186
+
187
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
188
+ which also affects the uncertainty of the measured variable or magnitude.'
189
+ - 'What kind of data store an equipment?
190
+
191
+ Equipments can capture meteorological data, such as pressure, temperature, and
192
+ volume (magnitudes). This data is essential for users to perform various calculations.
193
+
194
+
195
+ Data storage:
196
+
197
+ - The measured values are stored in a special table in the database for magnitudes.
198
+ This table contains the values of the variables captured by the equipments.
199
+
200
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
201
+ temperature, or volume readings). **They are not calculated values**, such as
202
+ uncertainty.
203
+
204
+ - The values stored in the variable values table are **different** from variable
205
+ uncertainty values, which are calculated separately and represent the margin of
206
+ error.
207
+
208
+
209
+ Accessing the data:
210
+
211
+ - Users typically access the data by referring to the readings from the measurement
212
+ system, not directly from the individual equipments.
213
+
214
+ - The readings are stored in a "variable values" table within the database.
215
+
216
+
217
+ Linking variable names:
218
+
219
+ If the user needs to know the name of a variable, they must link the data to another
220
+ table that stores information about the types of variables.'
221
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
222
+ \ and reliability of results obtained from equipment or measurement systems. It\
223
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
224
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
225
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
226
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
227
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
228
+ \ serves as a starting point for further calculations related to the equipment.\n\
229
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
230
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
231
+ \ the individual variables (magnitudes) and represents the combined margin of\
232
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
233
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
234
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
235
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
236
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
237
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
238
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
239
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
240
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
241
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
242
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
243
+ - To find the uncertainty of the measurement system, join the measurement systems\
244
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
245
+ \ of a specific variable (magnitude), join the measurement systems table with\
246
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
247
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
248
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
249
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
250
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
251
+ \ systems table + uncertainty of magnitudes table)."
252
+ - source_sentence: How are the secondary equipment and measurement system related?
253
+ sentences:
254
+ - 'What kind of data store an equipment?
255
+
256
+ Equipments can capture meteorological data, such as pressure, temperature, and
257
+ volume (magnitudes). This data is essential for users to perform various calculations.
258
+
259
+
260
+ Data storage:
261
+
262
+ - The measured values are stored in a special table in the database for magnitudes.
263
+ This table contains the values of the variables captured by the equipments.
264
+
265
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
266
+ temperature, or volume readings). **They are not calculated values**, such as
267
+ uncertainty.
268
+
269
+ - The values stored in the variable values table are **different** from variable
270
+ uncertainty values, which are calculated separately and represent the margin of
271
+ error.
272
+
273
+
274
+ Accessing the data:
275
+
276
+ - Users typically access the data by referring to the readings from the measurement
277
+ system, not directly from the individual equipments.
278
+
279
+ - The readings are stored in a "variable values" table within the database.
280
+
281
+
282
+ Linking variable names:
283
+
284
+ If the user needs to know the name of a variable, they must link the data to another
285
+ table that stores information about the types of variables.'
286
+ - 'What do measurement equipment measure?
287
+
288
+ Each equipment measures a physical magnitude, also known as a variable. Based
289
+ on the type of variable they measure, devices are classified into different categories.
290
+
291
+
292
+ Equipment classification:
293
+
294
+ - Primary meter: Assigned by default to equipments like orifice plates.
295
+
296
+ - Secondary meter: Assigned by default to equipments like transmitters.
297
+
298
+ - Tertiary meter: Used for other types of equipments.
299
+
300
+
301
+ Equipment types in the database:
302
+
303
+ The database includes a table listing all equipment types. Examples of equipment
304
+ types are:
305
+
306
+ - Differential pressure transmitters
307
+
308
+ - RTDs (Resistance Temperature Detectors)
309
+
310
+ - Orifice plates
311
+
312
+ - Multivariable transmitters
313
+
314
+ - Ultrasonic meters
315
+
316
+
317
+ Meteorological checks for equipments:
318
+
319
+ Each equipment type is assigned a meteorological check, which can be either:
320
+
321
+ - Calibration: To ensure measurement accuracy.
322
+
323
+ - Inspection: To verify proper functioning.
324
+
325
+
326
+ Data storage in tables:
327
+
328
+ The database also includes a separate table for equipment classifications, which
329
+ are:
330
+
331
+ - Primary meter
332
+
333
+ - Secondary meter
334
+
335
+ - Tertiary meter
336
+
337
+ So, an equipment has equipment types and this types has classifications.'
338
+ - 'What kind of data store an equipment?
339
+
340
+ Equipments can capture meteorological data, such as pressure, temperature, and
341
+ volume (magnitudes). This data is essential for users to perform various calculations.
342
+
343
+
344
+ Data storage:
345
+
346
+ - The measured values are stored in a special table in the database for magnitudes.
347
+ This table contains the values of the variables captured by the equipments.
348
+
349
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
350
+ temperature, or volume readings). **They are not calculated values**, such as
351
+ uncertainty.
352
+
353
+ - The values stored in the variable values table are **different** from variable
354
+ uncertainty values, which are calculated separately and represent the margin of
355
+ error.
356
+
357
+
358
+ Accessing the data:
359
+
360
+ - Users typically access the data by referring to the readings from the measurement
361
+ system, not directly from the individual equipments.
362
+
363
+ - The readings are stored in a "variable values" table within the database.
364
+
365
+
366
+ Linking variable names:
367
+
368
+ If the user needs to know the name of a variable, they must link the data to another
369
+ table that stores information about the types of variables.'
370
+ - source_sentence: What is the table structure for secondary equipment?
371
+ sentences:
372
+ - 'What kind of data store an equipment?
373
+
374
+ Equipments can capture meteorological data, such as pressure, temperature, and
375
+ volume (magnitudes). This data is essential for users to perform various calculations.
376
+
377
+
378
+ Data storage:
379
+
380
+ - The measured values are stored in a special table in the database for magnitudes.
381
+ This table contains the values of the variables captured by the equipments.
382
+
383
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
384
+ temperature, or volume readings). **They are not calculated values**, such as
385
+ uncertainty.
386
+
387
+ - The values stored in the variable values table are **different** from variable
388
+ uncertainty values, which are calculated separately and represent the margin of
389
+ error.
390
+
391
+
392
+ Accessing the data:
393
+
394
+ - Users typically access the data by referring to the readings from the measurement
395
+ system, not directly from the individual equipments.
396
+
397
+ - The readings are stored in a "variable values" table within the database.
398
+
399
+
400
+ Linking variable names:
401
+
402
+ If the user needs to know the name of a variable, they must link the data to another
403
+ table that stores information about the types of variables.'
404
+ - 'How are flow computers and measurement systems related?
405
+
406
+ Flow computers can have multiple systems assigned to them. However, a measurement
407
+ system can only be assigned to one flow computer.
408
+
409
+
410
+ Database terminology:
411
+
412
+ In the database, this relationship is referred to as:
413
+
414
+ - Meter streams
415
+
416
+ - Meter runs
417
+
418
+ - Sections
419
+
420
+
421
+ Storage of the relationship:
422
+
423
+ The relationship between a flow computer and its assigned measurement system is
424
+ stored in a special table.
425
+
426
+
427
+ User context:
428
+
429
+ When a user refers to a "meter stream," they are indicating that they are searching
430
+ for a measurement system assigned to a specific flow computer.'
431
+ - 'How are flow computers and measurement systems related?
432
+
433
+ Flow computers can have multiple systems assigned to them. However, a measurement
434
+ system can only be assigned to one flow computer.
435
+
436
+
437
+ Database terminology:
438
+
439
+ In the database, this relationship is referred to as:
440
+
441
+ - Meter streams
442
+
443
+ - Meter runs
444
+
445
+ - Sections
446
+
447
+
448
+ Storage of the relationship:
449
+
450
+ The relationship between a flow computer and its assigned measurement system is
451
+ stored in a special table.
452
+
453
+
454
+ User context:
455
+
456
+ When a user refers to a "meter stream," they are indicating that they are searching
457
+ for a measurement system assigned to a specific flow computer.'
458
+ datasets:
459
+ - Lauther/measuring-embeddings-v3
460
+ pipeline_tag: sentence-similarity
461
+ library_name: sentence-transformers
462
+ ---
463
+
464
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
465
+
466
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
467
+
468
+ ## Model Details
469
+
470
+ ### Model Description
471
+ - **Model Type:** Sentence Transformer
472
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
473
+ - **Maximum Sequence Length:** 512 tokens
474
+ - **Output Dimensionality:** 1024 dimensions
475
+ - **Similarity Function:** Cosine Similarity
476
+ - **Training Dataset:**
477
+ - [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
478
+ <!-- - **Language:** Unknown -->
479
+ <!-- - **License:** Unknown -->
480
+
481
+ ### Model Sources
482
+
483
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
484
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
485
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
486
+
487
+ ### Full Model Architecture
488
+
489
+ ```
490
+ SentenceTransformer(
491
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
492
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
493
+ (2): Normalize()
494
+ )
495
+ ```
496
+
497
+ ## Usage
498
+
499
+ ### Direct Usage (Sentence Transformers)
500
+
501
+ First install the Sentence Transformers library:
502
+
503
+ ```bash
504
+ pip install -U sentence-transformers
505
+ ```
506
+
507
+ Then you can load this model and run inference.
508
+ ```python
509
+ from sentence_transformers import SentenceTransformer
510
+
511
+ # Download from the 🤗 Hub
512
+ model = SentenceTransformer("sentence_transformers_model_id")
513
+ # Run inference
514
+ sentences = [
515
+ 'What is the table structure for secondary equipment?',
516
+ 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
517
+ 'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
518
+ ]
519
+ embeddings = model.encode(sentences)
520
+ print(embeddings.shape)
521
+ # [3, 1024]
522
+
523
+ # Get the similarity scores for the embeddings
524
+ similarities = model.similarity(embeddings, embeddings)
525
+ print(similarities.shape)
526
+ # [3, 3]
527
+ ```
528
+
529
+ <!--
530
+ ### Direct Usage (Transformers)
531
+
532
+ <details><summary>Click to see the direct usage in Transformers</summary>
533
+
534
+ </details>
535
+ -->
536
+
537
+ <!--
538
+ ### Downstream Usage (Sentence Transformers)
539
+
540
+ You can finetune this model on your own dataset.
541
+
542
+ <details><summary>Click to expand</summary>
543
+
544
+ </details>
545
+ -->
546
+
547
+ <!--
548
+ ### Out-of-Scope Use
549
+
550
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
551
+ -->
552
+
553
+ <!--
554
+ ## Bias, Risks and Limitations
555
+
556
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
557
+ -->
558
+
559
+ <!--
560
+ ### Recommendations
561
+
562
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
563
+ -->
564
+
565
+ ## Training Details
566
+
567
+ ### Training Dataset
568
+
569
+ #### measuring-embeddings-v3
570
+
571
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
572
+ * Size: 7,552 training samples
573
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
574
+ * Approximate statistics based on the first 1000 samples:
575
+ | | sentence1 | sentence2 | score |
576
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
577
+ | type | string | string | float |
578
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
579
+ * Samples:
580
+ | sentence1 | sentence2 | score |
581
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
582
+ | <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
583
+ | <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
584
+ | <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
585
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
586
+ ```json
587
+ {
588
+ "scale": 20.0,
589
+ "similarity_fct": "pairwise_cos_sim"
590
+ }
591
+ ```
592
+
593
+ ### Evaluation Dataset
594
+
595
+ #### measuring-embeddings-v3
596
+
597
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
598
+ * Size: 1,618 evaluation samples
599
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
600
+ * Approximate statistics based on the first 1000 samples:
601
+ | | sentence1 | sentence2 | score |
602
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
603
+ | type | string | string | float |
604
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
605
+ * Samples:
606
+ | sentence1 | sentence2 | score |
607
+ |:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
608
+ | <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
609
+ | <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
610
+ | <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
611
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
612
+ ```json
613
+ {
614
+ "scale": 20.0,
615
+ "similarity_fct": "pairwise_cos_sim"
616
+ }
617
+ ```
618
+
619
+ ### Training Hyperparameters
620
+ #### Non-Default Hyperparameters
621
+
622
+ - `eval_strategy`: steps
623
+ - `per_device_train_batch_size`: 7
624
+ - `per_device_eval_batch_size`: 7
625
+ - `gradient_accumulation_steps`: 4
626
+ - `learning_rate`: 3e-05
627
+ - `num_train_epochs`: 20
628
+ - `warmup_ratio`: 0.1
629
+
630
+ #### All Hyperparameters
631
+ <details><summary>Click to expand</summary>
632
+
633
+ - `overwrite_output_dir`: False
634
+ - `do_predict`: False
635
+ - `eval_strategy`: steps
636
+ - `prediction_loss_only`: True
637
+ - `per_device_train_batch_size`: 7
638
+ - `per_device_eval_batch_size`: 7
639
+ - `per_gpu_train_batch_size`: None
640
+ - `per_gpu_eval_batch_size`: None
641
+ - `gradient_accumulation_steps`: 4
642
+ - `eval_accumulation_steps`: None
643
+ - `torch_empty_cache_steps`: None
644
+ - `learning_rate`: 3e-05
645
+ - `weight_decay`: 0.0
646
+ - `adam_beta1`: 0.9
647
+ - `adam_beta2`: 0.999
648
+ - `adam_epsilon`: 1e-08
649
+ - `max_grad_norm`: 1.0
650
+ - `num_train_epochs`: 20
651
+ - `max_steps`: -1
652
+ - `lr_scheduler_type`: linear
653
+ - `lr_scheduler_kwargs`: {}
654
+ - `warmup_ratio`: 0.1
655
+ - `warmup_steps`: 0
656
+ - `log_level`: passive
657
+ - `log_level_replica`: warning
658
+ - `log_on_each_node`: True
659
+ - `logging_nan_inf_filter`: True
660
+ - `save_safetensors`: True
661
+ - `save_on_each_node`: False
662
+ - `save_only_model`: False
663
+ - `restore_callback_states_from_checkpoint`: False
664
+ - `no_cuda`: False
665
+ - `use_cpu`: False
666
+ - `use_mps_device`: False
667
+ - `seed`: 42
668
+ - `data_seed`: None
669
+ - `jit_mode_eval`: False
670
+ - `use_ipex`: False
671
+ - `bf16`: False
672
+ - `fp16`: False
673
+ - `fp16_opt_level`: O1
674
+ - `half_precision_backend`: auto
675
+ - `bf16_full_eval`: False
676
+ - `fp16_full_eval`: False
677
+ - `tf32`: None
678
+ - `local_rank`: 0
679
+ - `ddp_backend`: None
680
+ - `tpu_num_cores`: None
681
+ - `tpu_metrics_debug`: False
682
+ - `debug`: []
683
+ - `dataloader_drop_last`: False
684
+ - `dataloader_num_workers`: 0
685
+ - `dataloader_prefetch_factor`: None
686
+ - `past_index`: -1
687
+ - `disable_tqdm`: False
688
+ - `remove_unused_columns`: True
689
+ - `label_names`: None
690
+ - `load_best_model_at_end`: False
691
+ - `ignore_data_skip`: False
692
+ - `fsdp`: []
693
+ - `fsdp_min_num_params`: 0
694
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
695
+ - `fsdp_transformer_layer_cls_to_wrap`: None
696
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
697
+ - `deepspeed`: None
698
+ - `label_smoothing_factor`: 0.0
699
+ - `optim`: adamw_torch
700
+ - `optim_args`: None
701
+ - `adafactor`: False
702
+ - `group_by_length`: False
703
+ - `length_column_name`: length
704
+ - `ddp_find_unused_parameters`: None
705
+ - `ddp_bucket_cap_mb`: None
706
+ - `ddp_broadcast_buffers`: False
707
+ - `dataloader_pin_memory`: True
708
+ - `dataloader_persistent_workers`: False
709
+ - `skip_memory_metrics`: True
710
+ - `use_legacy_prediction_loop`: False
711
+ - `push_to_hub`: False
712
+ - `resume_from_checkpoint`: None
713
+ - `hub_model_id`: None
714
+ - `hub_strategy`: every_save
715
+ - `hub_private_repo`: None
716
+ - `hub_always_push`: False
717
+ - `gradient_checkpointing`: False
718
+ - `gradient_checkpointing_kwargs`: None
719
+ - `include_inputs_for_metrics`: False
720
+ - `include_for_metrics`: []
721
+ - `eval_do_concat_batches`: True
722
+ - `fp16_backend`: auto
723
+ - `push_to_hub_model_id`: None
724
+ - `push_to_hub_organization`: None
725
+ - `mp_parameters`:
726
+ - `auto_find_batch_size`: False
727
+ - `full_determinism`: False
728
+ - `torchdynamo`: None
729
+ - `ray_scope`: last
730
+ - `ddp_timeout`: 1800
731
+ - `torch_compile`: False
732
+ - `torch_compile_backend`: None
733
+ - `torch_compile_mode`: None
734
+ - `dispatch_batches`: None
735
+ - `split_batches`: None
736
+ - `include_tokens_per_second`: False
737
+ - `include_num_input_tokens_seen`: False
738
+ - `neftune_noise_alpha`: None
739
+ - `optim_target_modules`: None
740
+ - `batch_eval_metrics`: False
741
+ - `eval_on_start`: False
742
+ - `use_liger_kernel`: False
743
+ - `eval_use_gather_object`: False
744
+ - `average_tokens_across_devices`: False
745
+ - `prompts`: None
746
+ - `batch_sampler`: batch_sampler
747
+ - `multi_dataset_batch_sampler`: proportional
748
+
749
+ </details>
750
+
751
+ ### Training Logs
752
+ <details><summary>Click to expand</summary>
753
+
754
+ | Epoch | Step | Training Loss | Validation Loss |
755
+ |:------:|:----:|:-------------:|:---------------:|
756
+ | 3.9379 | 1060 | 8.5934 | - |
757
+ | 3.9750 | 1070 | 8.006 | - |
758
+ | 4.0148 | 1080 | 9.0081 | - |
759
+ | 4.0519 | 1090 | 8.6706 | - |
760
+ | 4.0890 | 1100 | 9.6146 | - |
761
+ | 4.1260 | 1110 | 9.225 | - |
762
+ | 4.1631 | 1120 | 8.7522 | - |
763
+ | 4.2002 | 1130 | 9.0221 | - |
764
+ | 4.2373 | 1140 | 9.6458 | - |
765
+ | 4.2743 | 1150 | 8.7692 | - |
766
+ | 4.3114 | 1160 | 9.2874 | - |
767
+ | 4.3485 | 1170 | 8.9276 | - |
768
+ | 4.3855 | 1180 | 8.7444 | - |
769
+ | 4.4226 | 1190 | 8.7265 | - |
770
+ | 4.4597 | 1200 | 8.7642 | 2.6471 |
771
+ | 4.4968 | 1210 | 8.8917 | - |
772
+ | 4.5338 | 1220 | 9.2155 | - |
773
+ | 4.5709 | 1230 | 8.6101 | - |
774
+ | 4.6080 | 1240 | 8.9904 | - |
775
+ | 4.6450 | 1250 | 9.3272 | - |
776
+ | 4.6821 | 1260 | 7.9367 | - |
777
+ | 4.7192 | 1270 | 8.5891 | - |
778
+ | 4.7563 | 1280 | 8.6286 | - |
779
+ | 4.7933 | 1290 | 7.9982 | - |
780
+ | 4.8304 | 1300 | 7.5587 | - |
781
+ | 4.8675 | 1310 | 7.9405 | - |
782
+ | 4.9045 | 1320 | 9.7092 | - |
783
+ | 4.9416 | 1330 | 8.1475 | - |
784
+ | 4.9787 | 1340 | 9.3603 | - |
785
+ | 5.0148 | 1350 | 7.6621 | 2.8309 |
786
+ | 5.0519 | 1360 | 9.2301 | - |
787
+ | 5.0890 | 1370 | 9.7789 | - |
788
+ | 5.1260 | 1380 | 9.5359 | - |
789
+ | 5.1631 | 1390 | 10.8065 | - |
790
+ | 5.2002 | 1400 | 10.0149 | - |
791
+ | 5.2373 | 1410 | 10.2582 | - |
792
+ | 5.2743 | 1420 | 10.16 | - |
793
+ | 5.3114 | 1430 | 10.0763 | - |
794
+ | 5.3485 | 1440 | 9.5737 | - |
795
+ | 5.3855 | 1450 | 10.4816 | - |
796
+ | 5.4226 | 1460 | 8.6687 | - |
797
+ | 5.4597 | 1470 | 8.4066 | - |
798
+ | 5.4968 | 1480 | 9.386 | - |
799
+ | 5.5338 | 1490 | 8.3911 | - |
800
+ | 5.5709 | 1500 | 8.8025 | 2.5408 |
801
+ | 5.6080 | 1510 | 8.7939 | - |
802
+ | 5.6450 | 1520 | 9.0903 | - |
803
+ | 5.6821 | 1530 | 8.9878 | - |
804
+ | 5.7192 | 1540 | 8.8642 | - |
805
+ | 5.7563 | 1550 | 8.8625 | - |
806
+ | 5.7933 | 1560 | 8.4105 | - |
807
+ | 5.8304 | 1570 | 9.0163 | - |
808
+ | 5.8675 | 1580 | 8.8947 | - |
809
+ | 5.9045 | 1590 | 8.5647 | - |
810
+ | 5.9416 | 1600 | 7.7047 | - |
811
+ | 5.9787 | 1610 | 8.1484 | - |
812
+ | 6.0148 | 1620 | 8.4079 | - |
813
+ | 6.0519 | 1630 | 8.5027 | - |
814
+ | 6.0890 | 1640 | 8.1805 | - |
815
+ | 6.1260 | 1650 | 8.4519 | 2.5901 |
816
+ | 6.1631 | 1660 | 9.062 | - |
817
+ | 6.2002 | 1670 | 8.8499 | - |
818
+ | 6.2373 | 1680 | 8.6576 | - |
819
+ | 6.2743 | 1690 | 8.4652 | - |
820
+ | 6.3114 | 1700 | 9.0782 | - |
821
+ | 6.3485 | 1710 | 8.1532 | - |
822
+ | 6.3855 | 1720 | 8.5185 | - |
823
+ | 6.4226 | 1730 | 9.5908 | - |
824
+ | 6.4597 | 1740 | 8.4188 | - |
825
+ | 6.4968 | 1750 | 8.1885 | - |
826
+ | 6.5338 | 1760 | 8.7666 | - |
827
+ | 6.5709 | 1770 | 8.6105 | - |
828
+ | 6.6080 | 1780 | 8.664 | - |
829
+ | 6.6450 | 1790 | 8.5294 | - |
830
+ | 6.6821 | 1800 | 9.1857 | 2.4974 |
831
+ | 6.7192 | 1810 | 8.7053 | - |
832
+ | 6.7563 | 1820 | 8.1428 | - |
833
+ | 6.7933 | 1830 | 8.4988 | - |
834
+ | 6.8304 | 1840 | 8.4147 | - |
835
+ | 6.8675 | 1850 | 9.069 | - |
836
+ | 6.9045 | 1860 | 8.4405 | - |
837
+ | 6.9416 | 1870 | 9.2157 | - |
838
+ | 6.9787 | 1880 | 9.5492 | - |
839
+ | 7.0148 | 1890 | 8.1325 | - |
840
+ | 7.0519 | 1900 | 8.324 | - |
841
+ | 7.0890 | 1910 | 7.7097 | - |
842
+ | 7.1260 | 1920 | 8.0982 | - |
843
+ | 7.1631 | 1930 | 7.7669 | - |
844
+ | 7.2002 | 1940 | 7.809 | - |
845
+ | 7.2373 | 1950 | 7.9729 | 2.6108 |
846
+ | 7.2743 | 1960 | 8.2125 | - |
847
+ | 7.3114 | 1970 | 7.7403 | - |
848
+ | 7.3485 | 1980 | 7.5494 | - |
849
+ | 7.3855 | 1990 | 8.2821 | - |
850
+ | 7.4226 | 2000 | 8.1644 | - |
851
+ | 7.4597 | 2010 | 8.1664 | - |
852
+ | 7.4968 | 2020 | 8.5876 | - |
853
+ | 7.5338 | 2030 | 8.2753 | - |
854
+ | 7.5709 | 2040 | 9.2057 | - |
855
+ | 7.6080 | 2050 | 8.0052 | - |
856
+ | 7.6450 | 2060 | 8.4954 | - |
857
+ | 7.6821 | 2070 | 8.0325 | - |
858
+ | 7.7192 | 2080 | 8.2934 | - |
859
+ | 7.7563 | 2090 | 9.4019 | - |
860
+ | 7.7933 | 2100 | 8.874 | 2.4529 |
861
+
862
+ </details>
863
+
864
+ ### Framework Versions
865
+ - Python: 3.11.0
866
+ - Sentence Transformers: 3.4.0
867
+ - Transformers: 4.48.1
868
+ - PyTorch: 2.5.1+cu124
869
+ - Accelerate: 1.3.0
870
+ - Datasets: 3.2.0
871
+ - Tokenizers: 0.21.0
872
+
873
+ ## Citation
874
+
875
+ ### BibTeX
876
+
877
+ #### Sentence Transformers
878
+ ```bibtex
879
+ @inproceedings{reimers-2019-sentence-bert,
880
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
881
+ author = "Reimers, Nils and Gurevych, Iryna",
882
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
883
+ month = "11",
884
+ year = "2019",
885
+ publisher = "Association for Computational Linguistics",
886
+ url = "https://arxiv.org/abs/1908.10084",
887
+ }
888
+ ```
889
+
890
+ #### CoSENTLoss
891
+ ```bibtex
892
+ @online{kexuefm-8847,
893
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
894
+ author={Su Jianlin},
895
+ year={2022},
896
+ month={Jan},
897
+ url={https://kexue.fm/archives/8847},
898
+ }
899
+ ```
900
+
901
+ <!--
902
+ ## Glossary
903
+
904
+ *Clearly define terms in order to be accessible across audiences.*
905
+ -->
906
+
907
+ <!--
908
+ ## Model Card Authors
909
+
910
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
911
+ -->
912
+
913
+ <!--
914
+ ## Model Card Contact
915
+
916
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
917
+ -->
checkpoints/checkpoint-2100/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoints/checkpoint-2100/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoints/checkpoint-2100/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8602514070d3dd21837d5d40a0db98aa622c556d704c2c01dbc72636a9c18a89
3
+ size 135
checkpoints/checkpoint-2100/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoints/checkpoint-2100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c0e001101f04b00849f443e6a8f84aa6e169a0630316083b8434c3897f64883
3
+ size 135
checkpoints/checkpoint-2100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33ef5862ed8465e96d8c41b46650dbc6e040946aa88a75b032ee8c16e7409f6e
3
+ size 130
checkpoints/checkpoint-2100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c567c047902bab18141a686265e6f42049218b4f237cd4c627747c29067edf91
3
+ size 129
checkpoints/checkpoint-2100/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoints/checkpoint-2100/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoints/checkpoint-2100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6f09c3f9b891e5b98dd3af9463dcab5a97d5265e288271395324a0577e6c05
3
+ size 133
checkpoints/checkpoint-2100/tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }
checkpoints/checkpoint-2100/trainer_state.json ADDED
@@ -0,0 +1,1615 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 7.793327154772938,
5
+ "eval_steps": 150,
6
+ "global_step": 2100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03707136237256719,
13
+ "grad_norm": 53.36411666870117,
14
+ "learning_rate": 1.1152416356877324e-06,
15
+ "loss": 10.8165,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.07414272474513438,
20
+ "grad_norm": 61.33858871459961,
21
+ "learning_rate": 2.2304832713754648e-06,
22
+ "loss": 10.8463,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.11121408711770157,
27
+ "grad_norm": 67.16305541992188,
28
+ "learning_rate": 3.345724907063197e-06,
29
+ "loss": 10.821,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.14828544949026876,
34
+ "grad_norm": 62.08958053588867,
35
+ "learning_rate": 4.4609665427509296e-06,
36
+ "loss": 10.4704,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.18535681186283595,
41
+ "grad_norm": 53.839927673339844,
42
+ "learning_rate": 5.576208178438661e-06,
43
+ "loss": 10.8568,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.22242817423540315,
48
+ "grad_norm": 57.02272033691406,
49
+ "learning_rate": 6.691449814126394e-06,
50
+ "loss": 10.3005,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2594995366079703,
55
+ "grad_norm": 88.16449737548828,
56
+ "learning_rate": 7.806691449814127e-06,
57
+ "loss": 9.6009,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.2965708989805375,
62
+ "grad_norm": 84.35252380371094,
63
+ "learning_rate": 8.921933085501859e-06,
64
+ "loss": 9.7448,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3336422613531047,
69
+ "grad_norm": 77.93982696533203,
70
+ "learning_rate": 1.0037174721189593e-05,
71
+ "loss": 9.5922,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.3707136237256719,
76
+ "grad_norm": 56.669166564941406,
77
+ "learning_rate": 1.1152416356877323e-05,
78
+ "loss": 10.0919,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.4077849860982391,
83
+ "grad_norm": 56.652488708496094,
84
+ "learning_rate": 1.2267657992565056e-05,
85
+ "loss": 10.2733,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.4448563484708063,
90
+ "grad_norm": 63.472042083740234,
91
+ "learning_rate": 1.3382899628252788e-05,
92
+ "loss": 9.4547,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.4819277108433735,
97
+ "grad_norm": 78.0159912109375,
98
+ "learning_rate": 1.4498141263940521e-05,
99
+ "loss": 9.1738,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5189990732159406,
104
+ "grad_norm": 68.1931381225586,
105
+ "learning_rate": 1.5613382899628255e-05,
106
+ "loss": 10.0876,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.5560704355885079,
111
+ "grad_norm": 49.315216064453125,
112
+ "learning_rate": 1.6728624535315986e-05,
113
+ "loss": 10.3721,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.5560704355885079,
118
+ "eval_loss": 2.559400796890259,
119
+ "eval_runtime": 34.304,
120
+ "eval_samples_per_second": 47.166,
121
+ "eval_steps_per_second": 6.763,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.593141797961075,
126
+ "grad_norm": 34.1899528503418,
127
+ "learning_rate": 1.7843866171003718e-05,
128
+ "loss": 10.4711,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.6302131603336423,
133
+ "grad_norm": 37.074134826660156,
134
+ "learning_rate": 1.895910780669145e-05,
135
+ "loss": 9.9383,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 0.6672845227062094,
140
+ "grad_norm": 49.323158264160156,
141
+ "learning_rate": 2.0074349442379185e-05,
142
+ "loss": 10.0448,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 0.7043558850787767,
147
+ "grad_norm": 53.07639694213867,
148
+ "learning_rate": 2.1189591078066917e-05,
149
+ "loss": 9.8467,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 0.7414272474513438,
154
+ "grad_norm": 38.345916748046875,
155
+ "learning_rate": 2.2304832713754645e-05,
156
+ "loss": 9.9434,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.7784986098239111,
161
+ "grad_norm": 47.55274963378906,
162
+ "learning_rate": 2.3420074349442377e-05,
163
+ "loss": 9.7912,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 0.8155699721964782,
168
+ "grad_norm": 59.17176055908203,
169
+ "learning_rate": 2.4535315985130112e-05,
170
+ "loss": 9.7905,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 0.8526413345690455,
175
+ "grad_norm": 52.57457733154297,
176
+ "learning_rate": 2.5650557620817844e-05,
177
+ "loss": 9.9412,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 0.8897126969416126,
182
+ "grad_norm": 42.251304626464844,
183
+ "learning_rate": 2.6765799256505576e-05,
184
+ "loss": 10.0084,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 0.9267840593141798,
189
+ "grad_norm": 46.63966369628906,
190
+ "learning_rate": 2.788104089219331e-05,
191
+ "loss": 10.0139,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 0.963855421686747,
196
+ "grad_norm": 27.772289276123047,
197
+ "learning_rate": 2.8996282527881043e-05,
198
+ "loss": 9.3794,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.0,
203
+ "grad_norm": 46.3179931640625,
204
+ "learning_rate": 2.9987608426270136e-05,
205
+ "loss": 9.5747,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.0370713623725671,
210
+ "grad_norm": 45.746551513671875,
211
+ "learning_rate": 2.98636926889715e-05,
212
+ "loss": 9.6763,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.0741427247451343,
217
+ "grad_norm": 49.50416564941406,
218
+ "learning_rate": 2.9739776951672864e-05,
219
+ "loss": 10.4789,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.1112140871177016,
224
+ "grad_norm": 43.72733688354492,
225
+ "learning_rate": 2.9615861214374226e-05,
226
+ "loss": 9.7244,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.1112140871177016,
231
+ "eval_loss": 2.6879734992980957,
232
+ "eval_runtime": 34.2522,
233
+ "eval_samples_per_second": 47.238,
234
+ "eval_steps_per_second": 6.773,
235
+ "step": 300
236
+ },
237
+ {
238
+ "epoch": 1.1482854494902688,
239
+ "grad_norm": 48.68376541137695,
240
+ "learning_rate": 2.9491945477075588e-05,
241
+ "loss": 9.9421,
242
+ "step": 310
243
+ },
244
+ {
245
+ "epoch": 1.185356811862836,
246
+ "grad_norm": 44.014747619628906,
247
+ "learning_rate": 2.9368029739776953e-05,
248
+ "loss": 9.5022,
249
+ "step": 320
250
+ },
251
+ {
252
+ "epoch": 1.222428174235403,
253
+ "grad_norm": 49.858642578125,
254
+ "learning_rate": 2.9244114002478315e-05,
255
+ "loss": 9.6801,
256
+ "step": 330
257
+ },
258
+ {
259
+ "epoch": 1.2594995366079704,
260
+ "grad_norm": 49.97459411621094,
261
+ "learning_rate": 2.9120198265179677e-05,
262
+ "loss": 9.25,
263
+ "step": 340
264
+ },
265
+ {
266
+ "epoch": 1.2965708989805376,
267
+ "grad_norm": 40.38698196411133,
268
+ "learning_rate": 2.8996282527881043e-05,
269
+ "loss": 10.2879,
270
+ "step": 350
271
+ },
272
+ {
273
+ "epoch": 1.3336422613531047,
274
+ "grad_norm": 29.797264099121094,
275
+ "learning_rate": 2.8872366790582405e-05,
276
+ "loss": 9.97,
277
+ "step": 360
278
+ },
279
+ {
280
+ "epoch": 1.3707136237256718,
281
+ "grad_norm": 43.83412551879883,
282
+ "learning_rate": 2.874845105328377e-05,
283
+ "loss": 9.3751,
284
+ "step": 370
285
+ },
286
+ {
287
+ "epoch": 1.407784986098239,
288
+ "grad_norm": 42.754154205322266,
289
+ "learning_rate": 2.8624535315985132e-05,
290
+ "loss": 9.8947,
291
+ "step": 380
292
+ },
293
+ {
294
+ "epoch": 1.4448563484708064,
295
+ "grad_norm": 50.08184051513672,
296
+ "learning_rate": 2.8500619578686494e-05,
297
+ "loss": 9.4987,
298
+ "step": 390
299
+ },
300
+ {
301
+ "epoch": 1.4819277108433735,
302
+ "grad_norm": 41.81029510498047,
303
+ "learning_rate": 2.8376703841387856e-05,
304
+ "loss": 10.1515,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 1.5189990732159406,
309
+ "grad_norm": 44.03816223144531,
310
+ "learning_rate": 2.8252788104089218e-05,
311
+ "loss": 10.0098,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 1.556070435588508,
316
+ "grad_norm": 42.871856689453125,
317
+ "learning_rate": 2.8128872366790583e-05,
318
+ "loss": 9.5566,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 1.5931417979610751,
323
+ "grad_norm": 44.18041229248047,
324
+ "learning_rate": 2.8004956629491945e-05,
325
+ "loss": 10.1925,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 1.6302131603336423,
330
+ "grad_norm": 30.012725830078125,
331
+ "learning_rate": 2.788104089219331e-05,
332
+ "loss": 9.7408,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 1.6672845227062094,
337
+ "grad_norm": 38.104827880859375,
338
+ "learning_rate": 2.7757125154894673e-05,
339
+ "loss": 9.6873,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 1.6672845227062094,
344
+ "eval_loss": 2.5061004161834717,
345
+ "eval_runtime": 34.2772,
346
+ "eval_samples_per_second": 47.203,
347
+ "eval_steps_per_second": 6.768,
348
+ "step": 450
349
+ },
350
+ {
351
+ "epoch": 1.7043558850787766,
352
+ "grad_norm": 42.93535232543945,
353
+ "learning_rate": 2.7633209417596035e-05,
354
+ "loss": 9.1932,
355
+ "step": 460
356
+ },
357
+ {
358
+ "epoch": 1.7414272474513437,
359
+ "grad_norm": 63.935279846191406,
360
+ "learning_rate": 2.75092936802974e-05,
361
+ "loss": 9.9204,
362
+ "step": 470
363
+ },
364
+ {
365
+ "epoch": 1.778498609823911,
366
+ "grad_norm": 30.906002044677734,
367
+ "learning_rate": 2.7385377942998762e-05,
368
+ "loss": 9.5151,
369
+ "step": 480
370
+ },
371
+ {
372
+ "epoch": 1.8155699721964782,
373
+ "grad_norm": 48.05679702758789,
374
+ "learning_rate": 2.7261462205700128e-05,
375
+ "loss": 9.8418,
376
+ "step": 490
377
+ },
378
+ {
379
+ "epoch": 1.8526413345690456,
380
+ "grad_norm": 56.36283874511719,
381
+ "learning_rate": 2.7137546468401486e-05,
382
+ "loss": 9.6943,
383
+ "step": 500
384
+ },
385
+ {
386
+ "epoch": 1.8897126969416127,
387
+ "grad_norm": 47.22933578491211,
388
+ "learning_rate": 2.7013630731102848e-05,
389
+ "loss": 9.6948,
390
+ "step": 510
391
+ },
392
+ {
393
+ "epoch": 1.9267840593141798,
394
+ "grad_norm": 36.110008239746094,
395
+ "learning_rate": 2.6889714993804214e-05,
396
+ "loss": 9.2274,
397
+ "step": 520
398
+ },
399
+ {
400
+ "epoch": 1.963855421686747,
401
+ "grad_norm": 37.13912582397461,
402
+ "learning_rate": 2.6765799256505576e-05,
403
+ "loss": 10.138,
404
+ "step": 530
405
+ },
406
+ {
407
+ "epoch": 2.0,
408
+ "grad_norm": 51.37559509277344,
409
+ "learning_rate": 2.664188351920694e-05,
410
+ "loss": 8.7934,
411
+ "step": 540
412
+ },
413
+ {
414
+ "epoch": 2.037071362372567,
415
+ "grad_norm": 42.32170104980469,
416
+ "learning_rate": 2.6517967781908303e-05,
417
+ "loss": 8.8304,
418
+ "step": 550
419
+ },
420
+ {
421
+ "epoch": 2.0741427247451343,
422
+ "grad_norm": 42.406219482421875,
423
+ "learning_rate": 2.6394052044609665e-05,
424
+ "loss": 8.9593,
425
+ "step": 560
426
+ },
427
+ {
428
+ "epoch": 2.1112140871177014,
429
+ "grad_norm": 52.097023010253906,
430
+ "learning_rate": 2.627013630731103e-05,
431
+ "loss": 9.0051,
432
+ "step": 570
433
+ },
434
+ {
435
+ "epoch": 2.1482854494902686,
436
+ "grad_norm": 83.86861419677734,
437
+ "learning_rate": 2.6146220570012392e-05,
438
+ "loss": 9.2829,
439
+ "step": 580
440
+ },
441
+ {
442
+ "epoch": 2.185356811862836,
443
+ "grad_norm": 38.229949951171875,
444
+ "learning_rate": 2.6022304832713758e-05,
445
+ "loss": 9.785,
446
+ "step": 590
447
+ },
448
+ {
449
+ "epoch": 2.2224281742354033,
450
+ "grad_norm": 50.322513580322266,
451
+ "learning_rate": 2.5898389095415116e-05,
452
+ "loss": 9.6401,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 2.2224281742354033,
457
+ "eval_loss": 2.448084592819214,
458
+ "eval_runtime": 34.2525,
459
+ "eval_samples_per_second": 47.237,
460
+ "eval_steps_per_second": 6.773,
461
+ "step": 600
462
+ },
463
+ {
464
+ "epoch": 2.266913809082484,
465
+ "grad_norm": 39.366676330566406,
466
+ "learning_rate": 2.5774473358116482e-05,
467
+ "loss": 8.7059,
468
+ "step": 610
469
+ },
470
+ {
471
+ "epoch": 2.303985171455051,
472
+ "grad_norm": 41.00213623046875,
473
+ "learning_rate": 2.5650557620817844e-05,
474
+ "loss": 9.1285,
475
+ "step": 620
476
+ },
477
+ {
478
+ "epoch": 2.341056533827618,
479
+ "grad_norm": 63.442169189453125,
480
+ "learning_rate": 2.5526641883519206e-05,
481
+ "loss": 9.3277,
482
+ "step": 630
483
+ },
484
+ {
485
+ "epoch": 2.3781278962001853,
486
+ "grad_norm": 51.54194641113281,
487
+ "learning_rate": 2.540272614622057e-05,
488
+ "loss": 9.1577,
489
+ "step": 640
490
+ },
491
+ {
492
+ "epoch": 2.4151992585727524,
493
+ "grad_norm": 57.583885192871094,
494
+ "learning_rate": 2.5278810408921933e-05,
495
+ "loss": 9.6032,
496
+ "step": 650
497
+ },
498
+ {
499
+ "epoch": 2.4522706209453196,
500
+ "grad_norm": 60.13545227050781,
501
+ "learning_rate": 2.51548946716233e-05,
502
+ "loss": 8.5451,
503
+ "step": 660
504
+ },
505
+ {
506
+ "epoch": 2.489341983317887,
507
+ "grad_norm": 139.85794067382812,
508
+ "learning_rate": 2.503097893432466e-05,
509
+ "loss": 8.6601,
510
+ "step": 670
511
+ },
512
+ {
513
+ "epoch": 2.5264133456904543,
514
+ "grad_norm": 160.73171997070312,
515
+ "learning_rate": 2.4907063197026023e-05,
516
+ "loss": 9.522,
517
+ "step": 680
518
+ },
519
+ {
520
+ "epoch": 2.5634847080630214,
521
+ "grad_norm": 190.7194366455078,
522
+ "learning_rate": 2.4783147459727385e-05,
523
+ "loss": 10.0619,
524
+ "step": 690
525
+ },
526
+ {
527
+ "epoch": 2.6005560704355886,
528
+ "grad_norm": 172.5655517578125,
529
+ "learning_rate": 2.4659231722428747e-05,
530
+ "loss": 9.6444,
531
+ "step": 700
532
+ },
533
+ {
534
+ "epoch": 2.6376274328081557,
535
+ "grad_norm": 280.9183044433594,
536
+ "learning_rate": 2.4535315985130112e-05,
537
+ "loss": 10.7593,
538
+ "step": 710
539
+ },
540
+ {
541
+ "epoch": 2.674698795180723,
542
+ "grad_norm": 118.03450775146484,
543
+ "learning_rate": 2.4411400247831474e-05,
544
+ "loss": 10.4432,
545
+ "step": 720
546
+ },
547
+ {
548
+ "epoch": 2.71177015755329,
549
+ "grad_norm": 332.662353515625,
550
+ "learning_rate": 2.428748451053284e-05,
551
+ "loss": 9.6033,
552
+ "step": 730
553
+ },
554
+ {
555
+ "epoch": 2.748841519925857,
556
+ "grad_norm": 129.18788146972656,
557
+ "learning_rate": 2.41635687732342e-05,
558
+ "loss": 9.108,
559
+ "step": 740
560
+ },
561
+ {
562
+ "epoch": 2.7859128822984243,
563
+ "grad_norm": 350.5856628417969,
564
+ "learning_rate": 2.4039653035935564e-05,
565
+ "loss": 9.884,
566
+ "step": 750
567
+ },
568
+ {
569
+ "epoch": 2.7859128822984243,
570
+ "eval_loss": 2.599517583847046,
571
+ "eval_runtime": 34.0592,
572
+ "eval_samples_per_second": 47.506,
573
+ "eval_steps_per_second": 6.812,
574
+ "step": 750
575
+ },
576
+ {
577
+ "epoch": 2.822984244670992,
578
+ "grad_norm": 285.14862060546875,
579
+ "learning_rate": 2.391573729863693e-05,
580
+ "loss": 11.3952,
581
+ "step": 760
582
+ },
583
+ {
584
+ "epoch": 2.860055607043559,
585
+ "grad_norm": 185.5862579345703,
586
+ "learning_rate": 2.379182156133829e-05,
587
+ "loss": 10.6798,
588
+ "step": 770
589
+ },
590
+ {
591
+ "epoch": 2.897126969416126,
592
+ "grad_norm": 77.20765686035156,
593
+ "learning_rate": 2.3667905824039656e-05,
594
+ "loss": 9.9795,
595
+ "step": 780
596
+ },
597
+ {
598
+ "epoch": 2.9341983317886933,
599
+ "grad_norm": 88.75109100341797,
600
+ "learning_rate": 2.3543990086741015e-05,
601
+ "loss": 9.3694,
602
+ "step": 790
603
+ },
604
+ {
605
+ "epoch": 2.9712696941612604,
606
+ "grad_norm": 53.416690826416016,
607
+ "learning_rate": 2.3420074349442377e-05,
608
+ "loss": 8.4631,
609
+ "step": 800
610
+ },
611
+ {
612
+ "epoch": 3.0111214087117704,
613
+ "grad_norm": 72.12966918945312,
614
+ "learning_rate": 2.3296158612143742e-05,
615
+ "loss": 9.3903,
616
+ "step": 810
617
+ },
618
+ {
619
+ "epoch": 3.0481927710843375,
620
+ "grad_norm": 159.3909912109375,
621
+ "learning_rate": 2.3172242874845104e-05,
622
+ "loss": 8.9608,
623
+ "step": 820
624
+ },
625
+ {
626
+ "epoch": 3.0852641334569046,
627
+ "grad_norm": 161.03713989257812,
628
+ "learning_rate": 2.304832713754647e-05,
629
+ "loss": 9.623,
630
+ "step": 830
631
+ },
632
+ {
633
+ "epoch": 3.122335495829472,
634
+ "grad_norm": 136.50045776367188,
635
+ "learning_rate": 2.2924411400247832e-05,
636
+ "loss": 8.5958,
637
+ "step": 840
638
+ },
639
+ {
640
+ "epoch": 3.159406858202039,
641
+ "grad_norm": 60.785926818847656,
642
+ "learning_rate": 2.2800495662949197e-05,
643
+ "loss": 8.6278,
644
+ "step": 850
645
+ },
646
+ {
647
+ "epoch": 3.196478220574606,
648
+ "grad_norm": 115.2509536743164,
649
+ "learning_rate": 2.267657992565056e-05,
650
+ "loss": 8.661,
651
+ "step": 860
652
+ },
653
+ {
654
+ "epoch": 3.233549582947173,
655
+ "grad_norm": 144.38912963867188,
656
+ "learning_rate": 2.255266418835192e-05,
657
+ "loss": 9.5836,
658
+ "step": 870
659
+ },
660
+ {
661
+ "epoch": 3.2706209453197403,
662
+ "grad_norm": 239.74520874023438,
663
+ "learning_rate": 2.2428748451053287e-05,
664
+ "loss": 8.6221,
665
+ "step": 880
666
+ },
667
+ {
668
+ "epoch": 3.3076923076923075,
669
+ "grad_norm": 215.12789916992188,
670
+ "learning_rate": 2.2304832713754645e-05,
671
+ "loss": 9.1995,
672
+ "step": 890
673
+ },
674
+ {
675
+ "epoch": 3.344763670064875,
676
+ "grad_norm": 113.77183532714844,
677
+ "learning_rate": 2.218091697645601e-05,
678
+ "loss": 8.6909,
679
+ "step": 900
680
+ },
681
+ {
682
+ "epoch": 3.344763670064875,
683
+ "eval_loss": 2.4246325492858887,
684
+ "eval_runtime": 34.1351,
685
+ "eval_samples_per_second": 47.4,
686
+ "eval_steps_per_second": 6.797,
687
+ "step": 900
688
+ },
689
+ {
690
+ "epoch": 3.381835032437442,
691
+ "grad_norm": 175.02731323242188,
692
+ "learning_rate": 2.2057001239157373e-05,
693
+ "loss": 8.7632,
694
+ "step": 910
695
+ },
696
+ {
697
+ "epoch": 3.4189063948100094,
698
+ "grad_norm": 142.76580810546875,
699
+ "learning_rate": 2.1933085501858735e-05,
700
+ "loss": 8.5604,
701
+ "step": 920
702
+ },
703
+ {
704
+ "epoch": 3.4559777571825765,
705
+ "grad_norm": 163.0391387939453,
706
+ "learning_rate": 2.18091697645601e-05,
707
+ "loss": 9.3871,
708
+ "step": 930
709
+ },
710
+ {
711
+ "epoch": 3.4930491195551436,
712
+ "grad_norm": 386.4294738769531,
713
+ "learning_rate": 2.1685254027261462e-05,
714
+ "loss": 9.6445,
715
+ "step": 940
716
+ },
717
+ {
718
+ "epoch": 3.5301204819277108,
719
+ "grad_norm": 86.92581939697266,
720
+ "learning_rate": 2.1561338289962827e-05,
721
+ "loss": 9.635,
722
+ "step": 950
723
+ },
724
+ {
725
+ "epoch": 3.567191844300278,
726
+ "grad_norm": 80.94845581054688,
727
+ "learning_rate": 2.143742255266419e-05,
728
+ "loss": 8.8689,
729
+ "step": 960
730
+ },
731
+ {
732
+ "epoch": 3.6042632066728455,
733
+ "grad_norm": 69.99708557128906,
734
+ "learning_rate": 2.1313506815365555e-05,
735
+ "loss": 9.1411,
736
+ "step": 970
737
+ },
738
+ {
739
+ "epoch": 3.641334569045412,
740
+ "grad_norm": 80.53229522705078,
741
+ "learning_rate": 2.1189591078066917e-05,
742
+ "loss": 8.7552,
743
+ "step": 980
744
+ },
745
+ {
746
+ "epoch": 3.67840593141798,
747
+ "grad_norm": 53.3475341796875,
748
+ "learning_rate": 2.1065675340768275e-05,
749
+ "loss": 8.5697,
750
+ "step": 990
751
+ },
752
+ {
753
+ "epoch": 3.715477293790547,
754
+ "grad_norm": 54.19875717163086,
755
+ "learning_rate": 2.094175960346964e-05,
756
+ "loss": 8.9008,
757
+ "step": 1000
758
+ },
759
+ {
760
+ "epoch": 3.752548656163114,
761
+ "grad_norm": 52.96628952026367,
762
+ "learning_rate": 2.0817843866171003e-05,
763
+ "loss": 8.9415,
764
+ "step": 1010
765
+ },
766
+ {
767
+ "epoch": 3.789620018535681,
768
+ "grad_norm": 64.08312225341797,
769
+ "learning_rate": 2.0693928128872368e-05,
770
+ "loss": 8.1303,
771
+ "step": 1020
772
+ },
773
+ {
774
+ "epoch": 3.8266913809082483,
775
+ "grad_norm": 68.22163391113281,
776
+ "learning_rate": 2.057001239157373e-05,
777
+ "loss": 8.241,
778
+ "step": 1030
779
+ },
780
+ {
781
+ "epoch": 3.8637627432808155,
782
+ "grad_norm": 66.70902252197266,
783
+ "learning_rate": 2.0446096654275092e-05,
784
+ "loss": 8.6969,
785
+ "step": 1040
786
+ },
787
+ {
788
+ "epoch": 3.9008341056533826,
789
+ "grad_norm": 49.94658279418945,
790
+ "learning_rate": 2.0322180916976458e-05,
791
+ "loss": 9.8392,
792
+ "step": 1050
793
+ },
794
+ {
795
+ "epoch": 3.9008341056533826,
796
+ "eval_loss": 2.533297300338745,
797
+ "eval_runtime": 34.1106,
798
+ "eval_samples_per_second": 47.434,
799
+ "eval_steps_per_second": 6.801,
800
+ "step": 1050
801
+ },
802
+ {
803
+ "epoch": 3.93790546802595,
804
+ "grad_norm": 73.9527816772461,
805
+ "learning_rate": 2.6765799256505576e-05,
806
+ "loss": 8.5934,
807
+ "step": 1060
808
+ },
809
+ {
810
+ "epoch": 3.974976830398517,
811
+ "grad_norm": 76.90135955810547,
812
+ "learning_rate": 2.6703841387856257e-05,
813
+ "loss": 8.006,
814
+ "step": 1070
815
+ },
816
+ {
817
+ "epoch": 4.014828544949027,
818
+ "grad_norm": 85.86236572265625,
819
+ "learning_rate": 2.664188351920694e-05,
820
+ "loss": 9.0081,
821
+ "step": 1080
822
+ },
823
+ {
824
+ "epoch": 4.051899907321594,
825
+ "grad_norm": 106.57842254638672,
826
+ "learning_rate": 2.6579925650557622e-05,
827
+ "loss": 8.6706,
828
+ "step": 1090
829
+ },
830
+ {
831
+ "epoch": 4.088971269694161,
832
+ "grad_norm": 68.10344696044922,
833
+ "learning_rate": 2.6517967781908303e-05,
834
+ "loss": 9.6146,
835
+ "step": 1100
836
+ },
837
+ {
838
+ "epoch": 4.126042632066729,
839
+ "grad_norm": 67.02091217041016,
840
+ "learning_rate": 2.6456009913258984e-05,
841
+ "loss": 9.225,
842
+ "step": 1110
843
+ },
844
+ {
845
+ "epoch": 4.163113994439295,
846
+ "grad_norm": 67.66644287109375,
847
+ "learning_rate": 2.6394052044609665e-05,
848
+ "loss": 8.7522,
849
+ "step": 1120
850
+ },
851
+ {
852
+ "epoch": 4.200185356811863,
853
+ "grad_norm": 59.26814651489258,
854
+ "learning_rate": 2.633209417596035e-05,
855
+ "loss": 9.0221,
856
+ "step": 1130
857
+ },
858
+ {
859
+ "epoch": 4.23725671918443,
860
+ "grad_norm": 88.07310485839844,
861
+ "learning_rate": 2.627013630731103e-05,
862
+ "loss": 9.6458,
863
+ "step": 1140
864
+ },
865
+ {
866
+ "epoch": 4.274328081556997,
867
+ "grad_norm": 69.33895874023438,
868
+ "learning_rate": 2.620817843866171e-05,
869
+ "loss": 8.7692,
870
+ "step": 1150
871
+ },
872
+ {
873
+ "epoch": 4.311399443929565,
874
+ "grad_norm": 43.823951721191406,
875
+ "learning_rate": 2.6146220570012392e-05,
876
+ "loss": 9.2874,
877
+ "step": 1160
878
+ },
879
+ {
880
+ "epoch": 4.348470806302132,
881
+ "grad_norm": 63.590980529785156,
882
+ "learning_rate": 2.6084262701363077e-05,
883
+ "loss": 8.9276,
884
+ "step": 1170
885
+ },
886
+ {
887
+ "epoch": 4.385542168674699,
888
+ "grad_norm": 43.4519157409668,
889
+ "learning_rate": 2.6022304832713758e-05,
890
+ "loss": 8.7444,
891
+ "step": 1180
892
+ },
893
+ {
894
+ "epoch": 4.422613531047266,
895
+ "grad_norm": 72.1529312133789,
896
+ "learning_rate": 2.5960346964064435e-05,
897
+ "loss": 8.7265,
898
+ "step": 1190
899
+ },
900
+ {
901
+ "epoch": 4.459684893419833,
902
+ "grad_norm": 101.67008972167969,
903
+ "learning_rate": 2.5898389095415116e-05,
904
+ "loss": 8.7642,
905
+ "step": 1200
906
+ },
907
+ {
908
+ "epoch": 4.459684893419833,
909
+ "eval_loss": 2.6471314430236816,
910
+ "eval_runtime": 34.2723,
911
+ "eval_samples_per_second": 47.21,
912
+ "eval_steps_per_second": 6.769,
913
+ "step": 1200
914
+ },
915
+ {
916
+ "epoch": 4.4967562557924,
917
+ "grad_norm": 66.03606414794922,
918
+ "learning_rate": 2.5836431226765797e-05,
919
+ "loss": 8.8917,
920
+ "step": 1210
921
+ },
922
+ {
923
+ "epoch": 4.533827618164968,
924
+ "grad_norm": 60.01662826538086,
925
+ "learning_rate": 2.5774473358116482e-05,
926
+ "loss": 9.2155,
927
+ "step": 1220
928
+ },
929
+ {
930
+ "epoch": 4.570898980537534,
931
+ "grad_norm": 83.86510467529297,
932
+ "learning_rate": 2.5712515489467163e-05,
933
+ "loss": 8.6101,
934
+ "step": 1230
935
+ },
936
+ {
937
+ "epoch": 4.607970342910102,
938
+ "grad_norm": 64.35486602783203,
939
+ "learning_rate": 2.5650557620817844e-05,
940
+ "loss": 8.9904,
941
+ "step": 1240
942
+ },
943
+ {
944
+ "epoch": 4.645041705282669,
945
+ "grad_norm": 60.44017791748047,
946
+ "learning_rate": 2.5588599752168525e-05,
947
+ "loss": 9.3272,
948
+ "step": 1250
949
+ },
950
+ {
951
+ "epoch": 4.682113067655236,
952
+ "grad_norm": 56.501102447509766,
953
+ "learning_rate": 2.5526641883519206e-05,
954
+ "loss": 7.9367,
955
+ "step": 1260
956
+ },
957
+ {
958
+ "epoch": 4.719184430027804,
959
+ "grad_norm": 65.01017761230469,
960
+ "learning_rate": 2.546468401486989e-05,
961
+ "loss": 8.5891,
962
+ "step": 1270
963
+ },
964
+ {
965
+ "epoch": 4.7562557924003706,
966
+ "grad_norm": 63.42623519897461,
967
+ "learning_rate": 2.540272614622057e-05,
968
+ "loss": 8.6286,
969
+ "step": 1280
970
+ },
971
+ {
972
+ "epoch": 4.793327154772938,
973
+ "grad_norm": 58.96747589111328,
974
+ "learning_rate": 2.5340768277571252e-05,
975
+ "loss": 7.9982,
976
+ "step": 1290
977
+ },
978
+ {
979
+ "epoch": 4.830398517145505,
980
+ "grad_norm": 96.77368927001953,
981
+ "learning_rate": 2.5278810408921933e-05,
982
+ "loss": 7.5587,
983
+ "step": 1300
984
+ },
985
+ {
986
+ "epoch": 4.867469879518072,
987
+ "grad_norm": 85.92269897460938,
988
+ "learning_rate": 2.5216852540272614e-05,
989
+ "loss": 7.9405,
990
+ "step": 1310
991
+ },
992
+ {
993
+ "epoch": 4.904541241890639,
994
+ "grad_norm": 86.37085723876953,
995
+ "learning_rate": 2.51548946716233e-05,
996
+ "loss": 9.7092,
997
+ "step": 1320
998
+ },
999
+ {
1000
+ "epoch": 4.941612604263207,
1001
+ "grad_norm": 65.88274383544922,
1002
+ "learning_rate": 2.509293680297398e-05,
1003
+ "loss": 8.1475,
1004
+ "step": 1330
1005
+ },
1006
+ {
1007
+ "epoch": 4.978683966635774,
1008
+ "grad_norm": 53.252742767333984,
1009
+ "learning_rate": 2.503097893432466e-05,
1010
+ "loss": 9.3603,
1011
+ "step": 1340
1012
+ },
1013
+ {
1014
+ "epoch": 5.014828544949027,
1015
+ "grad_norm": 182.35781860351562,
1016
+ "learning_rate": 2.4969021065675342e-05,
1017
+ "loss": 7.6621,
1018
+ "step": 1350
1019
+ },
1020
+ {
1021
+ "epoch": 5.014828544949027,
1022
+ "eval_loss": 2.8308892250061035,
1023
+ "eval_runtime": 34.1063,
1024
+ "eval_samples_per_second": 47.44,
1025
+ "eval_steps_per_second": 6.802,
1026
+ "step": 1350
1027
+ },
1028
+ {
1029
+ "epoch": 5.051899907321594,
1030
+ "grad_norm": 324.6659240722656,
1031
+ "learning_rate": 2.4907063197026023e-05,
1032
+ "loss": 9.2301,
1033
+ "step": 1360
1034
+ },
1035
+ {
1036
+ "epoch": 5.088971269694161,
1037
+ "grad_norm": 4839.4453125,
1038
+ "learning_rate": 2.4845105328376707e-05,
1039
+ "loss": 9.7789,
1040
+ "step": 1370
1041
+ },
1042
+ {
1043
+ "epoch": 5.126042632066729,
1044
+ "grad_norm": 408588.40625,
1045
+ "learning_rate": 2.4783147459727385e-05,
1046
+ "loss": 9.5359,
1047
+ "step": 1380
1048
+ },
1049
+ {
1050
+ "epoch": 5.163113994439295,
1051
+ "grad_norm": 932.5144653320312,
1052
+ "learning_rate": 2.4721189591078066e-05,
1053
+ "loss": 10.8065,
1054
+ "step": 1390
1055
+ },
1056
+ {
1057
+ "epoch": 5.200185356811863,
1058
+ "grad_norm": 148.0634765625,
1059
+ "learning_rate": 2.4659231722428747e-05,
1060
+ "loss": 10.0149,
1061
+ "step": 1400
1062
+ },
1063
+ {
1064
+ "epoch": 5.23725671918443,
1065
+ "grad_norm": 1214.7279052734375,
1066
+ "learning_rate": 2.459727385377943e-05,
1067
+ "loss": 10.2582,
1068
+ "step": 1410
1069
+ },
1070
+ {
1071
+ "epoch": 5.274328081556997,
1072
+ "grad_norm": 188.14292907714844,
1073
+ "learning_rate": 2.4535315985130112e-05,
1074
+ "loss": 10.16,
1075
+ "step": 1420
1076
+ },
1077
+ {
1078
+ "epoch": 5.311399443929565,
1079
+ "grad_norm": 388.7134094238281,
1080
+ "learning_rate": 2.4473358116480793e-05,
1081
+ "loss": 10.0763,
1082
+ "step": 1430
1083
+ },
1084
+ {
1085
+ "epoch": 5.348470806302132,
1086
+ "grad_norm": 270.61279296875,
1087
+ "learning_rate": 2.4411400247831474e-05,
1088
+ "loss": 9.5737,
1089
+ "step": 1440
1090
+ },
1091
+ {
1092
+ "epoch": 5.385542168674699,
1093
+ "grad_norm": 1637.854736328125,
1094
+ "learning_rate": 2.4349442379182155e-05,
1095
+ "loss": 10.4816,
1096
+ "step": 1450
1097
+ },
1098
+ {
1099
+ "epoch": 5.422613531047266,
1100
+ "grad_norm": 1118.7012939453125,
1101
+ "learning_rate": 2.428748451053284e-05,
1102
+ "loss": 8.6687,
1103
+ "step": 1460
1104
+ },
1105
+ {
1106
+ "epoch": 5.459684893419833,
1107
+ "grad_norm": 788.9707641601562,
1108
+ "learning_rate": 2.422552664188352e-05,
1109
+ "loss": 8.4066,
1110
+ "step": 1470
1111
+ },
1112
+ {
1113
+ "epoch": 5.4967562557924,
1114
+ "grad_norm": 185.22950744628906,
1115
+ "learning_rate": 2.41635687732342e-05,
1116
+ "loss": 9.386,
1117
+ "step": 1480
1118
+ },
1119
+ {
1120
+ "epoch": 5.533827618164968,
1121
+ "grad_norm": 257.726806640625,
1122
+ "learning_rate": 2.4101610904584883e-05,
1123
+ "loss": 8.3911,
1124
+ "step": 1490
1125
+ },
1126
+ {
1127
+ "epoch": 5.570898980537534,
1128
+ "grad_norm": 867.30908203125,
1129
+ "learning_rate": 2.4039653035935564e-05,
1130
+ "loss": 8.8025,
1131
+ "step": 1500
1132
+ },
1133
+ {
1134
+ "epoch": 5.570898980537534,
1135
+ "eval_loss": 2.5407650470733643,
1136
+ "eval_runtime": 34.0934,
1137
+ "eval_samples_per_second": 47.458,
1138
+ "eval_steps_per_second": 6.805,
1139
+ "step": 1500
1140
+ },
1141
+ {
1142
+ "epoch": 5.607970342910102,
1143
+ "grad_norm": 68.35711669921875,
1144
+ "learning_rate": 2.3977695167286248e-05,
1145
+ "loss": 8.7939,
1146
+ "step": 1510
1147
+ },
1148
+ {
1149
+ "epoch": 5.645041705282669,
1150
+ "grad_norm": 1419.1650390625,
1151
+ "learning_rate": 2.391573729863693e-05,
1152
+ "loss": 9.0903,
1153
+ "step": 1520
1154
+ },
1155
+ {
1156
+ "epoch": 5.682113067655236,
1157
+ "grad_norm": 60.88732147216797,
1158
+ "learning_rate": 2.385377942998761e-05,
1159
+ "loss": 8.9878,
1160
+ "step": 1530
1161
+ },
1162
+ {
1163
+ "epoch": 5.719184430027804,
1164
+ "grad_norm": 61.50148010253906,
1165
+ "learning_rate": 2.379182156133829e-05,
1166
+ "loss": 8.8642,
1167
+ "step": 1540
1168
+ },
1169
+ {
1170
+ "epoch": 5.7562557924003706,
1171
+ "grad_norm": 73.9307861328125,
1172
+ "learning_rate": 2.3729863692688972e-05,
1173
+ "loss": 8.8625,
1174
+ "step": 1550
1175
+ },
1176
+ {
1177
+ "epoch": 5.793327154772938,
1178
+ "grad_norm": 82.28329467773438,
1179
+ "learning_rate": 2.3667905824039656e-05,
1180
+ "loss": 8.4105,
1181
+ "step": 1560
1182
+ },
1183
+ {
1184
+ "epoch": 5.830398517145505,
1185
+ "grad_norm": 83.54141235351562,
1186
+ "learning_rate": 2.3605947955390337e-05,
1187
+ "loss": 9.0163,
1188
+ "step": 1570
1189
+ },
1190
+ {
1191
+ "epoch": 5.867469879518072,
1192
+ "grad_norm": 66.59397888183594,
1193
+ "learning_rate": 2.3543990086741015e-05,
1194
+ "loss": 8.8947,
1195
+ "step": 1580
1196
+ },
1197
+ {
1198
+ "epoch": 5.904541241890639,
1199
+ "grad_norm": 55.8841667175293,
1200
+ "learning_rate": 2.3482032218091696e-05,
1201
+ "loss": 8.5647,
1202
+ "step": 1590
1203
+ },
1204
+ {
1205
+ "epoch": 5.941612604263207,
1206
+ "grad_norm": 74.56892395019531,
1207
+ "learning_rate": 2.3420074349442377e-05,
1208
+ "loss": 7.7047,
1209
+ "step": 1600
1210
+ },
1211
+ {
1212
+ "epoch": 5.978683966635774,
1213
+ "grad_norm": 106.54405212402344,
1214
+ "learning_rate": 2.335811648079306e-05,
1215
+ "loss": 8.1484,
1216
+ "step": 1610
1217
+ },
1218
+ {
1219
+ "epoch": 6.014828544949027,
1220
+ "grad_norm": 107.8216781616211,
1221
+ "learning_rate": 2.3296158612143742e-05,
1222
+ "loss": 8.4079,
1223
+ "step": 1620
1224
+ },
1225
+ {
1226
+ "epoch": 6.051899907321594,
1227
+ "grad_norm": 100.98133087158203,
1228
+ "learning_rate": 2.3234200743494423e-05,
1229
+ "loss": 8.5027,
1230
+ "step": 1630
1231
+ },
1232
+ {
1233
+ "epoch": 6.088971269694161,
1234
+ "grad_norm": 67.31327819824219,
1235
+ "learning_rate": 2.3172242874845104e-05,
1236
+ "loss": 8.1805,
1237
+ "step": 1640
1238
+ },
1239
+ {
1240
+ "epoch": 6.126042632066729,
1241
+ "grad_norm": 61.10900115966797,
1242
+ "learning_rate": 2.311028500619579e-05,
1243
+ "loss": 8.4519,
1244
+ "step": 1650
1245
+ },
1246
+ {
1247
+ "epoch": 6.126042632066729,
1248
+ "eval_loss": 2.590090036392212,
1249
+ "eval_runtime": 34.1392,
1250
+ "eval_samples_per_second": 47.394,
1251
+ "eval_steps_per_second": 6.796,
1252
+ "step": 1650
1253
+ },
1254
+ {
1255
+ "epoch": 6.163113994439295,
1256
+ "grad_norm": 60.91183090209961,
1257
+ "learning_rate": 2.304832713754647e-05,
1258
+ "loss": 9.062,
1259
+ "step": 1660
1260
+ },
1261
+ {
1262
+ "epoch": 6.200185356811863,
1263
+ "grad_norm": 76.2873306274414,
1264
+ "learning_rate": 2.298636926889715e-05,
1265
+ "loss": 8.8499,
1266
+ "step": 1670
1267
+ },
1268
+ {
1269
+ "epoch": 6.23725671918443,
1270
+ "grad_norm": 74.2361068725586,
1271
+ "learning_rate": 2.2924411400247832e-05,
1272
+ "loss": 8.6576,
1273
+ "step": 1680
1274
+ },
1275
+ {
1276
+ "epoch": 6.274328081556997,
1277
+ "grad_norm": 84.99951934814453,
1278
+ "learning_rate": 2.2862453531598513e-05,
1279
+ "loss": 8.4652,
1280
+ "step": 1690
1281
+ },
1282
+ {
1283
+ "epoch": 6.311399443929565,
1284
+ "grad_norm": 86.40947723388672,
1285
+ "learning_rate": 2.2800495662949197e-05,
1286
+ "loss": 9.0782,
1287
+ "step": 1700
1288
+ },
1289
+ {
1290
+ "epoch": 6.348470806302132,
1291
+ "grad_norm": 75.45568084716797,
1292
+ "learning_rate": 2.2738537794299878e-05,
1293
+ "loss": 8.1532,
1294
+ "step": 1710
1295
+ },
1296
+ {
1297
+ "epoch": 6.385542168674699,
1298
+ "grad_norm": 86.65908813476562,
1299
+ "learning_rate": 2.267657992565056e-05,
1300
+ "loss": 8.5185,
1301
+ "step": 1720
1302
+ },
1303
+ {
1304
+ "epoch": 6.422613531047266,
1305
+ "grad_norm": 62.620758056640625,
1306
+ "learning_rate": 2.261462205700124e-05,
1307
+ "loss": 9.5908,
1308
+ "step": 1730
1309
+ },
1310
+ {
1311
+ "epoch": 6.459684893419833,
1312
+ "grad_norm": 73.63095092773438,
1313
+ "learning_rate": 2.255266418835192e-05,
1314
+ "loss": 8.4188,
1315
+ "step": 1740
1316
+ },
1317
+ {
1318
+ "epoch": 6.4967562557924,
1319
+ "grad_norm": 55.175045013427734,
1320
+ "learning_rate": 2.2490706319702606e-05,
1321
+ "loss": 8.1885,
1322
+ "step": 1750
1323
+ },
1324
+ {
1325
+ "epoch": 6.533827618164968,
1326
+ "grad_norm": 47.647621154785156,
1327
+ "learning_rate": 2.2428748451053287e-05,
1328
+ "loss": 8.7666,
1329
+ "step": 1760
1330
+ },
1331
+ {
1332
+ "epoch": 6.570898980537534,
1333
+ "grad_norm": 191.0419158935547,
1334
+ "learning_rate": 2.2366790582403964e-05,
1335
+ "loss": 8.6105,
1336
+ "step": 1770
1337
+ },
1338
+ {
1339
+ "epoch": 6.607970342910102,
1340
+ "grad_norm": 57.81939697265625,
1341
+ "learning_rate": 2.2304832713754645e-05,
1342
+ "loss": 8.664,
1343
+ "step": 1780
1344
+ },
1345
+ {
1346
+ "epoch": 6.645041705282669,
1347
+ "grad_norm": 85.04927825927734,
1348
+ "learning_rate": 2.2242874845105326e-05,
1349
+ "loss": 8.5294,
1350
+ "step": 1790
1351
+ },
1352
+ {
1353
+ "epoch": 6.682113067655236,
1354
+ "grad_norm": 55.604122161865234,
1355
+ "learning_rate": 2.218091697645601e-05,
1356
+ "loss": 9.1857,
1357
+ "step": 1800
1358
+ },
1359
+ {
1360
+ "epoch": 6.682113067655236,
1361
+ "eval_loss": 2.497358560562134,
1362
+ "eval_runtime": 34.0441,
1363
+ "eval_samples_per_second": 47.527,
1364
+ "eval_steps_per_second": 6.815,
1365
+ "step": 1800
1366
+ },
1367
+ {
1368
+ "epoch": 6.719184430027804,
1369
+ "grad_norm": 75.21812438964844,
1370
+ "learning_rate": 2.211895910780669e-05,
1371
+ "loss": 8.7053,
1372
+ "step": 1810
1373
+ },
1374
+ {
1375
+ "epoch": 6.7562557924003706,
1376
+ "grad_norm": 85.76676940917969,
1377
+ "learning_rate": 2.2057001239157373e-05,
1378
+ "loss": 8.1428,
1379
+ "step": 1820
1380
+ },
1381
+ {
1382
+ "epoch": 6.793327154772938,
1383
+ "grad_norm": 69.85575866699219,
1384
+ "learning_rate": 2.1995043370508054e-05,
1385
+ "loss": 8.4988,
1386
+ "step": 1830
1387
+ },
1388
+ {
1389
+ "epoch": 6.830398517145505,
1390
+ "grad_norm": 66.85325622558594,
1391
+ "learning_rate": 2.1933085501858735e-05,
1392
+ "loss": 8.4147,
1393
+ "step": 1840
1394
+ },
1395
+ {
1396
+ "epoch": 6.867469879518072,
1397
+ "grad_norm": 60.645294189453125,
1398
+ "learning_rate": 2.187112763320942e-05,
1399
+ "loss": 9.069,
1400
+ "step": 1850
1401
+ },
1402
+ {
1403
+ "epoch": 6.904541241890639,
1404
+ "grad_norm": 77.59921264648438,
1405
+ "learning_rate": 2.18091697645601e-05,
1406
+ "loss": 8.4405,
1407
+ "step": 1860
1408
+ },
1409
+ {
1410
+ "epoch": 6.941612604263207,
1411
+ "grad_norm": 56.27996826171875,
1412
+ "learning_rate": 2.174721189591078e-05,
1413
+ "loss": 9.2157,
1414
+ "step": 1870
1415
+ },
1416
+ {
1417
+ "epoch": 6.978683966635774,
1418
+ "grad_norm": 64.18400573730469,
1419
+ "learning_rate": 2.1685254027261462e-05,
1420
+ "loss": 9.5492,
1421
+ "step": 1880
1422
+ },
1423
+ {
1424
+ "epoch": 7.014828544949027,
1425
+ "grad_norm": 76.78484344482422,
1426
+ "learning_rate": 2.1623296158612143e-05,
1427
+ "loss": 8.1325,
1428
+ "step": 1890
1429
+ },
1430
+ {
1431
+ "epoch": 7.051899907321594,
1432
+ "grad_norm": 77.69871520996094,
1433
+ "learning_rate": 2.1561338289962827e-05,
1434
+ "loss": 8.324,
1435
+ "step": 1900
1436
+ },
1437
+ {
1438
+ "epoch": 7.088971269694161,
1439
+ "grad_norm": 102.43340301513672,
1440
+ "learning_rate": 2.149938042131351e-05,
1441
+ "loss": 7.7097,
1442
+ "step": 1910
1443
+ },
1444
+ {
1445
+ "epoch": 7.126042632066729,
1446
+ "grad_norm": 114.0189208984375,
1447
+ "learning_rate": 2.143742255266419e-05,
1448
+ "loss": 8.0982,
1449
+ "step": 1920
1450
+ },
1451
+ {
1452
+ "epoch": 7.163113994439295,
1453
+ "grad_norm": 66.60838317871094,
1454
+ "learning_rate": 2.137546468401487e-05,
1455
+ "loss": 7.7669,
1456
+ "step": 1930
1457
+ },
1458
+ {
1459
+ "epoch": 7.200185356811863,
1460
+ "grad_norm": 252.72503662109375,
1461
+ "learning_rate": 2.1313506815365555e-05,
1462
+ "loss": 7.809,
1463
+ "step": 1940
1464
+ },
1465
+ {
1466
+ "epoch": 7.23725671918443,
1467
+ "grad_norm": 91.0379409790039,
1468
+ "learning_rate": 2.1251548946716236e-05,
1469
+ "loss": 7.9729,
1470
+ "step": 1950
1471
+ },
1472
+ {
1473
+ "epoch": 7.23725671918443,
1474
+ "eval_loss": 2.610764741897583,
1475
+ "eval_runtime": 34.0774,
1476
+ "eval_samples_per_second": 47.48,
1477
+ "eval_steps_per_second": 6.808,
1478
+ "step": 1950
1479
+ },
1480
+ {
1481
+ "epoch": 7.274328081556997,
1482
+ "grad_norm": 96.09555053710938,
1483
+ "learning_rate": 2.1189591078066917e-05,
1484
+ "loss": 8.2125,
1485
+ "step": 1960
1486
+ },
1487
+ {
1488
+ "epoch": 7.311399443929565,
1489
+ "grad_norm": 68.51132202148438,
1490
+ "learning_rate": 2.1127633209417594e-05,
1491
+ "loss": 7.7403,
1492
+ "step": 1970
1493
+ },
1494
+ {
1495
+ "epoch": 7.348470806302132,
1496
+ "grad_norm": 94.45308685302734,
1497
+ "learning_rate": 2.1065675340768275e-05,
1498
+ "loss": 7.5494,
1499
+ "step": 1980
1500
+ },
1501
+ {
1502
+ "epoch": 7.385542168674699,
1503
+ "grad_norm": 56.785587310791016,
1504
+ "learning_rate": 2.100371747211896e-05,
1505
+ "loss": 8.2821,
1506
+ "step": 1990
1507
+ },
1508
+ {
1509
+ "epoch": 7.422613531047266,
1510
+ "grad_norm": 91.59173583984375,
1511
+ "learning_rate": 2.094175960346964e-05,
1512
+ "loss": 8.1644,
1513
+ "step": 2000
1514
+ },
1515
+ {
1516
+ "epoch": 7.459684893419833,
1517
+ "grad_norm": 78.57572174072266,
1518
+ "learning_rate": 2.0879801734820322e-05,
1519
+ "loss": 8.1664,
1520
+ "step": 2010
1521
+ },
1522
+ {
1523
+ "epoch": 7.4967562557924,
1524
+ "grad_norm": 71.83062744140625,
1525
+ "learning_rate": 2.0817843866171003e-05,
1526
+ "loss": 8.5876,
1527
+ "step": 2020
1528
+ },
1529
+ {
1530
+ "epoch": 7.533827618164968,
1531
+ "grad_norm": 74.75129699707031,
1532
+ "learning_rate": 2.0755885997521684e-05,
1533
+ "loss": 8.2753,
1534
+ "step": 2030
1535
+ },
1536
+ {
1537
+ "epoch": 7.570898980537534,
1538
+ "grad_norm": 96.26950073242188,
1539
+ "learning_rate": 2.0693928128872368e-05,
1540
+ "loss": 9.2057,
1541
+ "step": 2040
1542
+ },
1543
+ {
1544
+ "epoch": 7.607970342910102,
1545
+ "grad_norm": 96.87144470214844,
1546
+ "learning_rate": 2.063197026022305e-05,
1547
+ "loss": 8.0052,
1548
+ "step": 2050
1549
+ },
1550
+ {
1551
+ "epoch": 7.645041705282669,
1552
+ "grad_norm": 83.44422912597656,
1553
+ "learning_rate": 2.057001239157373e-05,
1554
+ "loss": 8.4954,
1555
+ "step": 2060
1556
+ },
1557
+ {
1558
+ "epoch": 7.682113067655236,
1559
+ "grad_norm": 86.1534194946289,
1560
+ "learning_rate": 2.050805452292441e-05,
1561
+ "loss": 8.0325,
1562
+ "step": 2070
1563
+ },
1564
+ {
1565
+ "epoch": 7.719184430027804,
1566
+ "grad_norm": 89.11744689941406,
1567
+ "learning_rate": 2.0446096654275092e-05,
1568
+ "loss": 8.2934,
1569
+ "step": 2080
1570
+ },
1571
+ {
1572
+ "epoch": 7.7562557924003706,
1573
+ "grad_norm": 60.81666946411133,
1574
+ "learning_rate": 2.0384138785625777e-05,
1575
+ "loss": 9.4019,
1576
+ "step": 2090
1577
+ },
1578
+ {
1579
+ "epoch": 7.793327154772938,
1580
+ "grad_norm": 82.93228912353516,
1581
+ "learning_rate": 2.0322180916976458e-05,
1582
+ "loss": 8.874,
1583
+ "step": 2100
1584
+ },
1585
+ {
1586
+ "epoch": 7.793327154772938,
1587
+ "eval_loss": 2.452894926071167,
1588
+ "eval_runtime": 34.0684,
1589
+ "eval_samples_per_second": 47.493,
1590
+ "eval_steps_per_second": 6.81,
1591
+ "step": 2100
1592
+ }
1593
+ ],
1594
+ "logging_steps": 10,
1595
+ "max_steps": 5380,
1596
+ "num_input_tokens_seen": 0,
1597
+ "num_train_epochs": 20,
1598
+ "save_steps": 150,
1599
+ "stateful_callbacks": {
1600
+ "TrainerControl": {
1601
+ "args": {
1602
+ "should_epoch_stop": false,
1603
+ "should_evaluate": false,
1604
+ "should_log": false,
1605
+ "should_save": true,
1606
+ "should_training_stop": false
1607
+ },
1608
+ "attributes": {}
1609
+ }
1610
+ },
1611
+ "total_flos": 0.0,
1612
+ "train_batch_size": 7,
1613
+ "trial_name": null,
1614
+ "trial_params": null
1615
+ }
checkpoints/checkpoint-2100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda94467724e48ac975735648aa63a75558d48b6c993506e918a3476acf80697
3
+ size 129
checkpoints/checkpoint-2550/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoints/checkpoint-2550/README.md ADDED
@@ -0,0 +1,839 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7552
8
+ - loss:CoSENTLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: How are calibration points linked to equipment?
12
+ sentences:
13
+ - 'How are flow computers and measurement systems related?
14
+
15
+ Flow computers can have multiple systems assigned to them. However, a measurement
16
+ system can only be assigned to one flow computer.
17
+
18
+
19
+ Database terminology:
20
+
21
+ In the database, this relationship is referred to as:
22
+
23
+ - Meter streams
24
+
25
+ - Meter runs
26
+
27
+ - Sections
28
+
29
+
30
+ Storage of the relationship:
31
+
32
+ The relationship between a flow computer and its assigned measurement system is
33
+ stored in a special table.
34
+
35
+
36
+ User context:
37
+
38
+ When a user refers to a "meter stream," they are indicating that they are searching
39
+ for a measurement system assigned to a specific flow computer.'
40
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
41
+ \ daily or hourly reports to provide users with operational data. These reports\
42
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
43
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
44
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
45
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
46
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
47
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
48
+ \ are linked to a Modbus table. This table contains the names corresponding to\
49
+ \ each value in the reports, making it easier to interpret the data."
50
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
51
+ \ and reliability of results obtained from equipment or measurement systems. It\
52
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
53
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
54
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
55
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
56
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
57
+ \ serves as a starting point for further calculations related to the equipment.\n\
58
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
59
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
60
+ \ the individual variables (magnitudes) and represents the combined margin of\
61
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
62
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
63
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
64
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
65
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
66
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
67
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
68
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
69
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
70
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
71
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
72
+ - To find the uncertainty of the measurement system, join the measurement systems\
73
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
74
+ \ of a specific variable (magnitude), join the measurement systems table with\
75
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
76
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
77
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
78
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
79
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
80
+ \ systems table + uncertainty of magnitudes table)."
81
+ - source_sentence: What is the primary key of the flow computer table?
82
+ sentences:
83
+ - 'What is equipment calibration?
84
+
85
+ Calibration is a metrological verification process used to ensure the accuracy
86
+ of measurement equipment. It is performed periodically, based on intervals set
87
+ by the company or a regulatory body.
88
+
89
+
90
+ Purpose of calibration:
91
+
92
+ The calibration process corrects any deviations in how the equipment measures
93
+ physical magnitudes (variables). This ensures the equipment provides accurate
94
+ and reliable data.
95
+
96
+
97
+ Calibration cycles:
98
+
99
+ There are two main calibration cycles:
100
+
101
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
102
+ are made. This cycle is almost always implemented.
103
+
104
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
105
+ are made. This cycle is used depending on regulatory requirements.
106
+
107
+
108
+ Calibration uncertainty:
109
+
110
+ - Uncertainty is included in the results of a calibration.
111
+
112
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
113
+ which also affects the uncertainty of the measured variable or magnitude.'
114
+ - 'What is equipment calibration?
115
+
116
+ Calibration is a metrological verification process used to ensure the accuracy
117
+ of measurement equipment. It is performed periodically, based on intervals set
118
+ by the company or a regulatory body.
119
+
120
+
121
+ Purpose of calibration:
122
+
123
+ The calibration process corrects any deviations in how the equipment measures
124
+ physical magnitudes (variables). This ensures the equipment provides accurate
125
+ and reliable data.
126
+
127
+
128
+ Calibration cycles:
129
+
130
+ There are two main calibration cycles:
131
+
132
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
133
+ are made. This cycle is almost always implemented.
134
+
135
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
136
+ are made. This cycle is used depending on regulatory requirements.
137
+
138
+
139
+ Calibration uncertainty:
140
+
141
+ - Uncertainty is included in the results of a calibration.
142
+
143
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
144
+ which also affects the uncertainty of the measured variable or magnitude.'
145
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
146
+ \ daily or hourly reports to provide users with operational data. These reports\
147
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
148
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
149
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
150
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
151
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
152
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
153
+ \ are linked to a Modbus table. This table contains the names corresponding to\
154
+ \ each value in the reports, making it easier to interpret the data."
155
+ - source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
156
+ result for the specified tag and date?
157
+ sentences:
158
+ - 'What is equipment calibration?
159
+
160
+ Calibration is a metrological verification process used to ensure the accuracy
161
+ of measurement equipment. It is performed periodically, based on intervals set
162
+ by the company or a regulatory body.
163
+
164
+
165
+ Purpose of calibration:
166
+
167
+ The calibration process corrects any deviations in how the equipment measures
168
+ physical magnitudes (variables). This ensures the equipment provides accurate
169
+ and reliable data.
170
+
171
+
172
+ Calibration cycles:
173
+
174
+ There are two main calibration cycles:
175
+
176
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
177
+ are made. This cycle is almost always implemented.
178
+
179
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
180
+ are made. This cycle is used depending on regulatory requirements.
181
+
182
+
183
+ Calibration uncertainty:
184
+
185
+ - Uncertainty is included in the results of a calibration.
186
+
187
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
188
+ which also affects the uncertainty of the measured variable or magnitude.'
189
+ - 'What kind of data store an equipment?
190
+
191
+ Equipments can capture meteorological data, such as pressure, temperature, and
192
+ volume (magnitudes). This data is essential for users to perform various calculations.
193
+
194
+
195
+ Data storage:
196
+
197
+ - The measured values are stored in a special table in the database for magnitudes.
198
+ This table contains the values of the variables captured by the equipments.
199
+
200
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
201
+ temperature, or volume readings). **They are not calculated values**, such as
202
+ uncertainty.
203
+
204
+ - The values stored in the variable values table are **different** from variable
205
+ uncertainty values, which are calculated separately and represent the margin of
206
+ error.
207
+
208
+
209
+ Accessing the data:
210
+
211
+ - Users typically access the data by referring to the readings from the measurement
212
+ system, not directly from the individual equipments.
213
+
214
+ - The readings are stored in a "variable values" table within the database.
215
+
216
+
217
+ Linking variable names:
218
+
219
+ If the user needs to know the name of a variable, they must link the data to another
220
+ table that stores information about the types of variables.'
221
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
222
+ \ and reliability of results obtained from equipment or measurement systems. It\
223
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
224
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
225
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
226
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
227
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
228
+ \ serves as a starting point for further calculations related to the equipment.\n\
229
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
230
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
231
+ \ the individual variables (magnitudes) and represents the combined margin of\
232
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
233
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
234
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
235
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
236
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
237
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
238
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
239
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
240
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
241
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
242
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
243
+ - To find the uncertainty of the measurement system, join the measurement systems\
244
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
245
+ \ of a specific variable (magnitude), join the measurement systems table with\
246
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
247
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
248
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
249
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
250
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
251
+ \ systems table + uncertainty of magnitudes table)."
252
+ - source_sentence: How are the secondary equipment and measurement system related?
253
+ sentences:
254
+ - 'What kind of data store an equipment?
255
+
256
+ Equipments can capture meteorological data, such as pressure, temperature, and
257
+ volume (magnitudes). This data is essential for users to perform various calculations.
258
+
259
+
260
+ Data storage:
261
+
262
+ - The measured values are stored in a special table in the database for magnitudes.
263
+ This table contains the values of the variables captured by the equipments.
264
+
265
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
266
+ temperature, or volume readings). **They are not calculated values**, such as
267
+ uncertainty.
268
+
269
+ - The values stored in the variable values table are **different** from variable
270
+ uncertainty values, which are calculated separately and represent the margin of
271
+ error.
272
+
273
+
274
+ Accessing the data:
275
+
276
+ - Users typically access the data by referring to the readings from the measurement
277
+ system, not directly from the individual equipments.
278
+
279
+ - The readings are stored in a "variable values" table within the database.
280
+
281
+
282
+ Linking variable names:
283
+
284
+ If the user needs to know the name of a variable, they must link the data to another
285
+ table that stores information about the types of variables.'
286
+ - 'What do measurement equipment measure?
287
+
288
+ Each equipment measures a physical magnitude, also known as a variable. Based
289
+ on the type of variable they measure, devices are classified into different categories.
290
+
291
+
292
+ Equipment classification:
293
+
294
+ - Primary meter: Assigned by default to equipments like orifice plates.
295
+
296
+ - Secondary meter: Assigned by default to equipments like transmitters.
297
+
298
+ - Tertiary meter: Used for other types of equipments.
299
+
300
+
301
+ Equipment types in the database:
302
+
303
+ The database includes a table listing all equipment types. Examples of equipment
304
+ types are:
305
+
306
+ - Differential pressure transmitters
307
+
308
+ - RTDs (Resistance Temperature Detectors)
309
+
310
+ - Orifice plates
311
+
312
+ - Multivariable transmitters
313
+
314
+ - Ultrasonic meters
315
+
316
+
317
+ Meteorological checks for equipments:
318
+
319
+ Each equipment type is assigned a meteorological check, which can be either:
320
+
321
+ - Calibration: To ensure measurement accuracy.
322
+
323
+ - Inspection: To verify proper functioning.
324
+
325
+
326
+ Data storage in tables:
327
+
328
+ The database also includes a separate table for equipment classifications, which
329
+ are:
330
+
331
+ - Primary meter
332
+
333
+ - Secondary meter
334
+
335
+ - Tertiary meter
336
+
337
+ So, an equipment has equipment types and this types has classifications.'
338
+ - 'What kind of data store an equipment?
339
+
340
+ Equipments can capture meteorological data, such as pressure, temperature, and
341
+ volume (magnitudes). This data is essential for users to perform various calculations.
342
+
343
+
344
+ Data storage:
345
+
346
+ - The measured values are stored in a special table in the database for magnitudes.
347
+ This table contains the values of the variables captured by the equipments.
348
+
349
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
350
+ temperature, or volume readings). **They are not calculated values**, such as
351
+ uncertainty.
352
+
353
+ - The values stored in the variable values table are **different** from variable
354
+ uncertainty values, which are calculated separately and represent the margin of
355
+ error.
356
+
357
+
358
+ Accessing the data:
359
+
360
+ - Users typically access the data by referring to the readings from the measurement
361
+ system, not directly from the individual equipments.
362
+
363
+ - The readings are stored in a "variable values" table within the database.
364
+
365
+
366
+ Linking variable names:
367
+
368
+ If the user needs to know the name of a variable, they must link the data to another
369
+ table that stores information about the types of variables.'
370
+ - source_sentence: What is the table structure for secondary equipment?
371
+ sentences:
372
+ - 'What kind of data store an equipment?
373
+
374
+ Equipments can capture meteorological data, such as pressure, temperature, and
375
+ volume (magnitudes). This data is essential for users to perform various calculations.
376
+
377
+
378
+ Data storage:
379
+
380
+ - The measured values are stored in a special table in the database for magnitudes.
381
+ This table contains the values of the variables captured by the equipments.
382
+
383
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
384
+ temperature, or volume readings). **They are not calculated values**, such as
385
+ uncertainty.
386
+
387
+ - The values stored in the variable values table are **different** from variable
388
+ uncertainty values, which are calculated separately and represent the margin of
389
+ error.
390
+
391
+
392
+ Accessing the data:
393
+
394
+ - Users typically access the data by referring to the readings from the measurement
395
+ system, not directly from the individual equipments.
396
+
397
+ - The readings are stored in a "variable values" table within the database.
398
+
399
+
400
+ Linking variable names:
401
+
402
+ If the user needs to know the name of a variable, they must link the data to another
403
+ table that stores information about the types of variables.'
404
+ - 'How are flow computers and measurement systems related?
405
+
406
+ Flow computers can have multiple systems assigned to them. However, a measurement
407
+ system can only be assigned to one flow computer.
408
+
409
+
410
+ Database terminology:
411
+
412
+ In the database, this relationship is referred to as:
413
+
414
+ - Meter streams
415
+
416
+ - Meter runs
417
+
418
+ - Sections
419
+
420
+
421
+ Storage of the relationship:
422
+
423
+ The relationship between a flow computer and its assigned measurement system is
424
+ stored in a special table.
425
+
426
+
427
+ User context:
428
+
429
+ When a user refers to a "meter stream," they are indicating that they are searching
430
+ for a measurement system assigned to a specific flow computer.'
431
+ - 'How are flow computers and measurement systems related?
432
+
433
+ Flow computers can have multiple systems assigned to them. However, a measurement
434
+ system can only be assigned to one flow computer.
435
+
436
+
437
+ Database terminology:
438
+
439
+ In the database, this relationship is referred to as:
440
+
441
+ - Meter streams
442
+
443
+ - Meter runs
444
+
445
+ - Sections
446
+
447
+
448
+ Storage of the relationship:
449
+
450
+ The relationship between a flow computer and its assigned measurement system is
451
+ stored in a special table.
452
+
453
+
454
+ User context:
455
+
456
+ When a user refers to a "meter stream," they are indicating that they are searching
457
+ for a measurement system assigned to a specific flow computer.'
458
+ datasets:
459
+ - Lauther/measuring-embeddings-v3
460
+ pipeline_tag: sentence-similarity
461
+ library_name: sentence-transformers
462
+ ---
463
+
464
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
465
+
466
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
467
+
468
+ ## Model Details
469
+
470
+ ### Model Description
471
+ - **Model Type:** Sentence Transformer
472
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
473
+ - **Maximum Sequence Length:** 512 tokens
474
+ - **Output Dimensionality:** 1024 dimensions
475
+ - **Similarity Function:** Cosine Similarity
476
+ - **Training Dataset:**
477
+ - [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
478
+ <!-- - **Language:** Unknown -->
479
+ <!-- - **License:** Unknown -->
480
+
481
+ ### Model Sources
482
+
483
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
484
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
485
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
486
+
487
+ ### Full Model Architecture
488
+
489
+ ```
490
+ SentenceTransformer(
491
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
492
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
493
+ (2): Normalize()
494
+ )
495
+ ```
496
+
497
+ ## Usage
498
+
499
+ ### Direct Usage (Sentence Transformers)
500
+
501
+ First install the Sentence Transformers library:
502
+
503
+ ```bash
504
+ pip install -U sentence-transformers
505
+ ```
506
+
507
+ Then you can load this model and run inference.
508
+ ```python
509
+ from sentence_transformers import SentenceTransformer
510
+
511
+ # Download from the 🤗 Hub
512
+ model = SentenceTransformer("sentence_transformers_model_id")
513
+ # Run inference
514
+ sentences = [
515
+ 'What is the table structure for secondary equipment?',
516
+ 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
517
+ 'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
518
+ ]
519
+ embeddings = model.encode(sentences)
520
+ print(embeddings.shape)
521
+ # [3, 1024]
522
+
523
+ # Get the similarity scores for the embeddings
524
+ similarities = model.similarity(embeddings, embeddings)
525
+ print(similarities.shape)
526
+ # [3, 3]
527
+ ```
528
+
529
+ <!--
530
+ ### Direct Usage (Transformers)
531
+
532
+ <details><summary>Click to see the direct usage in Transformers</summary>
533
+
534
+ </details>
535
+ -->
536
+
537
+ <!--
538
+ ### Downstream Usage (Sentence Transformers)
539
+
540
+ You can finetune this model on your own dataset.
541
+
542
+ <details><summary>Click to expand</summary>
543
+
544
+ </details>
545
+ -->
546
+
547
+ <!--
548
+ ### Out-of-Scope Use
549
+
550
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
551
+ -->
552
+
553
+ <!--
554
+ ## Bias, Risks and Limitations
555
+
556
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
557
+ -->
558
+
559
+ <!--
560
+ ### Recommendations
561
+
562
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
563
+ -->
564
+
565
+ ## Training Details
566
+
567
+ ### Training Dataset
568
+
569
+ #### measuring-embeddings-v3
570
+
571
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
572
+ * Size: 7,552 training samples
573
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
574
+ * Approximate statistics based on the first 1000 samples:
575
+ | | sentence1 | sentence2 | score |
576
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
577
+ | type | string | string | float |
578
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
579
+ * Samples:
580
+ | sentence1 | sentence2 | score |
581
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
582
+ | <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
583
+ | <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
584
+ | <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
585
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
586
+ ```json
587
+ {
588
+ "scale": 20.0,
589
+ "similarity_fct": "pairwise_cos_sim"
590
+ }
591
+ ```
592
+
593
+ ### Evaluation Dataset
594
+
595
+ #### measuring-embeddings-v3
596
+
597
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
598
+ * Size: 1,618 evaluation samples
599
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
600
+ * Approximate statistics based on the first 1000 samples:
601
+ | | sentence1 | sentence2 | score |
602
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
603
+ | type | string | string | float |
604
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
605
+ * Samples:
606
+ | sentence1 | sentence2 | score |
607
+ |:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
608
+ | <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
609
+ | <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
610
+ | <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
611
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
612
+ ```json
613
+ {
614
+ "scale": 20.0,
615
+ "similarity_fct": "pairwise_cos_sim"
616
+ }
617
+ ```
618
+
619
+ ### Training Hyperparameters
620
+ #### Non-Default Hyperparameters
621
+
622
+ - `eval_strategy`: steps
623
+ - `per_device_train_batch_size`: 7
624
+ - `per_device_eval_batch_size`: 7
625
+ - `gradient_accumulation_steps`: 4
626
+ - `learning_rate`: 3e-05
627
+ - `num_train_epochs`: 20
628
+ - `warmup_ratio`: 0.1
629
+
630
+ #### All Hyperparameters
631
+ <details><summary>Click to expand</summary>
632
+
633
+ - `overwrite_output_dir`: False
634
+ - `do_predict`: False
635
+ - `eval_strategy`: steps
636
+ - `prediction_loss_only`: True
637
+ - `per_device_train_batch_size`: 7
638
+ - `per_device_eval_batch_size`: 7
639
+ - `per_gpu_train_batch_size`: None
640
+ - `per_gpu_eval_batch_size`: None
641
+ - `gradient_accumulation_steps`: 4
642
+ - `eval_accumulation_steps`: None
643
+ - `torch_empty_cache_steps`: None
644
+ - `learning_rate`: 3e-05
645
+ - `weight_decay`: 0.0
646
+ - `adam_beta1`: 0.9
647
+ - `adam_beta2`: 0.999
648
+ - `adam_epsilon`: 1e-08
649
+ - `max_grad_norm`: 1.0
650
+ - `num_train_epochs`: 20
651
+ - `max_steps`: -1
652
+ - `lr_scheduler_type`: linear
653
+ - `lr_scheduler_kwargs`: {}
654
+ - `warmup_ratio`: 0.1
655
+ - `warmup_steps`: 0
656
+ - `log_level`: passive
657
+ - `log_level_replica`: warning
658
+ - `log_on_each_node`: True
659
+ - `logging_nan_inf_filter`: True
660
+ - `save_safetensors`: True
661
+ - `save_on_each_node`: False
662
+ - `save_only_model`: False
663
+ - `restore_callback_states_from_checkpoint`: False
664
+ - `no_cuda`: False
665
+ - `use_cpu`: False
666
+ - `use_mps_device`: False
667
+ - `seed`: 42
668
+ - `data_seed`: None
669
+ - `jit_mode_eval`: False
670
+ - `use_ipex`: False
671
+ - `bf16`: False
672
+ - `fp16`: False
673
+ - `fp16_opt_level`: O1
674
+ - `half_precision_backend`: auto
675
+ - `bf16_full_eval`: False
676
+ - `fp16_full_eval`: False
677
+ - `tf32`: None
678
+ - `local_rank`: 0
679
+ - `ddp_backend`: None
680
+ - `tpu_num_cores`: None
681
+ - `tpu_metrics_debug`: False
682
+ - `debug`: []
683
+ - `dataloader_drop_last`: False
684
+ - `dataloader_num_workers`: 0
685
+ - `dataloader_prefetch_factor`: None
686
+ - `past_index`: -1
687
+ - `disable_tqdm`: False
688
+ - `remove_unused_columns`: True
689
+ - `label_names`: None
690
+ - `load_best_model_at_end`: False
691
+ - `ignore_data_skip`: False
692
+ - `fsdp`: []
693
+ - `fsdp_min_num_params`: 0
694
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
695
+ - `fsdp_transformer_layer_cls_to_wrap`: None
696
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
697
+ - `deepspeed`: None
698
+ - `label_smoothing_factor`: 0.0
699
+ - `optim`: adamw_torch
700
+ - `optim_args`: None
701
+ - `adafactor`: False
702
+ - `group_by_length`: False
703
+ - `length_column_name`: length
704
+ - `ddp_find_unused_parameters`: None
705
+ - `ddp_bucket_cap_mb`: None
706
+ - `ddp_broadcast_buffers`: False
707
+ - `dataloader_pin_memory`: True
708
+ - `dataloader_persistent_workers`: False
709
+ - `skip_memory_metrics`: True
710
+ - `use_legacy_prediction_loop`: False
711
+ - `push_to_hub`: False
712
+ - `resume_from_checkpoint`: None
713
+ - `hub_model_id`: None
714
+ - `hub_strategy`: every_save
715
+ - `hub_private_repo`: None
716
+ - `hub_always_push`: False
717
+ - `gradient_checkpointing`: False
718
+ - `gradient_checkpointing_kwargs`: None
719
+ - `include_inputs_for_metrics`: False
720
+ - `include_for_metrics`: []
721
+ - `eval_do_concat_batches`: True
722
+ - `fp16_backend`: auto
723
+ - `push_to_hub_model_id`: None
724
+ - `push_to_hub_organization`: None
725
+ - `mp_parameters`:
726
+ - `auto_find_batch_size`: False
727
+ - `full_determinism`: False
728
+ - `torchdynamo`: None
729
+ - `ray_scope`: last
730
+ - `ddp_timeout`: 1800
731
+ - `torch_compile`: False
732
+ - `torch_compile_backend`: None
733
+ - `torch_compile_mode`: None
734
+ - `dispatch_batches`: None
735
+ - `split_batches`: None
736
+ - `include_tokens_per_second`: False
737
+ - `include_num_input_tokens_seen`: False
738
+ - `neftune_noise_alpha`: None
739
+ - `optim_target_modules`: None
740
+ - `batch_eval_metrics`: False
741
+ - `eval_on_start`: False
742
+ - `use_liger_kernel`: False
743
+ - `eval_use_gather_object`: False
744
+ - `average_tokens_across_devices`: False
745
+ - `prompts`: None
746
+ - `batch_sampler`: batch_sampler
747
+ - `multi_dataset_batch_sampler`: proportional
748
+
749
+ </details>
750
+
751
+ ### Training Logs
752
+ | Epoch | Step | Training Loss | Validation Loss |
753
+ |:------:|:----:|:-------------:|:---------------:|
754
+ | 8.4004 | 2260 | 8.9083 | - |
755
+ | 8.4374 | 2270 | 6.9349 | - |
756
+ | 8.4745 | 2280 | 7.5041 | - |
757
+ | 8.5116 | 2290 | 7.3744 | - |
758
+ | 8.5487 | 2300 | 8.6541 | - |
759
+ | 8.5857 | 2310 | 8.6305 | - |
760
+ | 8.6228 | 2320 | 8.2577 | - |
761
+ | 8.6599 | 2330 | 7.6382 | - |
762
+ | 8.6969 | 2340 | 8.114 | - |
763
+ | 8.7340 | 2350 | 7.8875 | - |
764
+ | 8.7711 | 2360 | 7.0444 | - |
765
+ | 8.8082 | 2370 | 7.7393 | - |
766
+ | 8.8452 | 2380 | 8.8284 | - |
767
+ | 8.8823 | 2390 | 7.997 | - |
768
+ | 8.9194 | 2400 | 7.786 | 2.6791 |
769
+ | 8.9564 | 2410 | 7.6257 | - |
770
+ | 8.9935 | 2420 | 7.099 | - |
771
+ | 9.0334 | 2430 | 8.041 | - |
772
+ | 9.0704 | 2440 | 7.8606 | - |
773
+ | 9.1075 | 2450 | 7.8551 | - |
774
+ | 9.1446 | 2460 | 7.3977 | - |
775
+ | 9.1816 | 2470 | 7.8721 | - |
776
+ | 9.2187 | 2480 | 7.5839 | - |
777
+ | 9.2558 | 2490 | 7.1823 | - |
778
+ | 9.2929 | 2500 | 7.5513 | - |
779
+ | 9.3299 | 2510 | 8.0879 | - |
780
+ | 9.3670 | 2520 | 7.5694 | - |
781
+ | 9.4041 | 2530 | 7.3436 | - |
782
+ | 9.4411 | 2540 | 6.9425 | - |
783
+ | 9.4782 | 2550 | 7.9461 | 2.6609 |
784
+
785
+
786
+ ### Framework Versions
787
+ - Python: 3.11.0
788
+ - Sentence Transformers: 3.4.0
789
+ - Transformers: 4.48.1
790
+ - PyTorch: 2.5.1+cu124
791
+ - Accelerate: 1.3.0
792
+ - Datasets: 3.2.0
793
+ - Tokenizers: 0.21.0
794
+
795
+ ## Citation
796
+
797
+ ### BibTeX
798
+
799
+ #### Sentence Transformers
800
+ ```bibtex
801
+ @inproceedings{reimers-2019-sentence-bert,
802
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
803
+ author = "Reimers, Nils and Gurevych, Iryna",
804
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
805
+ month = "11",
806
+ year = "2019",
807
+ publisher = "Association for Computational Linguistics",
808
+ url = "https://arxiv.org/abs/1908.10084",
809
+ }
810
+ ```
811
+
812
+ #### CoSENTLoss
813
+ ```bibtex
814
+ @online{kexuefm-8847,
815
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
816
+ author={Su Jianlin},
817
+ year={2022},
818
+ month={Jan},
819
+ url={https://kexue.fm/archives/8847},
820
+ }
821
+ ```
822
+
823
+ <!--
824
+ ## Glossary
825
+
826
+ *Clearly define terms in order to be accessible across audiences.*
827
+ -->
828
+
829
+ <!--
830
+ ## Model Card Authors
831
+
832
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
833
+ -->
834
+
835
+ <!--
836
+ ## Model Card Contact
837
+
838
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
839
+ -->
checkpoints/checkpoint-2550/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoints/checkpoint-2550/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoints/checkpoint-2550/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1eeb987ae1fe4e003c1ed193ae85886259826a8245cc3b4c7f68b95a3e62f4a
3
+ size 135
checkpoints/checkpoint-2550/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoints/checkpoint-2550/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e60d803e7ed6d5b6dcb9fdd28dcac8799caa489d45a4d580380eb424efc1f6d1
3
+ size 135
checkpoints/checkpoint-2550/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:052a33df3ff67f767c8bc37d9aea19901e1530ce3194ccb24810b5f02b64c596
3
+ size 130
checkpoints/checkpoint-2550/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4229c3d8882ac67ab0b2f25fec200e2b96ffede873c599106e1de1e9caa32b3c
3
+ size 129
checkpoints/checkpoint-2550/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoints/checkpoint-2550/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoints/checkpoint-2550/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6f09c3f9b891e5b98dd3af9463dcab5a97d5265e288271395324a0577e6c05
3
+ size 133
checkpoints/checkpoint-2550/tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }
checkpoints/checkpoint-2550/trainer_state.json ADDED
@@ -0,0 +1,1954 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.478220574606116,
5
+ "eval_steps": 150,
6
+ "global_step": 2550,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03707136237256719,
13
+ "grad_norm": 53.36411666870117,
14
+ "learning_rate": 1.1152416356877324e-06,
15
+ "loss": 10.8165,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.07414272474513438,
20
+ "grad_norm": 61.33858871459961,
21
+ "learning_rate": 2.2304832713754648e-06,
22
+ "loss": 10.8463,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.11121408711770157,
27
+ "grad_norm": 67.16305541992188,
28
+ "learning_rate": 3.345724907063197e-06,
29
+ "loss": 10.821,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.14828544949026876,
34
+ "grad_norm": 62.08958053588867,
35
+ "learning_rate": 4.4609665427509296e-06,
36
+ "loss": 10.4704,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.18535681186283595,
41
+ "grad_norm": 53.839927673339844,
42
+ "learning_rate": 5.576208178438661e-06,
43
+ "loss": 10.8568,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.22242817423540315,
48
+ "grad_norm": 57.02272033691406,
49
+ "learning_rate": 6.691449814126394e-06,
50
+ "loss": 10.3005,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2594995366079703,
55
+ "grad_norm": 88.16449737548828,
56
+ "learning_rate": 7.806691449814127e-06,
57
+ "loss": 9.6009,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.2965708989805375,
62
+ "grad_norm": 84.35252380371094,
63
+ "learning_rate": 8.921933085501859e-06,
64
+ "loss": 9.7448,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3336422613531047,
69
+ "grad_norm": 77.93982696533203,
70
+ "learning_rate": 1.0037174721189593e-05,
71
+ "loss": 9.5922,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.3707136237256719,
76
+ "grad_norm": 56.669166564941406,
77
+ "learning_rate": 1.1152416356877323e-05,
78
+ "loss": 10.0919,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.4077849860982391,
83
+ "grad_norm": 56.652488708496094,
84
+ "learning_rate": 1.2267657992565056e-05,
85
+ "loss": 10.2733,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.4448563484708063,
90
+ "grad_norm": 63.472042083740234,
91
+ "learning_rate": 1.3382899628252788e-05,
92
+ "loss": 9.4547,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.4819277108433735,
97
+ "grad_norm": 78.0159912109375,
98
+ "learning_rate": 1.4498141263940521e-05,
99
+ "loss": 9.1738,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5189990732159406,
104
+ "grad_norm": 68.1931381225586,
105
+ "learning_rate": 1.5613382899628255e-05,
106
+ "loss": 10.0876,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.5560704355885079,
111
+ "grad_norm": 49.315216064453125,
112
+ "learning_rate": 1.6728624535315986e-05,
113
+ "loss": 10.3721,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.5560704355885079,
118
+ "eval_loss": 2.559400796890259,
119
+ "eval_runtime": 34.304,
120
+ "eval_samples_per_second": 47.166,
121
+ "eval_steps_per_second": 6.763,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.593141797961075,
126
+ "grad_norm": 34.1899528503418,
127
+ "learning_rate": 1.7843866171003718e-05,
128
+ "loss": 10.4711,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.6302131603336423,
133
+ "grad_norm": 37.074134826660156,
134
+ "learning_rate": 1.895910780669145e-05,
135
+ "loss": 9.9383,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 0.6672845227062094,
140
+ "grad_norm": 49.323158264160156,
141
+ "learning_rate": 2.0074349442379185e-05,
142
+ "loss": 10.0448,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 0.7043558850787767,
147
+ "grad_norm": 53.07639694213867,
148
+ "learning_rate": 2.1189591078066917e-05,
149
+ "loss": 9.8467,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 0.7414272474513438,
154
+ "grad_norm": 38.345916748046875,
155
+ "learning_rate": 2.2304832713754645e-05,
156
+ "loss": 9.9434,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.7784986098239111,
161
+ "grad_norm": 47.55274963378906,
162
+ "learning_rate": 2.3420074349442377e-05,
163
+ "loss": 9.7912,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 0.8155699721964782,
168
+ "grad_norm": 59.17176055908203,
169
+ "learning_rate": 2.4535315985130112e-05,
170
+ "loss": 9.7905,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 0.8526413345690455,
175
+ "grad_norm": 52.57457733154297,
176
+ "learning_rate": 2.5650557620817844e-05,
177
+ "loss": 9.9412,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 0.8897126969416126,
182
+ "grad_norm": 42.251304626464844,
183
+ "learning_rate": 2.6765799256505576e-05,
184
+ "loss": 10.0084,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 0.9267840593141798,
189
+ "grad_norm": 46.63966369628906,
190
+ "learning_rate": 2.788104089219331e-05,
191
+ "loss": 10.0139,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 0.963855421686747,
196
+ "grad_norm": 27.772289276123047,
197
+ "learning_rate": 2.8996282527881043e-05,
198
+ "loss": 9.3794,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.0,
203
+ "grad_norm": 46.3179931640625,
204
+ "learning_rate": 2.9987608426270136e-05,
205
+ "loss": 9.5747,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.0370713623725671,
210
+ "grad_norm": 45.746551513671875,
211
+ "learning_rate": 2.98636926889715e-05,
212
+ "loss": 9.6763,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.0741427247451343,
217
+ "grad_norm": 49.50416564941406,
218
+ "learning_rate": 2.9739776951672864e-05,
219
+ "loss": 10.4789,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.1112140871177016,
224
+ "grad_norm": 43.72733688354492,
225
+ "learning_rate": 2.9615861214374226e-05,
226
+ "loss": 9.7244,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.1112140871177016,
231
+ "eval_loss": 2.6879734992980957,
232
+ "eval_runtime": 34.2522,
233
+ "eval_samples_per_second": 47.238,
234
+ "eval_steps_per_second": 6.773,
235
+ "step": 300
236
+ },
237
+ {
238
+ "epoch": 1.1482854494902688,
239
+ "grad_norm": 48.68376541137695,
240
+ "learning_rate": 2.9491945477075588e-05,
241
+ "loss": 9.9421,
242
+ "step": 310
243
+ },
244
+ {
245
+ "epoch": 1.185356811862836,
246
+ "grad_norm": 44.014747619628906,
247
+ "learning_rate": 2.9368029739776953e-05,
248
+ "loss": 9.5022,
249
+ "step": 320
250
+ },
251
+ {
252
+ "epoch": 1.222428174235403,
253
+ "grad_norm": 49.858642578125,
254
+ "learning_rate": 2.9244114002478315e-05,
255
+ "loss": 9.6801,
256
+ "step": 330
257
+ },
258
+ {
259
+ "epoch": 1.2594995366079704,
260
+ "grad_norm": 49.97459411621094,
261
+ "learning_rate": 2.9120198265179677e-05,
262
+ "loss": 9.25,
263
+ "step": 340
264
+ },
265
+ {
266
+ "epoch": 1.2965708989805376,
267
+ "grad_norm": 40.38698196411133,
268
+ "learning_rate": 2.8996282527881043e-05,
269
+ "loss": 10.2879,
270
+ "step": 350
271
+ },
272
+ {
273
+ "epoch": 1.3336422613531047,
274
+ "grad_norm": 29.797264099121094,
275
+ "learning_rate": 2.8872366790582405e-05,
276
+ "loss": 9.97,
277
+ "step": 360
278
+ },
279
+ {
280
+ "epoch": 1.3707136237256718,
281
+ "grad_norm": 43.83412551879883,
282
+ "learning_rate": 2.874845105328377e-05,
283
+ "loss": 9.3751,
284
+ "step": 370
285
+ },
286
+ {
287
+ "epoch": 1.407784986098239,
288
+ "grad_norm": 42.754154205322266,
289
+ "learning_rate": 2.8624535315985132e-05,
290
+ "loss": 9.8947,
291
+ "step": 380
292
+ },
293
+ {
294
+ "epoch": 1.4448563484708064,
295
+ "grad_norm": 50.08184051513672,
296
+ "learning_rate": 2.8500619578686494e-05,
297
+ "loss": 9.4987,
298
+ "step": 390
299
+ },
300
+ {
301
+ "epoch": 1.4819277108433735,
302
+ "grad_norm": 41.81029510498047,
303
+ "learning_rate": 2.8376703841387856e-05,
304
+ "loss": 10.1515,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 1.5189990732159406,
309
+ "grad_norm": 44.03816223144531,
310
+ "learning_rate": 2.8252788104089218e-05,
311
+ "loss": 10.0098,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 1.556070435588508,
316
+ "grad_norm": 42.871856689453125,
317
+ "learning_rate": 2.8128872366790583e-05,
318
+ "loss": 9.5566,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 1.5931417979610751,
323
+ "grad_norm": 44.18041229248047,
324
+ "learning_rate": 2.8004956629491945e-05,
325
+ "loss": 10.1925,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 1.6302131603336423,
330
+ "grad_norm": 30.012725830078125,
331
+ "learning_rate": 2.788104089219331e-05,
332
+ "loss": 9.7408,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 1.6672845227062094,
337
+ "grad_norm": 38.104827880859375,
338
+ "learning_rate": 2.7757125154894673e-05,
339
+ "loss": 9.6873,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 1.6672845227062094,
344
+ "eval_loss": 2.5061004161834717,
345
+ "eval_runtime": 34.2772,
346
+ "eval_samples_per_second": 47.203,
347
+ "eval_steps_per_second": 6.768,
348
+ "step": 450
349
+ },
350
+ {
351
+ "epoch": 1.7043558850787766,
352
+ "grad_norm": 42.93535232543945,
353
+ "learning_rate": 2.7633209417596035e-05,
354
+ "loss": 9.1932,
355
+ "step": 460
356
+ },
357
+ {
358
+ "epoch": 1.7414272474513437,
359
+ "grad_norm": 63.935279846191406,
360
+ "learning_rate": 2.75092936802974e-05,
361
+ "loss": 9.9204,
362
+ "step": 470
363
+ },
364
+ {
365
+ "epoch": 1.778498609823911,
366
+ "grad_norm": 30.906002044677734,
367
+ "learning_rate": 2.7385377942998762e-05,
368
+ "loss": 9.5151,
369
+ "step": 480
370
+ },
371
+ {
372
+ "epoch": 1.8155699721964782,
373
+ "grad_norm": 48.05679702758789,
374
+ "learning_rate": 2.7261462205700128e-05,
375
+ "loss": 9.8418,
376
+ "step": 490
377
+ },
378
+ {
379
+ "epoch": 1.8526413345690456,
380
+ "grad_norm": 56.36283874511719,
381
+ "learning_rate": 2.7137546468401486e-05,
382
+ "loss": 9.6943,
383
+ "step": 500
384
+ },
385
+ {
386
+ "epoch": 1.8897126969416127,
387
+ "grad_norm": 47.22933578491211,
388
+ "learning_rate": 2.7013630731102848e-05,
389
+ "loss": 9.6948,
390
+ "step": 510
391
+ },
392
+ {
393
+ "epoch": 1.9267840593141798,
394
+ "grad_norm": 36.110008239746094,
395
+ "learning_rate": 2.6889714993804214e-05,
396
+ "loss": 9.2274,
397
+ "step": 520
398
+ },
399
+ {
400
+ "epoch": 1.963855421686747,
401
+ "grad_norm": 37.13912582397461,
402
+ "learning_rate": 2.6765799256505576e-05,
403
+ "loss": 10.138,
404
+ "step": 530
405
+ },
406
+ {
407
+ "epoch": 2.0,
408
+ "grad_norm": 51.37559509277344,
409
+ "learning_rate": 2.664188351920694e-05,
410
+ "loss": 8.7934,
411
+ "step": 540
412
+ },
413
+ {
414
+ "epoch": 2.037071362372567,
415
+ "grad_norm": 42.32170104980469,
416
+ "learning_rate": 2.6517967781908303e-05,
417
+ "loss": 8.8304,
418
+ "step": 550
419
+ },
420
+ {
421
+ "epoch": 2.0741427247451343,
422
+ "grad_norm": 42.406219482421875,
423
+ "learning_rate": 2.6394052044609665e-05,
424
+ "loss": 8.9593,
425
+ "step": 560
426
+ },
427
+ {
428
+ "epoch": 2.1112140871177014,
429
+ "grad_norm": 52.097023010253906,
430
+ "learning_rate": 2.627013630731103e-05,
431
+ "loss": 9.0051,
432
+ "step": 570
433
+ },
434
+ {
435
+ "epoch": 2.1482854494902686,
436
+ "grad_norm": 83.86861419677734,
437
+ "learning_rate": 2.6146220570012392e-05,
438
+ "loss": 9.2829,
439
+ "step": 580
440
+ },
441
+ {
442
+ "epoch": 2.185356811862836,
443
+ "grad_norm": 38.229949951171875,
444
+ "learning_rate": 2.6022304832713758e-05,
445
+ "loss": 9.785,
446
+ "step": 590
447
+ },
448
+ {
449
+ "epoch": 2.2224281742354033,
450
+ "grad_norm": 50.322513580322266,
451
+ "learning_rate": 2.5898389095415116e-05,
452
+ "loss": 9.6401,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 2.2224281742354033,
457
+ "eval_loss": 2.448084592819214,
458
+ "eval_runtime": 34.2525,
459
+ "eval_samples_per_second": 47.237,
460
+ "eval_steps_per_second": 6.773,
461
+ "step": 600
462
+ },
463
+ {
464
+ "epoch": 2.266913809082484,
465
+ "grad_norm": 39.366676330566406,
466
+ "learning_rate": 2.5774473358116482e-05,
467
+ "loss": 8.7059,
468
+ "step": 610
469
+ },
470
+ {
471
+ "epoch": 2.303985171455051,
472
+ "grad_norm": 41.00213623046875,
473
+ "learning_rate": 2.5650557620817844e-05,
474
+ "loss": 9.1285,
475
+ "step": 620
476
+ },
477
+ {
478
+ "epoch": 2.341056533827618,
479
+ "grad_norm": 63.442169189453125,
480
+ "learning_rate": 2.5526641883519206e-05,
481
+ "loss": 9.3277,
482
+ "step": 630
483
+ },
484
+ {
485
+ "epoch": 2.3781278962001853,
486
+ "grad_norm": 51.54194641113281,
487
+ "learning_rate": 2.540272614622057e-05,
488
+ "loss": 9.1577,
489
+ "step": 640
490
+ },
491
+ {
492
+ "epoch": 2.4151992585727524,
493
+ "grad_norm": 57.583885192871094,
494
+ "learning_rate": 2.5278810408921933e-05,
495
+ "loss": 9.6032,
496
+ "step": 650
497
+ },
498
+ {
499
+ "epoch": 2.4522706209453196,
500
+ "grad_norm": 60.13545227050781,
501
+ "learning_rate": 2.51548946716233e-05,
502
+ "loss": 8.5451,
503
+ "step": 660
504
+ },
505
+ {
506
+ "epoch": 2.489341983317887,
507
+ "grad_norm": 139.85794067382812,
508
+ "learning_rate": 2.503097893432466e-05,
509
+ "loss": 8.6601,
510
+ "step": 670
511
+ },
512
+ {
513
+ "epoch": 2.5264133456904543,
514
+ "grad_norm": 160.73171997070312,
515
+ "learning_rate": 2.4907063197026023e-05,
516
+ "loss": 9.522,
517
+ "step": 680
518
+ },
519
+ {
520
+ "epoch": 2.5634847080630214,
521
+ "grad_norm": 190.7194366455078,
522
+ "learning_rate": 2.4783147459727385e-05,
523
+ "loss": 10.0619,
524
+ "step": 690
525
+ },
526
+ {
527
+ "epoch": 2.6005560704355886,
528
+ "grad_norm": 172.5655517578125,
529
+ "learning_rate": 2.4659231722428747e-05,
530
+ "loss": 9.6444,
531
+ "step": 700
532
+ },
533
+ {
534
+ "epoch": 2.6376274328081557,
535
+ "grad_norm": 280.9183044433594,
536
+ "learning_rate": 2.4535315985130112e-05,
537
+ "loss": 10.7593,
538
+ "step": 710
539
+ },
540
+ {
541
+ "epoch": 2.674698795180723,
542
+ "grad_norm": 118.03450775146484,
543
+ "learning_rate": 2.4411400247831474e-05,
544
+ "loss": 10.4432,
545
+ "step": 720
546
+ },
547
+ {
548
+ "epoch": 2.71177015755329,
549
+ "grad_norm": 332.662353515625,
550
+ "learning_rate": 2.428748451053284e-05,
551
+ "loss": 9.6033,
552
+ "step": 730
553
+ },
554
+ {
555
+ "epoch": 2.748841519925857,
556
+ "grad_norm": 129.18788146972656,
557
+ "learning_rate": 2.41635687732342e-05,
558
+ "loss": 9.108,
559
+ "step": 740
560
+ },
561
+ {
562
+ "epoch": 2.7859128822984243,
563
+ "grad_norm": 350.5856628417969,
564
+ "learning_rate": 2.4039653035935564e-05,
565
+ "loss": 9.884,
566
+ "step": 750
567
+ },
568
+ {
569
+ "epoch": 2.7859128822984243,
570
+ "eval_loss": 2.599517583847046,
571
+ "eval_runtime": 34.0592,
572
+ "eval_samples_per_second": 47.506,
573
+ "eval_steps_per_second": 6.812,
574
+ "step": 750
575
+ },
576
+ {
577
+ "epoch": 2.822984244670992,
578
+ "grad_norm": 285.14862060546875,
579
+ "learning_rate": 2.391573729863693e-05,
580
+ "loss": 11.3952,
581
+ "step": 760
582
+ },
583
+ {
584
+ "epoch": 2.860055607043559,
585
+ "grad_norm": 185.5862579345703,
586
+ "learning_rate": 2.379182156133829e-05,
587
+ "loss": 10.6798,
588
+ "step": 770
589
+ },
590
+ {
591
+ "epoch": 2.897126969416126,
592
+ "grad_norm": 77.20765686035156,
593
+ "learning_rate": 2.3667905824039656e-05,
594
+ "loss": 9.9795,
595
+ "step": 780
596
+ },
597
+ {
598
+ "epoch": 2.9341983317886933,
599
+ "grad_norm": 88.75109100341797,
600
+ "learning_rate": 2.3543990086741015e-05,
601
+ "loss": 9.3694,
602
+ "step": 790
603
+ },
604
+ {
605
+ "epoch": 2.9712696941612604,
606
+ "grad_norm": 53.416690826416016,
607
+ "learning_rate": 2.3420074349442377e-05,
608
+ "loss": 8.4631,
609
+ "step": 800
610
+ },
611
+ {
612
+ "epoch": 3.0111214087117704,
613
+ "grad_norm": 72.12966918945312,
614
+ "learning_rate": 2.3296158612143742e-05,
615
+ "loss": 9.3903,
616
+ "step": 810
617
+ },
618
+ {
619
+ "epoch": 3.0481927710843375,
620
+ "grad_norm": 159.3909912109375,
621
+ "learning_rate": 2.3172242874845104e-05,
622
+ "loss": 8.9608,
623
+ "step": 820
624
+ },
625
+ {
626
+ "epoch": 3.0852641334569046,
627
+ "grad_norm": 161.03713989257812,
628
+ "learning_rate": 2.304832713754647e-05,
629
+ "loss": 9.623,
630
+ "step": 830
631
+ },
632
+ {
633
+ "epoch": 3.122335495829472,
634
+ "grad_norm": 136.50045776367188,
635
+ "learning_rate": 2.2924411400247832e-05,
636
+ "loss": 8.5958,
637
+ "step": 840
638
+ },
639
+ {
640
+ "epoch": 3.159406858202039,
641
+ "grad_norm": 60.785926818847656,
642
+ "learning_rate": 2.2800495662949197e-05,
643
+ "loss": 8.6278,
644
+ "step": 850
645
+ },
646
+ {
647
+ "epoch": 3.196478220574606,
648
+ "grad_norm": 115.2509536743164,
649
+ "learning_rate": 2.267657992565056e-05,
650
+ "loss": 8.661,
651
+ "step": 860
652
+ },
653
+ {
654
+ "epoch": 3.233549582947173,
655
+ "grad_norm": 144.38912963867188,
656
+ "learning_rate": 2.255266418835192e-05,
657
+ "loss": 9.5836,
658
+ "step": 870
659
+ },
660
+ {
661
+ "epoch": 3.2706209453197403,
662
+ "grad_norm": 239.74520874023438,
663
+ "learning_rate": 2.2428748451053287e-05,
664
+ "loss": 8.6221,
665
+ "step": 880
666
+ },
667
+ {
668
+ "epoch": 3.3076923076923075,
669
+ "grad_norm": 215.12789916992188,
670
+ "learning_rate": 2.2304832713754645e-05,
671
+ "loss": 9.1995,
672
+ "step": 890
673
+ },
674
+ {
675
+ "epoch": 3.344763670064875,
676
+ "grad_norm": 113.77183532714844,
677
+ "learning_rate": 2.218091697645601e-05,
678
+ "loss": 8.6909,
679
+ "step": 900
680
+ },
681
+ {
682
+ "epoch": 3.344763670064875,
683
+ "eval_loss": 2.4246325492858887,
684
+ "eval_runtime": 34.1351,
685
+ "eval_samples_per_second": 47.4,
686
+ "eval_steps_per_second": 6.797,
687
+ "step": 900
688
+ },
689
+ {
690
+ "epoch": 3.381835032437442,
691
+ "grad_norm": 175.02731323242188,
692
+ "learning_rate": 2.2057001239157373e-05,
693
+ "loss": 8.7632,
694
+ "step": 910
695
+ },
696
+ {
697
+ "epoch": 3.4189063948100094,
698
+ "grad_norm": 142.76580810546875,
699
+ "learning_rate": 2.1933085501858735e-05,
700
+ "loss": 8.5604,
701
+ "step": 920
702
+ },
703
+ {
704
+ "epoch": 3.4559777571825765,
705
+ "grad_norm": 163.0391387939453,
706
+ "learning_rate": 2.18091697645601e-05,
707
+ "loss": 9.3871,
708
+ "step": 930
709
+ },
710
+ {
711
+ "epoch": 3.4930491195551436,
712
+ "grad_norm": 386.4294738769531,
713
+ "learning_rate": 2.1685254027261462e-05,
714
+ "loss": 9.6445,
715
+ "step": 940
716
+ },
717
+ {
718
+ "epoch": 3.5301204819277108,
719
+ "grad_norm": 86.92581939697266,
720
+ "learning_rate": 2.1561338289962827e-05,
721
+ "loss": 9.635,
722
+ "step": 950
723
+ },
724
+ {
725
+ "epoch": 3.567191844300278,
726
+ "grad_norm": 80.94845581054688,
727
+ "learning_rate": 2.143742255266419e-05,
728
+ "loss": 8.8689,
729
+ "step": 960
730
+ },
731
+ {
732
+ "epoch": 3.6042632066728455,
733
+ "grad_norm": 69.99708557128906,
734
+ "learning_rate": 2.1313506815365555e-05,
735
+ "loss": 9.1411,
736
+ "step": 970
737
+ },
738
+ {
739
+ "epoch": 3.641334569045412,
740
+ "grad_norm": 80.53229522705078,
741
+ "learning_rate": 2.1189591078066917e-05,
742
+ "loss": 8.7552,
743
+ "step": 980
744
+ },
745
+ {
746
+ "epoch": 3.67840593141798,
747
+ "grad_norm": 53.3475341796875,
748
+ "learning_rate": 2.1065675340768275e-05,
749
+ "loss": 8.5697,
750
+ "step": 990
751
+ },
752
+ {
753
+ "epoch": 3.715477293790547,
754
+ "grad_norm": 54.19875717163086,
755
+ "learning_rate": 2.094175960346964e-05,
756
+ "loss": 8.9008,
757
+ "step": 1000
758
+ },
759
+ {
760
+ "epoch": 3.752548656163114,
761
+ "grad_norm": 52.96628952026367,
762
+ "learning_rate": 2.0817843866171003e-05,
763
+ "loss": 8.9415,
764
+ "step": 1010
765
+ },
766
+ {
767
+ "epoch": 3.789620018535681,
768
+ "grad_norm": 64.08312225341797,
769
+ "learning_rate": 2.0693928128872368e-05,
770
+ "loss": 8.1303,
771
+ "step": 1020
772
+ },
773
+ {
774
+ "epoch": 3.8266913809082483,
775
+ "grad_norm": 68.22163391113281,
776
+ "learning_rate": 2.057001239157373e-05,
777
+ "loss": 8.241,
778
+ "step": 1030
779
+ },
780
+ {
781
+ "epoch": 3.8637627432808155,
782
+ "grad_norm": 66.70902252197266,
783
+ "learning_rate": 2.0446096654275092e-05,
784
+ "loss": 8.6969,
785
+ "step": 1040
786
+ },
787
+ {
788
+ "epoch": 3.9008341056533826,
789
+ "grad_norm": 49.94658279418945,
790
+ "learning_rate": 2.0322180916976458e-05,
791
+ "loss": 9.8392,
792
+ "step": 1050
793
+ },
794
+ {
795
+ "epoch": 3.9008341056533826,
796
+ "eval_loss": 2.533297300338745,
797
+ "eval_runtime": 34.1106,
798
+ "eval_samples_per_second": 47.434,
799
+ "eval_steps_per_second": 6.801,
800
+ "step": 1050
801
+ },
802
+ {
803
+ "epoch": 3.93790546802595,
804
+ "grad_norm": 73.9527816772461,
805
+ "learning_rate": 2.6765799256505576e-05,
806
+ "loss": 8.5934,
807
+ "step": 1060
808
+ },
809
+ {
810
+ "epoch": 3.974976830398517,
811
+ "grad_norm": 76.90135955810547,
812
+ "learning_rate": 2.6703841387856257e-05,
813
+ "loss": 8.006,
814
+ "step": 1070
815
+ },
816
+ {
817
+ "epoch": 4.014828544949027,
818
+ "grad_norm": 85.86236572265625,
819
+ "learning_rate": 2.664188351920694e-05,
820
+ "loss": 9.0081,
821
+ "step": 1080
822
+ },
823
+ {
824
+ "epoch": 4.051899907321594,
825
+ "grad_norm": 106.57842254638672,
826
+ "learning_rate": 2.6579925650557622e-05,
827
+ "loss": 8.6706,
828
+ "step": 1090
829
+ },
830
+ {
831
+ "epoch": 4.088971269694161,
832
+ "grad_norm": 68.10344696044922,
833
+ "learning_rate": 2.6517967781908303e-05,
834
+ "loss": 9.6146,
835
+ "step": 1100
836
+ },
837
+ {
838
+ "epoch": 4.126042632066729,
839
+ "grad_norm": 67.02091217041016,
840
+ "learning_rate": 2.6456009913258984e-05,
841
+ "loss": 9.225,
842
+ "step": 1110
843
+ },
844
+ {
845
+ "epoch": 4.163113994439295,
846
+ "grad_norm": 67.66644287109375,
847
+ "learning_rate": 2.6394052044609665e-05,
848
+ "loss": 8.7522,
849
+ "step": 1120
850
+ },
851
+ {
852
+ "epoch": 4.200185356811863,
853
+ "grad_norm": 59.26814651489258,
854
+ "learning_rate": 2.633209417596035e-05,
855
+ "loss": 9.0221,
856
+ "step": 1130
857
+ },
858
+ {
859
+ "epoch": 4.23725671918443,
860
+ "grad_norm": 88.07310485839844,
861
+ "learning_rate": 2.627013630731103e-05,
862
+ "loss": 9.6458,
863
+ "step": 1140
864
+ },
865
+ {
866
+ "epoch": 4.274328081556997,
867
+ "grad_norm": 69.33895874023438,
868
+ "learning_rate": 2.620817843866171e-05,
869
+ "loss": 8.7692,
870
+ "step": 1150
871
+ },
872
+ {
873
+ "epoch": 4.311399443929565,
874
+ "grad_norm": 43.823951721191406,
875
+ "learning_rate": 2.6146220570012392e-05,
876
+ "loss": 9.2874,
877
+ "step": 1160
878
+ },
879
+ {
880
+ "epoch": 4.348470806302132,
881
+ "grad_norm": 63.590980529785156,
882
+ "learning_rate": 2.6084262701363077e-05,
883
+ "loss": 8.9276,
884
+ "step": 1170
885
+ },
886
+ {
887
+ "epoch": 4.385542168674699,
888
+ "grad_norm": 43.4519157409668,
889
+ "learning_rate": 2.6022304832713758e-05,
890
+ "loss": 8.7444,
891
+ "step": 1180
892
+ },
893
+ {
894
+ "epoch": 4.422613531047266,
895
+ "grad_norm": 72.1529312133789,
896
+ "learning_rate": 2.5960346964064435e-05,
897
+ "loss": 8.7265,
898
+ "step": 1190
899
+ },
900
+ {
901
+ "epoch": 4.459684893419833,
902
+ "grad_norm": 101.67008972167969,
903
+ "learning_rate": 2.5898389095415116e-05,
904
+ "loss": 8.7642,
905
+ "step": 1200
906
+ },
907
+ {
908
+ "epoch": 4.459684893419833,
909
+ "eval_loss": 2.6471314430236816,
910
+ "eval_runtime": 34.2723,
911
+ "eval_samples_per_second": 47.21,
912
+ "eval_steps_per_second": 6.769,
913
+ "step": 1200
914
+ },
915
+ {
916
+ "epoch": 4.4967562557924,
917
+ "grad_norm": 66.03606414794922,
918
+ "learning_rate": 2.5836431226765797e-05,
919
+ "loss": 8.8917,
920
+ "step": 1210
921
+ },
922
+ {
923
+ "epoch": 4.533827618164968,
924
+ "grad_norm": 60.01662826538086,
925
+ "learning_rate": 2.5774473358116482e-05,
926
+ "loss": 9.2155,
927
+ "step": 1220
928
+ },
929
+ {
930
+ "epoch": 4.570898980537534,
931
+ "grad_norm": 83.86510467529297,
932
+ "learning_rate": 2.5712515489467163e-05,
933
+ "loss": 8.6101,
934
+ "step": 1230
935
+ },
936
+ {
937
+ "epoch": 4.607970342910102,
938
+ "grad_norm": 64.35486602783203,
939
+ "learning_rate": 2.5650557620817844e-05,
940
+ "loss": 8.9904,
941
+ "step": 1240
942
+ },
943
+ {
944
+ "epoch": 4.645041705282669,
945
+ "grad_norm": 60.44017791748047,
946
+ "learning_rate": 2.5588599752168525e-05,
947
+ "loss": 9.3272,
948
+ "step": 1250
949
+ },
950
+ {
951
+ "epoch": 4.682113067655236,
952
+ "grad_norm": 56.501102447509766,
953
+ "learning_rate": 2.5526641883519206e-05,
954
+ "loss": 7.9367,
955
+ "step": 1260
956
+ },
957
+ {
958
+ "epoch": 4.719184430027804,
959
+ "grad_norm": 65.01017761230469,
960
+ "learning_rate": 2.546468401486989e-05,
961
+ "loss": 8.5891,
962
+ "step": 1270
963
+ },
964
+ {
965
+ "epoch": 4.7562557924003706,
966
+ "grad_norm": 63.42623519897461,
967
+ "learning_rate": 2.540272614622057e-05,
968
+ "loss": 8.6286,
969
+ "step": 1280
970
+ },
971
+ {
972
+ "epoch": 4.793327154772938,
973
+ "grad_norm": 58.96747589111328,
974
+ "learning_rate": 2.5340768277571252e-05,
975
+ "loss": 7.9982,
976
+ "step": 1290
977
+ },
978
+ {
979
+ "epoch": 4.830398517145505,
980
+ "grad_norm": 96.77368927001953,
981
+ "learning_rate": 2.5278810408921933e-05,
982
+ "loss": 7.5587,
983
+ "step": 1300
984
+ },
985
+ {
986
+ "epoch": 4.867469879518072,
987
+ "grad_norm": 85.92269897460938,
988
+ "learning_rate": 2.5216852540272614e-05,
989
+ "loss": 7.9405,
990
+ "step": 1310
991
+ },
992
+ {
993
+ "epoch": 4.904541241890639,
994
+ "grad_norm": 86.37085723876953,
995
+ "learning_rate": 2.51548946716233e-05,
996
+ "loss": 9.7092,
997
+ "step": 1320
998
+ },
999
+ {
1000
+ "epoch": 4.941612604263207,
1001
+ "grad_norm": 65.88274383544922,
1002
+ "learning_rate": 2.509293680297398e-05,
1003
+ "loss": 8.1475,
1004
+ "step": 1330
1005
+ },
1006
+ {
1007
+ "epoch": 4.978683966635774,
1008
+ "grad_norm": 53.252742767333984,
1009
+ "learning_rate": 2.503097893432466e-05,
1010
+ "loss": 9.3603,
1011
+ "step": 1340
1012
+ },
1013
+ {
1014
+ "epoch": 5.014828544949027,
1015
+ "grad_norm": 182.35781860351562,
1016
+ "learning_rate": 2.4969021065675342e-05,
1017
+ "loss": 7.6621,
1018
+ "step": 1350
1019
+ },
1020
+ {
1021
+ "epoch": 5.014828544949027,
1022
+ "eval_loss": 2.8308892250061035,
1023
+ "eval_runtime": 34.1063,
1024
+ "eval_samples_per_second": 47.44,
1025
+ "eval_steps_per_second": 6.802,
1026
+ "step": 1350
1027
+ },
1028
+ {
1029
+ "epoch": 5.051899907321594,
1030
+ "grad_norm": 324.6659240722656,
1031
+ "learning_rate": 2.4907063197026023e-05,
1032
+ "loss": 9.2301,
1033
+ "step": 1360
1034
+ },
1035
+ {
1036
+ "epoch": 5.088971269694161,
1037
+ "grad_norm": 4839.4453125,
1038
+ "learning_rate": 2.4845105328376707e-05,
1039
+ "loss": 9.7789,
1040
+ "step": 1370
1041
+ },
1042
+ {
1043
+ "epoch": 5.126042632066729,
1044
+ "grad_norm": 408588.40625,
1045
+ "learning_rate": 2.4783147459727385e-05,
1046
+ "loss": 9.5359,
1047
+ "step": 1380
1048
+ },
1049
+ {
1050
+ "epoch": 5.163113994439295,
1051
+ "grad_norm": 932.5144653320312,
1052
+ "learning_rate": 2.4721189591078066e-05,
1053
+ "loss": 10.8065,
1054
+ "step": 1390
1055
+ },
1056
+ {
1057
+ "epoch": 5.200185356811863,
1058
+ "grad_norm": 148.0634765625,
1059
+ "learning_rate": 2.4659231722428747e-05,
1060
+ "loss": 10.0149,
1061
+ "step": 1400
1062
+ },
1063
+ {
1064
+ "epoch": 5.23725671918443,
1065
+ "grad_norm": 1214.7279052734375,
1066
+ "learning_rate": 2.459727385377943e-05,
1067
+ "loss": 10.2582,
1068
+ "step": 1410
1069
+ },
1070
+ {
1071
+ "epoch": 5.274328081556997,
1072
+ "grad_norm": 188.14292907714844,
1073
+ "learning_rate": 2.4535315985130112e-05,
1074
+ "loss": 10.16,
1075
+ "step": 1420
1076
+ },
1077
+ {
1078
+ "epoch": 5.311399443929565,
1079
+ "grad_norm": 388.7134094238281,
1080
+ "learning_rate": 2.4473358116480793e-05,
1081
+ "loss": 10.0763,
1082
+ "step": 1430
1083
+ },
1084
+ {
1085
+ "epoch": 5.348470806302132,
1086
+ "grad_norm": 270.61279296875,
1087
+ "learning_rate": 2.4411400247831474e-05,
1088
+ "loss": 9.5737,
1089
+ "step": 1440
1090
+ },
1091
+ {
1092
+ "epoch": 5.385542168674699,
1093
+ "grad_norm": 1637.854736328125,
1094
+ "learning_rate": 2.4349442379182155e-05,
1095
+ "loss": 10.4816,
1096
+ "step": 1450
1097
+ },
1098
+ {
1099
+ "epoch": 5.422613531047266,
1100
+ "grad_norm": 1118.7012939453125,
1101
+ "learning_rate": 2.428748451053284e-05,
1102
+ "loss": 8.6687,
1103
+ "step": 1460
1104
+ },
1105
+ {
1106
+ "epoch": 5.459684893419833,
1107
+ "grad_norm": 788.9707641601562,
1108
+ "learning_rate": 2.422552664188352e-05,
1109
+ "loss": 8.4066,
1110
+ "step": 1470
1111
+ },
1112
+ {
1113
+ "epoch": 5.4967562557924,
1114
+ "grad_norm": 185.22950744628906,
1115
+ "learning_rate": 2.41635687732342e-05,
1116
+ "loss": 9.386,
1117
+ "step": 1480
1118
+ },
1119
+ {
1120
+ "epoch": 5.533827618164968,
1121
+ "grad_norm": 257.726806640625,
1122
+ "learning_rate": 2.4101610904584883e-05,
1123
+ "loss": 8.3911,
1124
+ "step": 1490
1125
+ },
1126
+ {
1127
+ "epoch": 5.570898980537534,
1128
+ "grad_norm": 867.30908203125,
1129
+ "learning_rate": 2.4039653035935564e-05,
1130
+ "loss": 8.8025,
1131
+ "step": 1500
1132
+ },
1133
+ {
1134
+ "epoch": 5.570898980537534,
1135
+ "eval_loss": 2.5407650470733643,
1136
+ "eval_runtime": 34.0934,
1137
+ "eval_samples_per_second": 47.458,
1138
+ "eval_steps_per_second": 6.805,
1139
+ "step": 1500
1140
+ },
1141
+ {
1142
+ "epoch": 5.607970342910102,
1143
+ "grad_norm": 68.35711669921875,
1144
+ "learning_rate": 2.3977695167286248e-05,
1145
+ "loss": 8.7939,
1146
+ "step": 1510
1147
+ },
1148
+ {
1149
+ "epoch": 5.645041705282669,
1150
+ "grad_norm": 1419.1650390625,
1151
+ "learning_rate": 2.391573729863693e-05,
1152
+ "loss": 9.0903,
1153
+ "step": 1520
1154
+ },
1155
+ {
1156
+ "epoch": 5.682113067655236,
1157
+ "grad_norm": 60.88732147216797,
1158
+ "learning_rate": 2.385377942998761e-05,
1159
+ "loss": 8.9878,
1160
+ "step": 1530
1161
+ },
1162
+ {
1163
+ "epoch": 5.719184430027804,
1164
+ "grad_norm": 61.50148010253906,
1165
+ "learning_rate": 2.379182156133829e-05,
1166
+ "loss": 8.8642,
1167
+ "step": 1540
1168
+ },
1169
+ {
1170
+ "epoch": 5.7562557924003706,
1171
+ "grad_norm": 73.9307861328125,
1172
+ "learning_rate": 2.3729863692688972e-05,
1173
+ "loss": 8.8625,
1174
+ "step": 1550
1175
+ },
1176
+ {
1177
+ "epoch": 5.793327154772938,
1178
+ "grad_norm": 82.28329467773438,
1179
+ "learning_rate": 2.3667905824039656e-05,
1180
+ "loss": 8.4105,
1181
+ "step": 1560
1182
+ },
1183
+ {
1184
+ "epoch": 5.830398517145505,
1185
+ "grad_norm": 83.54141235351562,
1186
+ "learning_rate": 2.3605947955390337e-05,
1187
+ "loss": 9.0163,
1188
+ "step": 1570
1189
+ },
1190
+ {
1191
+ "epoch": 5.867469879518072,
1192
+ "grad_norm": 66.59397888183594,
1193
+ "learning_rate": 2.3543990086741015e-05,
1194
+ "loss": 8.8947,
1195
+ "step": 1580
1196
+ },
1197
+ {
1198
+ "epoch": 5.904541241890639,
1199
+ "grad_norm": 55.8841667175293,
1200
+ "learning_rate": 2.3482032218091696e-05,
1201
+ "loss": 8.5647,
1202
+ "step": 1590
1203
+ },
1204
+ {
1205
+ "epoch": 5.941612604263207,
1206
+ "grad_norm": 74.56892395019531,
1207
+ "learning_rate": 2.3420074349442377e-05,
1208
+ "loss": 7.7047,
1209
+ "step": 1600
1210
+ },
1211
+ {
1212
+ "epoch": 5.978683966635774,
1213
+ "grad_norm": 106.54405212402344,
1214
+ "learning_rate": 2.335811648079306e-05,
1215
+ "loss": 8.1484,
1216
+ "step": 1610
1217
+ },
1218
+ {
1219
+ "epoch": 6.014828544949027,
1220
+ "grad_norm": 107.8216781616211,
1221
+ "learning_rate": 2.3296158612143742e-05,
1222
+ "loss": 8.4079,
1223
+ "step": 1620
1224
+ },
1225
+ {
1226
+ "epoch": 6.051899907321594,
1227
+ "grad_norm": 100.98133087158203,
1228
+ "learning_rate": 2.3234200743494423e-05,
1229
+ "loss": 8.5027,
1230
+ "step": 1630
1231
+ },
1232
+ {
1233
+ "epoch": 6.088971269694161,
1234
+ "grad_norm": 67.31327819824219,
1235
+ "learning_rate": 2.3172242874845104e-05,
1236
+ "loss": 8.1805,
1237
+ "step": 1640
1238
+ },
1239
+ {
1240
+ "epoch": 6.126042632066729,
1241
+ "grad_norm": 61.10900115966797,
1242
+ "learning_rate": 2.311028500619579e-05,
1243
+ "loss": 8.4519,
1244
+ "step": 1650
1245
+ },
1246
+ {
1247
+ "epoch": 6.126042632066729,
1248
+ "eval_loss": 2.590090036392212,
1249
+ "eval_runtime": 34.1392,
1250
+ "eval_samples_per_second": 47.394,
1251
+ "eval_steps_per_second": 6.796,
1252
+ "step": 1650
1253
+ },
1254
+ {
1255
+ "epoch": 6.163113994439295,
1256
+ "grad_norm": 60.91183090209961,
1257
+ "learning_rate": 2.304832713754647e-05,
1258
+ "loss": 9.062,
1259
+ "step": 1660
1260
+ },
1261
+ {
1262
+ "epoch": 6.200185356811863,
1263
+ "grad_norm": 76.2873306274414,
1264
+ "learning_rate": 2.298636926889715e-05,
1265
+ "loss": 8.8499,
1266
+ "step": 1670
1267
+ },
1268
+ {
1269
+ "epoch": 6.23725671918443,
1270
+ "grad_norm": 74.2361068725586,
1271
+ "learning_rate": 2.2924411400247832e-05,
1272
+ "loss": 8.6576,
1273
+ "step": 1680
1274
+ },
1275
+ {
1276
+ "epoch": 6.274328081556997,
1277
+ "grad_norm": 84.99951934814453,
1278
+ "learning_rate": 2.2862453531598513e-05,
1279
+ "loss": 8.4652,
1280
+ "step": 1690
1281
+ },
1282
+ {
1283
+ "epoch": 6.311399443929565,
1284
+ "grad_norm": 86.40947723388672,
1285
+ "learning_rate": 2.2800495662949197e-05,
1286
+ "loss": 9.0782,
1287
+ "step": 1700
1288
+ },
1289
+ {
1290
+ "epoch": 6.348470806302132,
1291
+ "grad_norm": 75.45568084716797,
1292
+ "learning_rate": 2.2738537794299878e-05,
1293
+ "loss": 8.1532,
1294
+ "step": 1710
1295
+ },
1296
+ {
1297
+ "epoch": 6.385542168674699,
1298
+ "grad_norm": 86.65908813476562,
1299
+ "learning_rate": 2.267657992565056e-05,
1300
+ "loss": 8.5185,
1301
+ "step": 1720
1302
+ },
1303
+ {
1304
+ "epoch": 6.422613531047266,
1305
+ "grad_norm": 62.620758056640625,
1306
+ "learning_rate": 2.261462205700124e-05,
1307
+ "loss": 9.5908,
1308
+ "step": 1730
1309
+ },
1310
+ {
1311
+ "epoch": 6.459684893419833,
1312
+ "grad_norm": 73.63095092773438,
1313
+ "learning_rate": 2.255266418835192e-05,
1314
+ "loss": 8.4188,
1315
+ "step": 1740
1316
+ },
1317
+ {
1318
+ "epoch": 6.4967562557924,
1319
+ "grad_norm": 55.175045013427734,
1320
+ "learning_rate": 2.2490706319702606e-05,
1321
+ "loss": 8.1885,
1322
+ "step": 1750
1323
+ },
1324
+ {
1325
+ "epoch": 6.533827618164968,
1326
+ "grad_norm": 47.647621154785156,
1327
+ "learning_rate": 2.2428748451053287e-05,
1328
+ "loss": 8.7666,
1329
+ "step": 1760
1330
+ },
1331
+ {
1332
+ "epoch": 6.570898980537534,
1333
+ "grad_norm": 191.0419158935547,
1334
+ "learning_rate": 2.2366790582403964e-05,
1335
+ "loss": 8.6105,
1336
+ "step": 1770
1337
+ },
1338
+ {
1339
+ "epoch": 6.607970342910102,
1340
+ "grad_norm": 57.81939697265625,
1341
+ "learning_rate": 2.2304832713754645e-05,
1342
+ "loss": 8.664,
1343
+ "step": 1780
1344
+ },
1345
+ {
1346
+ "epoch": 6.645041705282669,
1347
+ "grad_norm": 85.04927825927734,
1348
+ "learning_rate": 2.2242874845105326e-05,
1349
+ "loss": 8.5294,
1350
+ "step": 1790
1351
+ },
1352
+ {
1353
+ "epoch": 6.682113067655236,
1354
+ "grad_norm": 55.604122161865234,
1355
+ "learning_rate": 2.218091697645601e-05,
1356
+ "loss": 9.1857,
1357
+ "step": 1800
1358
+ },
1359
+ {
1360
+ "epoch": 6.682113067655236,
1361
+ "eval_loss": 2.497358560562134,
1362
+ "eval_runtime": 34.0441,
1363
+ "eval_samples_per_second": 47.527,
1364
+ "eval_steps_per_second": 6.815,
1365
+ "step": 1800
1366
+ },
1367
+ {
1368
+ "epoch": 6.719184430027804,
1369
+ "grad_norm": 75.21812438964844,
1370
+ "learning_rate": 2.211895910780669e-05,
1371
+ "loss": 8.7053,
1372
+ "step": 1810
1373
+ },
1374
+ {
1375
+ "epoch": 6.7562557924003706,
1376
+ "grad_norm": 85.76676940917969,
1377
+ "learning_rate": 2.2057001239157373e-05,
1378
+ "loss": 8.1428,
1379
+ "step": 1820
1380
+ },
1381
+ {
1382
+ "epoch": 6.793327154772938,
1383
+ "grad_norm": 69.85575866699219,
1384
+ "learning_rate": 2.1995043370508054e-05,
1385
+ "loss": 8.4988,
1386
+ "step": 1830
1387
+ },
1388
+ {
1389
+ "epoch": 6.830398517145505,
1390
+ "grad_norm": 66.85325622558594,
1391
+ "learning_rate": 2.1933085501858735e-05,
1392
+ "loss": 8.4147,
1393
+ "step": 1840
1394
+ },
1395
+ {
1396
+ "epoch": 6.867469879518072,
1397
+ "grad_norm": 60.645294189453125,
1398
+ "learning_rate": 2.187112763320942e-05,
1399
+ "loss": 9.069,
1400
+ "step": 1850
1401
+ },
1402
+ {
1403
+ "epoch": 6.904541241890639,
1404
+ "grad_norm": 77.59921264648438,
1405
+ "learning_rate": 2.18091697645601e-05,
1406
+ "loss": 8.4405,
1407
+ "step": 1860
1408
+ },
1409
+ {
1410
+ "epoch": 6.941612604263207,
1411
+ "grad_norm": 56.27996826171875,
1412
+ "learning_rate": 2.174721189591078e-05,
1413
+ "loss": 9.2157,
1414
+ "step": 1870
1415
+ },
1416
+ {
1417
+ "epoch": 6.978683966635774,
1418
+ "grad_norm": 64.18400573730469,
1419
+ "learning_rate": 2.1685254027261462e-05,
1420
+ "loss": 9.5492,
1421
+ "step": 1880
1422
+ },
1423
+ {
1424
+ "epoch": 7.014828544949027,
1425
+ "grad_norm": 76.78484344482422,
1426
+ "learning_rate": 2.1623296158612143e-05,
1427
+ "loss": 8.1325,
1428
+ "step": 1890
1429
+ },
1430
+ {
1431
+ "epoch": 7.051899907321594,
1432
+ "grad_norm": 77.69871520996094,
1433
+ "learning_rate": 2.1561338289962827e-05,
1434
+ "loss": 8.324,
1435
+ "step": 1900
1436
+ },
1437
+ {
1438
+ "epoch": 7.088971269694161,
1439
+ "grad_norm": 102.43340301513672,
1440
+ "learning_rate": 2.149938042131351e-05,
1441
+ "loss": 7.7097,
1442
+ "step": 1910
1443
+ },
1444
+ {
1445
+ "epoch": 7.126042632066729,
1446
+ "grad_norm": 114.0189208984375,
1447
+ "learning_rate": 2.143742255266419e-05,
1448
+ "loss": 8.0982,
1449
+ "step": 1920
1450
+ },
1451
+ {
1452
+ "epoch": 7.163113994439295,
1453
+ "grad_norm": 66.60838317871094,
1454
+ "learning_rate": 2.137546468401487e-05,
1455
+ "loss": 7.7669,
1456
+ "step": 1930
1457
+ },
1458
+ {
1459
+ "epoch": 7.200185356811863,
1460
+ "grad_norm": 252.72503662109375,
1461
+ "learning_rate": 2.1313506815365555e-05,
1462
+ "loss": 7.809,
1463
+ "step": 1940
1464
+ },
1465
+ {
1466
+ "epoch": 7.23725671918443,
1467
+ "grad_norm": 91.0379409790039,
1468
+ "learning_rate": 2.1251548946716236e-05,
1469
+ "loss": 7.9729,
1470
+ "step": 1950
1471
+ },
1472
+ {
1473
+ "epoch": 7.23725671918443,
1474
+ "eval_loss": 2.610764741897583,
1475
+ "eval_runtime": 34.0774,
1476
+ "eval_samples_per_second": 47.48,
1477
+ "eval_steps_per_second": 6.808,
1478
+ "step": 1950
1479
+ },
1480
+ {
1481
+ "epoch": 7.274328081556997,
1482
+ "grad_norm": 96.09555053710938,
1483
+ "learning_rate": 2.1189591078066917e-05,
1484
+ "loss": 8.2125,
1485
+ "step": 1960
1486
+ },
1487
+ {
1488
+ "epoch": 7.311399443929565,
1489
+ "grad_norm": 68.51132202148438,
1490
+ "learning_rate": 2.1127633209417594e-05,
1491
+ "loss": 7.7403,
1492
+ "step": 1970
1493
+ },
1494
+ {
1495
+ "epoch": 7.348470806302132,
1496
+ "grad_norm": 94.45308685302734,
1497
+ "learning_rate": 2.1065675340768275e-05,
1498
+ "loss": 7.5494,
1499
+ "step": 1980
1500
+ },
1501
+ {
1502
+ "epoch": 7.385542168674699,
1503
+ "grad_norm": 56.785587310791016,
1504
+ "learning_rate": 2.100371747211896e-05,
1505
+ "loss": 8.2821,
1506
+ "step": 1990
1507
+ },
1508
+ {
1509
+ "epoch": 7.422613531047266,
1510
+ "grad_norm": 91.59173583984375,
1511
+ "learning_rate": 2.094175960346964e-05,
1512
+ "loss": 8.1644,
1513
+ "step": 2000
1514
+ },
1515
+ {
1516
+ "epoch": 7.459684893419833,
1517
+ "grad_norm": 78.57572174072266,
1518
+ "learning_rate": 2.0879801734820322e-05,
1519
+ "loss": 8.1664,
1520
+ "step": 2010
1521
+ },
1522
+ {
1523
+ "epoch": 7.4967562557924,
1524
+ "grad_norm": 71.83062744140625,
1525
+ "learning_rate": 2.0817843866171003e-05,
1526
+ "loss": 8.5876,
1527
+ "step": 2020
1528
+ },
1529
+ {
1530
+ "epoch": 7.533827618164968,
1531
+ "grad_norm": 74.75129699707031,
1532
+ "learning_rate": 2.0755885997521684e-05,
1533
+ "loss": 8.2753,
1534
+ "step": 2030
1535
+ },
1536
+ {
1537
+ "epoch": 7.570898980537534,
1538
+ "grad_norm": 96.26950073242188,
1539
+ "learning_rate": 2.0693928128872368e-05,
1540
+ "loss": 9.2057,
1541
+ "step": 2040
1542
+ },
1543
+ {
1544
+ "epoch": 7.607970342910102,
1545
+ "grad_norm": 96.87144470214844,
1546
+ "learning_rate": 2.063197026022305e-05,
1547
+ "loss": 8.0052,
1548
+ "step": 2050
1549
+ },
1550
+ {
1551
+ "epoch": 7.645041705282669,
1552
+ "grad_norm": 83.44422912597656,
1553
+ "learning_rate": 2.057001239157373e-05,
1554
+ "loss": 8.4954,
1555
+ "step": 2060
1556
+ },
1557
+ {
1558
+ "epoch": 7.682113067655236,
1559
+ "grad_norm": 86.1534194946289,
1560
+ "learning_rate": 2.050805452292441e-05,
1561
+ "loss": 8.0325,
1562
+ "step": 2070
1563
+ },
1564
+ {
1565
+ "epoch": 7.719184430027804,
1566
+ "grad_norm": 89.11744689941406,
1567
+ "learning_rate": 2.0446096654275092e-05,
1568
+ "loss": 8.2934,
1569
+ "step": 2080
1570
+ },
1571
+ {
1572
+ "epoch": 7.7562557924003706,
1573
+ "grad_norm": 60.81666946411133,
1574
+ "learning_rate": 2.0384138785625777e-05,
1575
+ "loss": 9.4019,
1576
+ "step": 2090
1577
+ },
1578
+ {
1579
+ "epoch": 7.793327154772938,
1580
+ "grad_norm": 82.93228912353516,
1581
+ "learning_rate": 2.0322180916976458e-05,
1582
+ "loss": 8.874,
1583
+ "step": 2100
1584
+ },
1585
+ {
1586
+ "epoch": 7.793327154772938,
1587
+ "eval_loss": 2.452894926071167,
1588
+ "eval_runtime": 34.0684,
1589
+ "eval_samples_per_second": 47.493,
1590
+ "eval_steps_per_second": 6.81,
1591
+ "step": 2100
1592
+ },
1593
+ {
1594
+ "epoch": 7.830398517145505,
1595
+ "grad_norm": 62.004817962646484,
1596
+ "learning_rate": 2.026022304832714e-05,
1597
+ "loss": 8.0985,
1598
+ "step": 2110
1599
+ },
1600
+ {
1601
+ "epoch": 7.867469879518072,
1602
+ "grad_norm": 72.79752349853516,
1603
+ "learning_rate": 2.019826517967782e-05,
1604
+ "loss": 8.9063,
1605
+ "step": 2120
1606
+ },
1607
+ {
1608
+ "epoch": 7.904541241890639,
1609
+ "grad_norm": 1507.2855224609375,
1610
+ "learning_rate": 2.01363073110285e-05,
1611
+ "loss": 8.6332,
1612
+ "step": 2130
1613
+ },
1614
+ {
1615
+ "epoch": 7.941612604263207,
1616
+ "grad_norm": 134.11378479003906,
1617
+ "learning_rate": 2.0074349442379185e-05,
1618
+ "loss": 9.4106,
1619
+ "step": 2140
1620
+ },
1621
+ {
1622
+ "epoch": 7.978683966635774,
1623
+ "grad_norm": 72.19046783447266,
1624
+ "learning_rate": 2.0012391573729866e-05,
1625
+ "loss": 8.2304,
1626
+ "step": 2150
1627
+ },
1628
+ {
1629
+ "epoch": 8.014828544949028,
1630
+ "grad_norm": 57.130165100097656,
1631
+ "learning_rate": 1.9950433705080544e-05,
1632
+ "loss": 7.9675,
1633
+ "step": 2160
1634
+ },
1635
+ {
1636
+ "epoch": 8.051899907321594,
1637
+ "grad_norm": 72.58036041259766,
1638
+ "learning_rate": 1.9888475836431225e-05,
1639
+ "loss": 7.602,
1640
+ "step": 2170
1641
+ },
1642
+ {
1643
+ "epoch": 8.088971269694161,
1644
+ "grad_norm": 91.77513885498047,
1645
+ "learning_rate": 1.982651796778191e-05,
1646
+ "loss": 7.9151,
1647
+ "step": 2180
1648
+ },
1649
+ {
1650
+ "epoch": 8.126042632066728,
1651
+ "grad_norm": 111.52696228027344,
1652
+ "learning_rate": 1.976456009913259e-05,
1653
+ "loss": 7.5653,
1654
+ "step": 2190
1655
+ },
1656
+ {
1657
+ "epoch": 8.163113994439296,
1658
+ "grad_norm": 74.9671401977539,
1659
+ "learning_rate": 1.970260223048327e-05,
1660
+ "loss": 7.1567,
1661
+ "step": 2200
1662
+ },
1663
+ {
1664
+ "epoch": 8.200185356811863,
1665
+ "grad_norm": 124.09498596191406,
1666
+ "learning_rate": 1.9640644361833952e-05,
1667
+ "loss": 8.1708,
1668
+ "step": 2210
1669
+ },
1670
+ {
1671
+ "epoch": 8.23725671918443,
1672
+ "grad_norm": 95.21754455566406,
1673
+ "learning_rate": 1.9578686493184633e-05,
1674
+ "loss": 7.0013,
1675
+ "step": 2220
1676
+ },
1677
+ {
1678
+ "epoch": 8.274328081556996,
1679
+ "grad_norm": 135.3839569091797,
1680
+ "learning_rate": 1.9516728624535318e-05,
1681
+ "loss": 7.5999,
1682
+ "step": 2230
1683
+ },
1684
+ {
1685
+ "epoch": 8.311399443929565,
1686
+ "grad_norm": 89.70751190185547,
1687
+ "learning_rate": 1.9454770755886e-05,
1688
+ "loss": 7.2028,
1689
+ "step": 2240
1690
+ },
1691
+ {
1692
+ "epoch": 8.348470806302132,
1693
+ "grad_norm": 70.08137512207031,
1694
+ "learning_rate": 1.939281288723668e-05,
1695
+ "loss": 8.3759,
1696
+ "step": 2250
1697
+ },
1698
+ {
1699
+ "epoch": 8.348470806302132,
1700
+ "eval_loss": 2.746619939804077,
1701
+ "eval_runtime": 34.0831,
1702
+ "eval_samples_per_second": 47.472,
1703
+ "eval_steps_per_second": 6.807,
1704
+ "step": 2250
1705
+ },
1706
+ {
1707
+ "epoch": 8.400370713623726,
1708
+ "grad_norm": 69.07305145263672,
1709
+ "learning_rate": 1.933085501858736e-05,
1710
+ "loss": 8.9083,
1711
+ "step": 2260
1712
+ },
1713
+ {
1714
+ "epoch": 8.437442075996293,
1715
+ "grad_norm": 66.43407440185547,
1716
+ "learning_rate": 1.926889714993804e-05,
1717
+ "loss": 6.9349,
1718
+ "step": 2270
1719
+ },
1720
+ {
1721
+ "epoch": 8.47451343836886,
1722
+ "grad_norm": 167.85784912109375,
1723
+ "learning_rate": 1.9206939281288726e-05,
1724
+ "loss": 7.5041,
1725
+ "step": 2280
1726
+ },
1727
+ {
1728
+ "epoch": 8.511584800741428,
1729
+ "grad_norm": 173.38304138183594,
1730
+ "learning_rate": 1.9144981412639407e-05,
1731
+ "loss": 7.3744,
1732
+ "step": 2290
1733
+ },
1734
+ {
1735
+ "epoch": 8.548656163113995,
1736
+ "grad_norm": 80.71511840820312,
1737
+ "learning_rate": 1.9083023543990088e-05,
1738
+ "loss": 8.6541,
1739
+ "step": 2300
1740
+ },
1741
+ {
1742
+ "epoch": 8.585727525486561,
1743
+ "grad_norm": 82.77088928222656,
1744
+ "learning_rate": 1.902106567534077e-05,
1745
+ "loss": 8.6305,
1746
+ "step": 2310
1747
+ },
1748
+ {
1749
+ "epoch": 8.62279888785913,
1750
+ "grad_norm": 55.3135871887207,
1751
+ "learning_rate": 1.895910780669145e-05,
1752
+ "loss": 8.2577,
1753
+ "step": 2320
1754
+ },
1755
+ {
1756
+ "epoch": 8.659870250231696,
1757
+ "grad_norm": 64.61204528808594,
1758
+ "learning_rate": 1.8897149938042134e-05,
1759
+ "loss": 7.6382,
1760
+ "step": 2330
1761
+ },
1762
+ {
1763
+ "epoch": 8.696941612604263,
1764
+ "grad_norm": 77.9918212890625,
1765
+ "learning_rate": 1.8835192069392815e-05,
1766
+ "loss": 8.114,
1767
+ "step": 2340
1768
+ },
1769
+ {
1770
+ "epoch": 8.73401297497683,
1771
+ "grad_norm": 50.139678955078125,
1772
+ "learning_rate": 1.8773234200743496e-05,
1773
+ "loss": 7.8875,
1774
+ "step": 2350
1775
+ },
1776
+ {
1777
+ "epoch": 8.771084337349398,
1778
+ "grad_norm": 241.43588256835938,
1779
+ "learning_rate": 1.8711276332094174e-05,
1780
+ "loss": 7.0444,
1781
+ "step": 2360
1782
+ },
1783
+ {
1784
+ "epoch": 8.808155699721965,
1785
+ "grad_norm": 133.25645446777344,
1786
+ "learning_rate": 1.8649318463444855e-05,
1787
+ "loss": 7.7393,
1788
+ "step": 2370
1789
+ },
1790
+ {
1791
+ "epoch": 8.845227062094532,
1792
+ "grad_norm": 94.1192855834961,
1793
+ "learning_rate": 1.858736059479554e-05,
1794
+ "loss": 8.8284,
1795
+ "step": 2380
1796
+ },
1797
+ {
1798
+ "epoch": 8.882298424467098,
1799
+ "grad_norm": 83.68805694580078,
1800
+ "learning_rate": 1.852540272614622e-05,
1801
+ "loss": 7.997,
1802
+ "step": 2390
1803
+ },
1804
+ {
1805
+ "epoch": 8.919369786839667,
1806
+ "grad_norm": 67.01426696777344,
1807
+ "learning_rate": 1.84634448574969e-05,
1808
+ "loss": 7.786,
1809
+ "step": 2400
1810
+ },
1811
+ {
1812
+ "epoch": 8.919369786839667,
1813
+ "eval_loss": 2.6791422367095947,
1814
+ "eval_runtime": 34.2417,
1815
+ "eval_samples_per_second": 47.252,
1816
+ "eval_steps_per_second": 6.775,
1817
+ "step": 2400
1818
+ },
1819
+ {
1820
+ "epoch": 8.956441149212234,
1821
+ "grad_norm": 72.36073303222656,
1822
+ "learning_rate": 1.8401486988847582e-05,
1823
+ "loss": 7.6257,
1824
+ "step": 2410
1825
+ },
1826
+ {
1827
+ "epoch": 8.9935125115848,
1828
+ "grad_norm": 70.3509521484375,
1829
+ "learning_rate": 1.8339529120198267e-05,
1830
+ "loss": 7.099,
1831
+ "step": 2420
1832
+ },
1833
+ {
1834
+ "epoch": 9.03336422613531,
1835
+ "grad_norm": 136.34727478027344,
1836
+ "learning_rate": 1.8277571251548948e-05,
1837
+ "loss": 8.041,
1838
+ "step": 2430
1839
+ },
1840
+ {
1841
+ "epoch": 9.070435588507877,
1842
+ "grad_norm": 81.48332214355469,
1843
+ "learning_rate": 1.821561338289963e-05,
1844
+ "loss": 7.8606,
1845
+ "step": 2440
1846
+ },
1847
+ {
1848
+ "epoch": 9.107506950880445,
1849
+ "grad_norm": 93.1724853515625,
1850
+ "learning_rate": 1.815365551425031e-05,
1851
+ "loss": 7.8551,
1852
+ "step": 2450
1853
+ },
1854
+ {
1855
+ "epoch": 9.144578313253012,
1856
+ "grad_norm": 132.82778930664062,
1857
+ "learning_rate": 1.809169764560099e-05,
1858
+ "loss": 7.3977,
1859
+ "step": 2460
1860
+ },
1861
+ {
1862
+ "epoch": 9.181649675625579,
1863
+ "grad_norm": 102.73971557617188,
1864
+ "learning_rate": 1.8029739776951675e-05,
1865
+ "loss": 7.8721,
1866
+ "step": 2470
1867
+ },
1868
+ {
1869
+ "epoch": 9.218721037998147,
1870
+ "grad_norm": 106.7470932006836,
1871
+ "learning_rate": 1.7967781908302356e-05,
1872
+ "loss": 7.5839,
1873
+ "step": 2480
1874
+ },
1875
+ {
1876
+ "epoch": 9.255792400370714,
1877
+ "grad_norm": 84.64981842041016,
1878
+ "learning_rate": 1.7905824039653037e-05,
1879
+ "loss": 7.1823,
1880
+ "step": 2490
1881
+ },
1882
+ {
1883
+ "epoch": 9.29286376274328,
1884
+ "grad_norm": 85.59486389160156,
1885
+ "learning_rate": 1.7843866171003718e-05,
1886
+ "loss": 7.5513,
1887
+ "step": 2500
1888
+ },
1889
+ {
1890
+ "epoch": 9.329935125115847,
1891
+ "grad_norm": 89.53803253173828,
1892
+ "learning_rate": 1.77819083023544e-05,
1893
+ "loss": 8.0879,
1894
+ "step": 2510
1895
+ },
1896
+ {
1897
+ "epoch": 9.367006487488416,
1898
+ "grad_norm": 43.886898040771484,
1899
+ "learning_rate": 1.7719950433705084e-05,
1900
+ "loss": 7.5694,
1901
+ "step": 2520
1902
+ },
1903
+ {
1904
+ "epoch": 9.404077849860982,
1905
+ "grad_norm": 73.4898910522461,
1906
+ "learning_rate": 1.7657992565055765e-05,
1907
+ "loss": 7.3436,
1908
+ "step": 2530
1909
+ },
1910
+ {
1911
+ "epoch": 9.44114921223355,
1912
+ "grad_norm": 100.42314147949219,
1913
+ "learning_rate": 1.7596034696406446e-05,
1914
+ "loss": 6.9425,
1915
+ "step": 2540
1916
+ },
1917
+ {
1918
+ "epoch": 9.478220574606116,
1919
+ "grad_norm": 121.53675079345703,
1920
+ "learning_rate": 1.7534076827757123e-05,
1921
+ "loss": 7.9461,
1922
+ "step": 2550
1923
+ },
1924
+ {
1925
+ "epoch": 9.478220574606116,
1926
+ "eval_loss": 2.6608545780181885,
1927
+ "eval_runtime": 34.2437,
1928
+ "eval_samples_per_second": 47.25,
1929
+ "eval_steps_per_second": 6.775,
1930
+ "step": 2550
1931
+ }
1932
+ ],
1933
+ "logging_steps": 10,
1934
+ "max_steps": 5380,
1935
+ "num_input_tokens_seen": 0,
1936
+ "num_train_epochs": 20,
1937
+ "save_steps": 150,
1938
+ "stateful_callbacks": {
1939
+ "TrainerControl": {
1940
+ "args": {
1941
+ "should_epoch_stop": false,
1942
+ "should_evaluate": false,
1943
+ "should_log": false,
1944
+ "should_save": true,
1945
+ "should_training_stop": false
1946
+ },
1947
+ "attributes": {}
1948
+ }
1949
+ },
1950
+ "total_flos": 0.0,
1951
+ "train_batch_size": 7,
1952
+ "trial_name": null,
1953
+ "trial_params": null
1954
+ }
checkpoints/checkpoint-2550/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda94467724e48ac975735648aa63a75558d48b6c993506e918a3476acf80697
3
+ size 129
checkpoints/checkpoint-3000/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoints/checkpoint-3000/README.md ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7552
8
+ - loss:CoSENTLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: How are calibration points linked to equipment?
12
+ sentences:
13
+ - 'How are flow computers and measurement systems related?
14
+
15
+ Flow computers can have multiple systems assigned to them. However, a measurement
16
+ system can only be assigned to one flow computer.
17
+
18
+
19
+ Database terminology:
20
+
21
+ In the database, this relationship is referred to as:
22
+
23
+ - Meter streams
24
+
25
+ - Meter runs
26
+
27
+ - Sections
28
+
29
+
30
+ Storage of the relationship:
31
+
32
+ The relationship between a flow computer and its assigned measurement system is
33
+ stored in a special table.
34
+
35
+
36
+ User context:
37
+
38
+ When a user refers to a "meter stream," they are indicating that they are searching
39
+ for a measurement system assigned to a specific flow computer.'
40
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
41
+ \ daily or hourly reports to provide users with operational data. These reports\
42
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
43
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
44
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
45
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
46
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
47
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
48
+ \ are linked to a Modbus table. This table contains the names corresponding to\
49
+ \ each value in the reports, making it easier to interpret the data."
50
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
51
+ \ and reliability of results obtained from equipment or measurement systems. It\
52
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
53
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
54
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
55
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
56
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
57
+ \ serves as a starting point for further calculations related to the equipment.\n\
58
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
59
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
60
+ \ the individual variables (magnitudes) and represents the combined margin of\
61
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
62
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
63
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
64
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
65
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
66
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
67
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
68
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
69
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
70
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
71
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
72
+ - To find the uncertainty of the measurement system, join the measurement systems\
73
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
74
+ \ of a specific variable (magnitude), join the measurement systems table with\
75
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
76
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
77
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
78
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
79
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
80
+ \ systems table + uncertainty of magnitudes table)."
81
+ - source_sentence: What is the primary key of the flow computer table?
82
+ sentences:
83
+ - 'What is equipment calibration?
84
+
85
+ Calibration is a metrological verification process used to ensure the accuracy
86
+ of measurement equipment. It is performed periodically, based on intervals set
87
+ by the company or a regulatory body.
88
+
89
+
90
+ Purpose of calibration:
91
+
92
+ The calibration process corrects any deviations in how the equipment measures
93
+ physical magnitudes (variables). This ensures the equipment provides accurate
94
+ and reliable data.
95
+
96
+
97
+ Calibration cycles:
98
+
99
+ There are two main calibration cycles:
100
+
101
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
102
+ are made. This cycle is almost always implemented.
103
+
104
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
105
+ are made. This cycle is used depending on regulatory requirements.
106
+
107
+
108
+ Calibration uncertainty:
109
+
110
+ - Uncertainty is included in the results of a calibration.
111
+
112
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
113
+ which also affects the uncertainty of the measured variable or magnitude.'
114
+ - 'What is equipment calibration?
115
+
116
+ Calibration is a metrological verification process used to ensure the accuracy
117
+ of measurement equipment. It is performed periodically, based on intervals set
118
+ by the company or a regulatory body.
119
+
120
+
121
+ Purpose of calibration:
122
+
123
+ The calibration process corrects any deviations in how the equipment measures
124
+ physical magnitudes (variables). This ensures the equipment provides accurate
125
+ and reliable data.
126
+
127
+
128
+ Calibration cycles:
129
+
130
+ There are two main calibration cycles:
131
+
132
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
133
+ are made. This cycle is almost always implemented.
134
+
135
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
136
+ are made. This cycle is used depending on regulatory requirements.
137
+
138
+
139
+ Calibration uncertainty:
140
+
141
+ - Uncertainty is included in the results of a calibration.
142
+
143
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
144
+ which also affects the uncertainty of the measured variable or magnitude.'
145
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
146
+ \ daily or hourly reports to provide users with operational data. These reports\
147
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
148
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
149
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
150
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
151
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
152
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
153
+ \ are linked to a Modbus table. This table contains the names corresponding to\
154
+ \ each value in the reports, making it easier to interpret the data."
155
+ - source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
156
+ result for the specified tag and date?
157
+ sentences:
158
+ - 'What is equipment calibration?
159
+
160
+ Calibration is a metrological verification process used to ensure the accuracy
161
+ of measurement equipment. It is performed periodically, based on intervals set
162
+ by the company or a regulatory body.
163
+
164
+
165
+ Purpose of calibration:
166
+
167
+ The calibration process corrects any deviations in how the equipment measures
168
+ physical magnitudes (variables). This ensures the equipment provides accurate
169
+ and reliable data.
170
+
171
+
172
+ Calibration cycles:
173
+
174
+ There are two main calibration cycles:
175
+
176
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
177
+ are made. This cycle is almost always implemented.
178
+
179
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
180
+ are made. This cycle is used depending on regulatory requirements.
181
+
182
+
183
+ Calibration uncertainty:
184
+
185
+ - Uncertainty is included in the results of a calibration.
186
+
187
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
188
+ which also affects the uncertainty of the measured variable or magnitude.'
189
+ - 'What kind of data store an equipment?
190
+
191
+ Equipments can capture meteorological data, such as pressure, temperature, and
192
+ volume (magnitudes). This data is essential for users to perform various calculations.
193
+
194
+
195
+ Data storage:
196
+
197
+ - The measured values are stored in a special table in the database for magnitudes.
198
+ This table contains the values of the variables captured by the equipments.
199
+
200
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
201
+ temperature, or volume readings). **They are not calculated values**, such as
202
+ uncertainty.
203
+
204
+ - The values stored in the variable values table are **different** from variable
205
+ uncertainty values, which are calculated separately and represent the margin of
206
+ error.
207
+
208
+
209
+ Accessing the data:
210
+
211
+ - Users typically access the data by referring to the readings from the measurement
212
+ system, not directly from the individual equipments.
213
+
214
+ - The readings are stored in a "variable values" table within the database.
215
+
216
+
217
+ Linking variable names:
218
+
219
+ If the user needs to know the name of a variable, they must link the data to another
220
+ table that stores information about the types of variables.'
221
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
222
+ \ and reliability of results obtained from equipment or measurement systems. It\
223
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
224
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
225
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
226
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
227
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
228
+ \ serves as a starting point for further calculations related to the equipment.\n\
229
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
230
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
231
+ \ the individual variables (magnitudes) and represents the combined margin of\
232
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
233
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
234
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
235
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
236
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
237
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
238
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
239
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
240
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
241
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
242
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
243
+ - To find the uncertainty of the measurement system, join the measurement systems\
244
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
245
+ \ of a specific variable (magnitude), join the measurement systems table with\
246
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
247
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
248
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
249
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
250
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
251
+ \ systems table + uncertainty of magnitudes table)."
252
+ - source_sentence: How are the secondary equipment and measurement system related?
253
+ sentences:
254
+ - 'What kind of data store an equipment?
255
+
256
+ Equipments can capture meteorological data, such as pressure, temperature, and
257
+ volume (magnitudes). This data is essential for users to perform various calculations.
258
+
259
+
260
+ Data storage:
261
+
262
+ - The measured values are stored in a special table in the database for magnitudes.
263
+ This table contains the values of the variables captured by the equipments.
264
+
265
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
266
+ temperature, or volume readings). **They are not calculated values**, such as
267
+ uncertainty.
268
+
269
+ - The values stored in the variable values table are **different** from variable
270
+ uncertainty values, which are calculated separately and represent the margin of
271
+ error.
272
+
273
+
274
+ Accessing the data:
275
+
276
+ - Users typically access the data by referring to the readings from the measurement
277
+ system, not directly from the individual equipments.
278
+
279
+ - The readings are stored in a "variable values" table within the database.
280
+
281
+
282
+ Linking variable names:
283
+
284
+ If the user needs to know the name of a variable, they must link the data to another
285
+ table that stores information about the types of variables.'
286
+ - 'What do measurement equipment measure?
287
+
288
+ Each equipment measures a physical magnitude, also known as a variable. Based
289
+ on the type of variable they measure, devices are classified into different categories.
290
+
291
+
292
+ Equipment classification:
293
+
294
+ - Primary meter: Assigned by default to equipments like orifice plates.
295
+
296
+ - Secondary meter: Assigned by default to equipments like transmitters.
297
+
298
+ - Tertiary meter: Used for other types of equipments.
299
+
300
+
301
+ Equipment types in the database:
302
+
303
+ The database includes a table listing all equipment types. Examples of equipment
304
+ types are:
305
+
306
+ - Differential pressure transmitters
307
+
308
+ - RTDs (Resistance Temperature Detectors)
309
+
310
+ - Orifice plates
311
+
312
+ - Multivariable transmitters
313
+
314
+ - Ultrasonic meters
315
+
316
+
317
+ Meteorological checks for equipments:
318
+
319
+ Each equipment type is assigned a meteorological check, which can be either:
320
+
321
+ - Calibration: To ensure measurement accuracy.
322
+
323
+ - Inspection: To verify proper functioning.
324
+
325
+
326
+ Data storage in tables:
327
+
328
+ The database also includes a separate table for equipment classifications, which
329
+ are:
330
+
331
+ - Primary meter
332
+
333
+ - Secondary meter
334
+
335
+ - Tertiary meter
336
+
337
+ So, an equipment has equipment types and this types has classifications.'
338
+ - 'What kind of data store an equipment?
339
+
340
+ Equipments can capture meteorological data, such as pressure, temperature, and
341
+ volume (magnitudes). This data is essential for users to perform various calculations.
342
+
343
+
344
+ Data storage:
345
+
346
+ - The measured values are stored in a special table in the database for magnitudes.
347
+ This table contains the values of the variables captured by the equipments.
348
+
349
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
350
+ temperature, or volume readings). **They are not calculated values**, such as
351
+ uncertainty.
352
+
353
+ - The values stored in the variable values table are **different** from variable
354
+ uncertainty values, which are calculated separately and represent the margin of
355
+ error.
356
+
357
+
358
+ Accessing the data:
359
+
360
+ - Users typically access the data by referring to the readings from the measurement
361
+ system, not directly from the individual equipments.
362
+
363
+ - The readings are stored in a "variable values" table within the database.
364
+
365
+
366
+ Linking variable names:
367
+
368
+ If the user needs to know the name of a variable, they must link the data to another
369
+ table that stores information about the types of variables.'
370
+ - source_sentence: What is the table structure for secondary equipment?
371
+ sentences:
372
+ - 'What kind of data store an equipment?
373
+
374
+ Equipments can capture meteorological data, such as pressure, temperature, and
375
+ volume (magnitudes). This data is essential for users to perform various calculations.
376
+
377
+
378
+ Data storage:
379
+
380
+ - The measured values are stored in a special table in the database for magnitudes.
381
+ This table contains the values of the variables captured by the equipments.
382
+
383
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
384
+ temperature, or volume readings). **They are not calculated values**, such as
385
+ uncertainty.
386
+
387
+ - The values stored in the variable values table are **different** from variable
388
+ uncertainty values, which are calculated separately and represent the margin of
389
+ error.
390
+
391
+
392
+ Accessing the data:
393
+
394
+ - Users typically access the data by referring to the readings from the measurement
395
+ system, not directly from the individual equipments.
396
+
397
+ - The readings are stored in a "variable values" table within the database.
398
+
399
+
400
+ Linking variable names:
401
+
402
+ If the user needs to know the name of a variable, they must link the data to another
403
+ table that stores information about the types of variables.'
404
+ - 'How are flow computers and measurement systems related?
405
+
406
+ Flow computers can have multiple systems assigned to them. However, a measurement
407
+ system can only be assigned to one flow computer.
408
+
409
+
410
+ Database terminology:
411
+
412
+ In the database, this relationship is referred to as:
413
+
414
+ - Meter streams
415
+
416
+ - Meter runs
417
+
418
+ - Sections
419
+
420
+
421
+ Storage of the relationship:
422
+
423
+ The relationship between a flow computer and its assigned measurement system is
424
+ stored in a special table.
425
+
426
+
427
+ User context:
428
+
429
+ When a user refers to a "meter stream," they are indicating that they are searching
430
+ for a measurement system assigned to a specific flow computer.'
431
+ - 'How are flow computers and measurement systems related?
432
+
433
+ Flow computers can have multiple systems assigned to them. However, a measurement
434
+ system can only be assigned to one flow computer.
435
+
436
+
437
+ Database terminology:
438
+
439
+ In the database, this relationship is referred to as:
440
+
441
+ - Meter streams
442
+
443
+ - Meter runs
444
+
445
+ - Sections
446
+
447
+
448
+ Storage of the relationship:
449
+
450
+ The relationship between a flow computer and its assigned measurement system is
451
+ stored in a special table.
452
+
453
+
454
+ User context:
455
+
456
+ When a user refers to a "meter stream," they are indicating that they are searching
457
+ for a measurement system assigned to a specific flow computer.'
458
+ datasets:
459
+ - Lauther/measuring-embeddings-v3
460
+ pipeline_tag: sentence-similarity
461
+ library_name: sentence-transformers
462
+ ---
463
+
464
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
465
+
466
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
467
+
468
+ ## Model Details
469
+
470
+ ### Model Description
471
+ - **Model Type:** Sentence Transformer
472
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
473
+ - **Maximum Sequence Length:** 512 tokens
474
+ - **Output Dimensionality:** 1024 dimensions
475
+ - **Similarity Function:** Cosine Similarity
476
+ - **Training Dataset:**
477
+ - [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
478
+ <!-- - **Language:** Unknown -->
479
+ <!-- - **License:** Unknown -->
480
+
481
+ ### Model Sources
482
+
483
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
484
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
485
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
486
+
487
+ ### Full Model Architecture
488
+
489
+ ```
490
+ SentenceTransformer(
491
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
492
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
493
+ (2): Normalize()
494
+ )
495
+ ```
496
+
497
+ ## Usage
498
+
499
+ ### Direct Usage (Sentence Transformers)
500
+
501
+ First install the Sentence Transformers library:
502
+
503
+ ```bash
504
+ pip install -U sentence-transformers
505
+ ```
506
+
507
+ Then you can load this model and run inference.
508
+ ```python
509
+ from sentence_transformers import SentenceTransformer
510
+
511
+ # Download from the 🤗 Hub
512
+ model = SentenceTransformer("sentence_transformers_model_id")
513
+ # Run inference
514
+ sentences = [
515
+ 'What is the table structure for secondary equipment?',
516
+ 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
517
+ 'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
518
+ ]
519
+ embeddings = model.encode(sentences)
520
+ print(embeddings.shape)
521
+ # [3, 1024]
522
+
523
+ # Get the similarity scores for the embeddings
524
+ similarities = model.similarity(embeddings, embeddings)
525
+ print(similarities.shape)
526
+ # [3, 3]
527
+ ```
528
+
529
+ <!--
530
+ ### Direct Usage (Transformers)
531
+
532
+ <details><summary>Click to see the direct usage in Transformers</summary>
533
+
534
+ </details>
535
+ -->
536
+
537
+ <!--
538
+ ### Downstream Usage (Sentence Transformers)
539
+
540
+ You can finetune this model on your own dataset.
541
+
542
+ <details><summary>Click to expand</summary>
543
+
544
+ </details>
545
+ -->
546
+
547
+ <!--
548
+ ### Out-of-Scope Use
549
+
550
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
551
+ -->
552
+
553
+ <!--
554
+ ## Bias, Risks and Limitations
555
+
556
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
557
+ -->
558
+
559
+ <!--
560
+ ### Recommendations
561
+
562
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
563
+ -->
564
+
565
+ ## Training Details
566
+
567
+ ### Training Dataset
568
+
569
+ #### measuring-embeddings-v3
570
+
571
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
572
+ * Size: 7,552 training samples
573
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
574
+ * Approximate statistics based on the first 1000 samples:
575
+ | | sentence1 | sentence2 | score |
576
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
577
+ | type | string | string | float |
578
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
579
+ * Samples:
580
+ | sentence1 | sentence2 | score |
581
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
582
+ | <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
583
+ | <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
584
+ | <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
585
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
586
+ ```json
587
+ {
588
+ "scale": 20.0,
589
+ "similarity_fct": "pairwise_cos_sim"
590
+ }
591
+ ```
592
+
593
+ ### Evaluation Dataset
594
+
595
+ #### measuring-embeddings-v3
596
+
597
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
598
+ * Size: 1,618 evaluation samples
599
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
600
+ * Approximate statistics based on the first 1000 samples:
601
+ | | sentence1 | sentence2 | score |
602
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
603
+ | type | string | string | float |
604
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
605
+ * Samples:
606
+ | sentence1 | sentence2 | score |
607
+ |:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
608
+ | <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
609
+ | <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
610
+ | <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
611
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
612
+ ```json
613
+ {
614
+ "scale": 20.0,
615
+ "similarity_fct": "pairwise_cos_sim"
616
+ }
617
+ ```
618
+
619
+ ### Training Hyperparameters
620
+ #### Non-Default Hyperparameters
621
+
622
+ - `eval_strategy`: steps
623
+ - `per_device_train_batch_size`: 7
624
+ - `per_device_eval_batch_size`: 7
625
+ - `gradient_accumulation_steps`: 4
626
+ - `learning_rate`: 3e-05
627
+ - `num_train_epochs`: 20
628
+ - `warmup_ratio`: 0.1
629
+
630
+ #### All Hyperparameters
631
+ <details><summary>Click to expand</summary>
632
+
633
+ - `overwrite_output_dir`: False
634
+ - `do_predict`: False
635
+ - `eval_strategy`: steps
636
+ - `prediction_loss_only`: True
637
+ - `per_device_train_batch_size`: 7
638
+ - `per_device_eval_batch_size`: 7
639
+ - `per_gpu_train_batch_size`: None
640
+ - `per_gpu_eval_batch_size`: None
641
+ - `gradient_accumulation_steps`: 4
642
+ - `eval_accumulation_steps`: None
643
+ - `torch_empty_cache_steps`: None
644
+ - `learning_rate`: 3e-05
645
+ - `weight_decay`: 0.0
646
+ - `adam_beta1`: 0.9
647
+ - `adam_beta2`: 0.999
648
+ - `adam_epsilon`: 1e-08
649
+ - `max_grad_norm`: 1.0
650
+ - `num_train_epochs`: 20
651
+ - `max_steps`: -1
652
+ - `lr_scheduler_type`: linear
653
+ - `lr_scheduler_kwargs`: {}
654
+ - `warmup_ratio`: 0.1
655
+ - `warmup_steps`: 0
656
+ - `log_level`: passive
657
+ - `log_level_replica`: warning
658
+ - `log_on_each_node`: True
659
+ - `logging_nan_inf_filter`: True
660
+ - `save_safetensors`: True
661
+ - `save_on_each_node`: False
662
+ - `save_only_model`: False
663
+ - `restore_callback_states_from_checkpoint`: False
664
+ - `no_cuda`: False
665
+ - `use_cpu`: False
666
+ - `use_mps_device`: False
667
+ - `seed`: 42
668
+ - `data_seed`: None
669
+ - `jit_mode_eval`: False
670
+ - `use_ipex`: False
671
+ - `bf16`: False
672
+ - `fp16`: False
673
+ - `fp16_opt_level`: O1
674
+ - `half_precision_backend`: auto
675
+ - `bf16_full_eval`: False
676
+ - `fp16_full_eval`: False
677
+ - `tf32`: None
678
+ - `local_rank`: 0
679
+ - `ddp_backend`: None
680
+ - `tpu_num_cores`: None
681
+ - `tpu_metrics_debug`: False
682
+ - `debug`: []
683
+ - `dataloader_drop_last`: False
684
+ - `dataloader_num_workers`: 0
685
+ - `dataloader_prefetch_factor`: None
686
+ - `past_index`: -1
687
+ - `disable_tqdm`: False
688
+ - `remove_unused_columns`: True
689
+ - `label_names`: None
690
+ - `load_best_model_at_end`: False
691
+ - `ignore_data_skip`: False
692
+ - `fsdp`: []
693
+ - `fsdp_min_num_params`: 0
694
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
695
+ - `fsdp_transformer_layer_cls_to_wrap`: None
696
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
697
+ - `deepspeed`: None
698
+ - `label_smoothing_factor`: 0.0
699
+ - `optim`: adamw_torch
700
+ - `optim_args`: None
701
+ - `adafactor`: False
702
+ - `group_by_length`: False
703
+ - `length_column_name`: length
704
+ - `ddp_find_unused_parameters`: None
705
+ - `ddp_bucket_cap_mb`: None
706
+ - `ddp_broadcast_buffers`: False
707
+ - `dataloader_pin_memory`: True
708
+ - `dataloader_persistent_workers`: False
709
+ - `skip_memory_metrics`: True
710
+ - `use_legacy_prediction_loop`: False
711
+ - `push_to_hub`: False
712
+ - `resume_from_checkpoint`: None
713
+ - `hub_model_id`: None
714
+ - `hub_strategy`: every_save
715
+ - `hub_private_repo`: None
716
+ - `hub_always_push`: False
717
+ - `gradient_checkpointing`: False
718
+ - `gradient_checkpointing_kwargs`: None
719
+ - `include_inputs_for_metrics`: False
720
+ - `include_for_metrics`: []
721
+ - `eval_do_concat_batches`: True
722
+ - `fp16_backend`: auto
723
+ - `push_to_hub_model_id`: None
724
+ - `push_to_hub_organization`: None
725
+ - `mp_parameters`:
726
+ - `auto_find_batch_size`: False
727
+ - `full_determinism`: False
728
+ - `torchdynamo`: None
729
+ - `ray_scope`: last
730
+ - `ddp_timeout`: 1800
731
+ - `torch_compile`: False
732
+ - `torch_compile_backend`: None
733
+ - `torch_compile_mode`: None
734
+ - `dispatch_batches`: None
735
+ - `split_batches`: None
736
+ - `include_tokens_per_second`: False
737
+ - `include_num_input_tokens_seen`: False
738
+ - `neftune_noise_alpha`: None
739
+ - `optim_target_modules`: None
740
+ - `batch_eval_metrics`: False
741
+ - `eval_on_start`: False
742
+ - `use_liger_kernel`: False
743
+ - `eval_use_gather_object`: False
744
+ - `average_tokens_across_devices`: False
745
+ - `prompts`: None
746
+ - `batch_sampler`: batch_sampler
747
+ - `multi_dataset_batch_sampler`: proportional
748
+
749
+ </details>
750
+
751
+ ### Training Logs
752
+ | Epoch | Step | Training Loss | Validation Loss |
753
+ |:-------:|:----:|:-------------:|:---------------:|
754
+ | 9.5153 | 2560 | 6.782 | - |
755
+ | 9.5524 | 2570 | 7.3027 | - |
756
+ | 9.5894 | 2580 | 7.3348 | - |
757
+ | 9.6265 | 2590 | 7.7864 | - |
758
+ | 9.6636 | 2600 | 6.3552 | - |
759
+ | 9.7006 | 2610 | 7.151 | - |
760
+ | 9.7377 | 2620 | 6.1664 | - |
761
+ | 9.7748 | 2630 | 6.0398 | - |
762
+ | 9.8119 | 2640 | 7.0452 | - |
763
+ | 9.8489 | 2650 | 7.2457 | - |
764
+ | 9.8860 | 2660 | 6.7531 | - |
765
+ | 9.9231 | 2670 | 6.7149 | - |
766
+ | 9.9601 | 2680 | 6.4635 | - |
767
+ | 9.9972 | 2690 | 6.2237 | - |
768
+ | 10.0371 | 2700 | 6.1798 | 2.9939 |
769
+ | 10.0741 | 2710 | 7.2224 | - |
770
+ | 10.1112 | 2720 | 6.5327 | - |
771
+ | 10.1483 | 2730 | 7.4686 | - |
772
+ | 10.1854 | 2740 | 6.1404 | - |
773
+ | 10.2224 | 2750 | 7.0005 | - |
774
+ | 10.2595 | 2760 | 5.7726 | - |
775
+ | 10.2966 | 2770 | 6.5327 | - |
776
+ | 10.3336 | 2780 | 7.5015 | - |
777
+ | 10.3707 | 2790 | 6.5526 | - |
778
+ | 10.4078 | 2800 | 6.2078 | - |
779
+ | 10.4449 | 2810 | 6.1 | - |
780
+ | 10.4819 | 2820 | 7.1027 | - |
781
+ | 10.5190 | 2830 | 8.639 | - |
782
+ | 10.5561 | 2840 | 6.9937 | - |
783
+ | 10.5931 | 2850 | 7.2734 | 2.8532 |
784
+ | 10.6302 | 2860 | 7.6321 | - |
785
+ | 10.6673 | 2870 | 7.5788 | - |
786
+ | 10.7044 | 2880 | 6.7864 | - |
787
+ | 10.7414 | 2890 | 7.4237 | - |
788
+ | 10.7785 | 2900 | 6.9813 | - |
789
+ | 10.8156 | 2910 | 6.6884 | - |
790
+ | 10.8526 | 2920 | 6.7464 | - |
791
+ | 10.8897 | 2930 | 7.7989 | - |
792
+ | 10.9268 | 2940 | 7.3568 | - |
793
+ | 10.9639 | 2950 | 8.6706 | - |
794
+ | 11.0 | 2960 | 6.5687 | - |
795
+ | 11.0371 | 2970 | 5.8992 | - |
796
+ | 11.0741 | 2980 | 6.4543 | - |
797
+ | 11.1112 | 2990 | 6.1386 | - |
798
+ | 11.1483 | 3000 | 6.9047 | 2.9147 |
799
+
800
+
801
+ ### Framework Versions
802
+ - Python: 3.11.0
803
+ - Sentence Transformers: 3.4.0
804
+ - Transformers: 4.48.1
805
+ - PyTorch: 2.5.1+cu124
806
+ - Accelerate: 1.3.0
807
+ - Datasets: 3.2.0
808
+ - Tokenizers: 0.21.0
809
+
810
+ ## Citation
811
+
812
+ ### BibTeX
813
+
814
+ #### Sentence Transformers
815
+ ```bibtex
816
+ @inproceedings{reimers-2019-sentence-bert,
817
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
818
+ author = "Reimers, Nils and Gurevych, Iryna",
819
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
820
+ month = "11",
821
+ year = "2019",
822
+ publisher = "Association for Computational Linguistics",
823
+ url = "https://arxiv.org/abs/1908.10084",
824
+ }
825
+ ```
826
+
827
+ #### CoSENTLoss
828
+ ```bibtex
829
+ @online{kexuefm-8847,
830
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
831
+ author={Su Jianlin},
832
+ year={2022},
833
+ month={Jan},
834
+ url={https://kexue.fm/archives/8847},
835
+ }
836
+ ```
837
+
838
+ <!--
839
+ ## Glossary
840
+
841
+ *Clearly define terms in order to be accessible across audiences.*
842
+ -->
843
+
844
+ <!--
845
+ ## Model Card Authors
846
+
847
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
848
+ -->
849
+
850
+ <!--
851
+ ## Model Card Contact
852
+
853
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
854
+ -->
checkpoints/checkpoint-3000/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoints/checkpoint-3000/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoints/checkpoint-3000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a2c326925e5cc5dcdefcb8950ca93a1976805e8cb3c1561b3ae7129a1697fce
3
+ size 135
checkpoints/checkpoint-3000/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoints/checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4562c87cb66f725fd95d3e278695e7586bddefba90259d4aa3ef413b201aeb29
3
+ size 135
checkpoints/checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10ad6f9f0decf1db33a9be9f4ecea3f5ae938a1f83e6c903905c9586578b47ae
3
+ size 130
checkpoints/checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:530667f8bb3b4eb2502733d678e9906b54c4e5fa4939048f31b477c1ce251b4b
3
+ size 129
checkpoints/checkpoint-3000/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
checkpoints/checkpoint-3000/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoints/checkpoint-3000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6f09c3f9b891e5b98dd3af9463dcab5a97d5265e288271395324a0577e6c05
3
+ size 133
checkpoints/checkpoint-3000/tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }
checkpoints/checkpoint-3000/trainer_state.json ADDED
@@ -0,0 +1,2293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 11.148285449490269,
5
+ "eval_steps": 150,
6
+ "global_step": 3000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03707136237256719,
13
+ "grad_norm": 53.36411666870117,
14
+ "learning_rate": 1.1152416356877324e-06,
15
+ "loss": 10.8165,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.07414272474513438,
20
+ "grad_norm": 61.33858871459961,
21
+ "learning_rate": 2.2304832713754648e-06,
22
+ "loss": 10.8463,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.11121408711770157,
27
+ "grad_norm": 67.16305541992188,
28
+ "learning_rate": 3.345724907063197e-06,
29
+ "loss": 10.821,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.14828544949026876,
34
+ "grad_norm": 62.08958053588867,
35
+ "learning_rate": 4.4609665427509296e-06,
36
+ "loss": 10.4704,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.18535681186283595,
41
+ "grad_norm": 53.839927673339844,
42
+ "learning_rate": 5.576208178438661e-06,
43
+ "loss": 10.8568,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.22242817423540315,
48
+ "grad_norm": 57.02272033691406,
49
+ "learning_rate": 6.691449814126394e-06,
50
+ "loss": 10.3005,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.2594995366079703,
55
+ "grad_norm": 88.16449737548828,
56
+ "learning_rate": 7.806691449814127e-06,
57
+ "loss": 9.6009,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.2965708989805375,
62
+ "grad_norm": 84.35252380371094,
63
+ "learning_rate": 8.921933085501859e-06,
64
+ "loss": 9.7448,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.3336422613531047,
69
+ "grad_norm": 77.93982696533203,
70
+ "learning_rate": 1.0037174721189593e-05,
71
+ "loss": 9.5922,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.3707136237256719,
76
+ "grad_norm": 56.669166564941406,
77
+ "learning_rate": 1.1152416356877323e-05,
78
+ "loss": 10.0919,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.4077849860982391,
83
+ "grad_norm": 56.652488708496094,
84
+ "learning_rate": 1.2267657992565056e-05,
85
+ "loss": 10.2733,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.4448563484708063,
90
+ "grad_norm": 63.472042083740234,
91
+ "learning_rate": 1.3382899628252788e-05,
92
+ "loss": 9.4547,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.4819277108433735,
97
+ "grad_norm": 78.0159912109375,
98
+ "learning_rate": 1.4498141263940521e-05,
99
+ "loss": 9.1738,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.5189990732159406,
104
+ "grad_norm": 68.1931381225586,
105
+ "learning_rate": 1.5613382899628255e-05,
106
+ "loss": 10.0876,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.5560704355885079,
111
+ "grad_norm": 49.315216064453125,
112
+ "learning_rate": 1.6728624535315986e-05,
113
+ "loss": 10.3721,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.5560704355885079,
118
+ "eval_loss": 2.559400796890259,
119
+ "eval_runtime": 34.304,
120
+ "eval_samples_per_second": 47.166,
121
+ "eval_steps_per_second": 6.763,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.593141797961075,
126
+ "grad_norm": 34.1899528503418,
127
+ "learning_rate": 1.7843866171003718e-05,
128
+ "loss": 10.4711,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.6302131603336423,
133
+ "grad_norm": 37.074134826660156,
134
+ "learning_rate": 1.895910780669145e-05,
135
+ "loss": 9.9383,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 0.6672845227062094,
140
+ "grad_norm": 49.323158264160156,
141
+ "learning_rate": 2.0074349442379185e-05,
142
+ "loss": 10.0448,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 0.7043558850787767,
147
+ "grad_norm": 53.07639694213867,
148
+ "learning_rate": 2.1189591078066917e-05,
149
+ "loss": 9.8467,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 0.7414272474513438,
154
+ "grad_norm": 38.345916748046875,
155
+ "learning_rate": 2.2304832713754645e-05,
156
+ "loss": 9.9434,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.7784986098239111,
161
+ "grad_norm": 47.55274963378906,
162
+ "learning_rate": 2.3420074349442377e-05,
163
+ "loss": 9.7912,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 0.8155699721964782,
168
+ "grad_norm": 59.17176055908203,
169
+ "learning_rate": 2.4535315985130112e-05,
170
+ "loss": 9.7905,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 0.8526413345690455,
175
+ "grad_norm": 52.57457733154297,
176
+ "learning_rate": 2.5650557620817844e-05,
177
+ "loss": 9.9412,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 0.8897126969416126,
182
+ "grad_norm": 42.251304626464844,
183
+ "learning_rate": 2.6765799256505576e-05,
184
+ "loss": 10.0084,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 0.9267840593141798,
189
+ "grad_norm": 46.63966369628906,
190
+ "learning_rate": 2.788104089219331e-05,
191
+ "loss": 10.0139,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 0.963855421686747,
196
+ "grad_norm": 27.772289276123047,
197
+ "learning_rate": 2.8996282527881043e-05,
198
+ "loss": 9.3794,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.0,
203
+ "grad_norm": 46.3179931640625,
204
+ "learning_rate": 2.9987608426270136e-05,
205
+ "loss": 9.5747,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.0370713623725671,
210
+ "grad_norm": 45.746551513671875,
211
+ "learning_rate": 2.98636926889715e-05,
212
+ "loss": 9.6763,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.0741427247451343,
217
+ "grad_norm": 49.50416564941406,
218
+ "learning_rate": 2.9739776951672864e-05,
219
+ "loss": 10.4789,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.1112140871177016,
224
+ "grad_norm": 43.72733688354492,
225
+ "learning_rate": 2.9615861214374226e-05,
226
+ "loss": 9.7244,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.1112140871177016,
231
+ "eval_loss": 2.6879734992980957,
232
+ "eval_runtime": 34.2522,
233
+ "eval_samples_per_second": 47.238,
234
+ "eval_steps_per_second": 6.773,
235
+ "step": 300
236
+ },
237
+ {
238
+ "epoch": 1.1482854494902688,
239
+ "grad_norm": 48.68376541137695,
240
+ "learning_rate": 2.9491945477075588e-05,
241
+ "loss": 9.9421,
242
+ "step": 310
243
+ },
244
+ {
245
+ "epoch": 1.185356811862836,
246
+ "grad_norm": 44.014747619628906,
247
+ "learning_rate": 2.9368029739776953e-05,
248
+ "loss": 9.5022,
249
+ "step": 320
250
+ },
251
+ {
252
+ "epoch": 1.222428174235403,
253
+ "grad_norm": 49.858642578125,
254
+ "learning_rate": 2.9244114002478315e-05,
255
+ "loss": 9.6801,
256
+ "step": 330
257
+ },
258
+ {
259
+ "epoch": 1.2594995366079704,
260
+ "grad_norm": 49.97459411621094,
261
+ "learning_rate": 2.9120198265179677e-05,
262
+ "loss": 9.25,
263
+ "step": 340
264
+ },
265
+ {
266
+ "epoch": 1.2965708989805376,
267
+ "grad_norm": 40.38698196411133,
268
+ "learning_rate": 2.8996282527881043e-05,
269
+ "loss": 10.2879,
270
+ "step": 350
271
+ },
272
+ {
273
+ "epoch": 1.3336422613531047,
274
+ "grad_norm": 29.797264099121094,
275
+ "learning_rate": 2.8872366790582405e-05,
276
+ "loss": 9.97,
277
+ "step": 360
278
+ },
279
+ {
280
+ "epoch": 1.3707136237256718,
281
+ "grad_norm": 43.83412551879883,
282
+ "learning_rate": 2.874845105328377e-05,
283
+ "loss": 9.3751,
284
+ "step": 370
285
+ },
286
+ {
287
+ "epoch": 1.407784986098239,
288
+ "grad_norm": 42.754154205322266,
289
+ "learning_rate": 2.8624535315985132e-05,
290
+ "loss": 9.8947,
291
+ "step": 380
292
+ },
293
+ {
294
+ "epoch": 1.4448563484708064,
295
+ "grad_norm": 50.08184051513672,
296
+ "learning_rate": 2.8500619578686494e-05,
297
+ "loss": 9.4987,
298
+ "step": 390
299
+ },
300
+ {
301
+ "epoch": 1.4819277108433735,
302
+ "grad_norm": 41.81029510498047,
303
+ "learning_rate": 2.8376703841387856e-05,
304
+ "loss": 10.1515,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 1.5189990732159406,
309
+ "grad_norm": 44.03816223144531,
310
+ "learning_rate": 2.8252788104089218e-05,
311
+ "loss": 10.0098,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 1.556070435588508,
316
+ "grad_norm": 42.871856689453125,
317
+ "learning_rate": 2.8128872366790583e-05,
318
+ "loss": 9.5566,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 1.5931417979610751,
323
+ "grad_norm": 44.18041229248047,
324
+ "learning_rate": 2.8004956629491945e-05,
325
+ "loss": 10.1925,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 1.6302131603336423,
330
+ "grad_norm": 30.012725830078125,
331
+ "learning_rate": 2.788104089219331e-05,
332
+ "loss": 9.7408,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 1.6672845227062094,
337
+ "grad_norm": 38.104827880859375,
338
+ "learning_rate": 2.7757125154894673e-05,
339
+ "loss": 9.6873,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 1.6672845227062094,
344
+ "eval_loss": 2.5061004161834717,
345
+ "eval_runtime": 34.2772,
346
+ "eval_samples_per_second": 47.203,
347
+ "eval_steps_per_second": 6.768,
348
+ "step": 450
349
+ },
350
+ {
351
+ "epoch": 1.7043558850787766,
352
+ "grad_norm": 42.93535232543945,
353
+ "learning_rate": 2.7633209417596035e-05,
354
+ "loss": 9.1932,
355
+ "step": 460
356
+ },
357
+ {
358
+ "epoch": 1.7414272474513437,
359
+ "grad_norm": 63.935279846191406,
360
+ "learning_rate": 2.75092936802974e-05,
361
+ "loss": 9.9204,
362
+ "step": 470
363
+ },
364
+ {
365
+ "epoch": 1.778498609823911,
366
+ "grad_norm": 30.906002044677734,
367
+ "learning_rate": 2.7385377942998762e-05,
368
+ "loss": 9.5151,
369
+ "step": 480
370
+ },
371
+ {
372
+ "epoch": 1.8155699721964782,
373
+ "grad_norm": 48.05679702758789,
374
+ "learning_rate": 2.7261462205700128e-05,
375
+ "loss": 9.8418,
376
+ "step": 490
377
+ },
378
+ {
379
+ "epoch": 1.8526413345690456,
380
+ "grad_norm": 56.36283874511719,
381
+ "learning_rate": 2.7137546468401486e-05,
382
+ "loss": 9.6943,
383
+ "step": 500
384
+ },
385
+ {
386
+ "epoch": 1.8897126969416127,
387
+ "grad_norm": 47.22933578491211,
388
+ "learning_rate": 2.7013630731102848e-05,
389
+ "loss": 9.6948,
390
+ "step": 510
391
+ },
392
+ {
393
+ "epoch": 1.9267840593141798,
394
+ "grad_norm": 36.110008239746094,
395
+ "learning_rate": 2.6889714993804214e-05,
396
+ "loss": 9.2274,
397
+ "step": 520
398
+ },
399
+ {
400
+ "epoch": 1.963855421686747,
401
+ "grad_norm": 37.13912582397461,
402
+ "learning_rate": 2.6765799256505576e-05,
403
+ "loss": 10.138,
404
+ "step": 530
405
+ },
406
+ {
407
+ "epoch": 2.0,
408
+ "grad_norm": 51.37559509277344,
409
+ "learning_rate": 2.664188351920694e-05,
410
+ "loss": 8.7934,
411
+ "step": 540
412
+ },
413
+ {
414
+ "epoch": 2.037071362372567,
415
+ "grad_norm": 42.32170104980469,
416
+ "learning_rate": 2.6517967781908303e-05,
417
+ "loss": 8.8304,
418
+ "step": 550
419
+ },
420
+ {
421
+ "epoch": 2.0741427247451343,
422
+ "grad_norm": 42.406219482421875,
423
+ "learning_rate": 2.6394052044609665e-05,
424
+ "loss": 8.9593,
425
+ "step": 560
426
+ },
427
+ {
428
+ "epoch": 2.1112140871177014,
429
+ "grad_norm": 52.097023010253906,
430
+ "learning_rate": 2.627013630731103e-05,
431
+ "loss": 9.0051,
432
+ "step": 570
433
+ },
434
+ {
435
+ "epoch": 2.1482854494902686,
436
+ "grad_norm": 83.86861419677734,
437
+ "learning_rate": 2.6146220570012392e-05,
438
+ "loss": 9.2829,
439
+ "step": 580
440
+ },
441
+ {
442
+ "epoch": 2.185356811862836,
443
+ "grad_norm": 38.229949951171875,
444
+ "learning_rate": 2.6022304832713758e-05,
445
+ "loss": 9.785,
446
+ "step": 590
447
+ },
448
+ {
449
+ "epoch": 2.2224281742354033,
450
+ "grad_norm": 50.322513580322266,
451
+ "learning_rate": 2.5898389095415116e-05,
452
+ "loss": 9.6401,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 2.2224281742354033,
457
+ "eval_loss": 2.448084592819214,
458
+ "eval_runtime": 34.2525,
459
+ "eval_samples_per_second": 47.237,
460
+ "eval_steps_per_second": 6.773,
461
+ "step": 600
462
+ },
463
+ {
464
+ "epoch": 2.266913809082484,
465
+ "grad_norm": 39.366676330566406,
466
+ "learning_rate": 2.5774473358116482e-05,
467
+ "loss": 8.7059,
468
+ "step": 610
469
+ },
470
+ {
471
+ "epoch": 2.303985171455051,
472
+ "grad_norm": 41.00213623046875,
473
+ "learning_rate": 2.5650557620817844e-05,
474
+ "loss": 9.1285,
475
+ "step": 620
476
+ },
477
+ {
478
+ "epoch": 2.341056533827618,
479
+ "grad_norm": 63.442169189453125,
480
+ "learning_rate": 2.5526641883519206e-05,
481
+ "loss": 9.3277,
482
+ "step": 630
483
+ },
484
+ {
485
+ "epoch": 2.3781278962001853,
486
+ "grad_norm": 51.54194641113281,
487
+ "learning_rate": 2.540272614622057e-05,
488
+ "loss": 9.1577,
489
+ "step": 640
490
+ },
491
+ {
492
+ "epoch": 2.4151992585727524,
493
+ "grad_norm": 57.583885192871094,
494
+ "learning_rate": 2.5278810408921933e-05,
495
+ "loss": 9.6032,
496
+ "step": 650
497
+ },
498
+ {
499
+ "epoch": 2.4522706209453196,
500
+ "grad_norm": 60.13545227050781,
501
+ "learning_rate": 2.51548946716233e-05,
502
+ "loss": 8.5451,
503
+ "step": 660
504
+ },
505
+ {
506
+ "epoch": 2.489341983317887,
507
+ "grad_norm": 139.85794067382812,
508
+ "learning_rate": 2.503097893432466e-05,
509
+ "loss": 8.6601,
510
+ "step": 670
511
+ },
512
+ {
513
+ "epoch": 2.5264133456904543,
514
+ "grad_norm": 160.73171997070312,
515
+ "learning_rate": 2.4907063197026023e-05,
516
+ "loss": 9.522,
517
+ "step": 680
518
+ },
519
+ {
520
+ "epoch": 2.5634847080630214,
521
+ "grad_norm": 190.7194366455078,
522
+ "learning_rate": 2.4783147459727385e-05,
523
+ "loss": 10.0619,
524
+ "step": 690
525
+ },
526
+ {
527
+ "epoch": 2.6005560704355886,
528
+ "grad_norm": 172.5655517578125,
529
+ "learning_rate": 2.4659231722428747e-05,
530
+ "loss": 9.6444,
531
+ "step": 700
532
+ },
533
+ {
534
+ "epoch": 2.6376274328081557,
535
+ "grad_norm": 280.9183044433594,
536
+ "learning_rate": 2.4535315985130112e-05,
537
+ "loss": 10.7593,
538
+ "step": 710
539
+ },
540
+ {
541
+ "epoch": 2.674698795180723,
542
+ "grad_norm": 118.03450775146484,
543
+ "learning_rate": 2.4411400247831474e-05,
544
+ "loss": 10.4432,
545
+ "step": 720
546
+ },
547
+ {
548
+ "epoch": 2.71177015755329,
549
+ "grad_norm": 332.662353515625,
550
+ "learning_rate": 2.428748451053284e-05,
551
+ "loss": 9.6033,
552
+ "step": 730
553
+ },
554
+ {
555
+ "epoch": 2.748841519925857,
556
+ "grad_norm": 129.18788146972656,
557
+ "learning_rate": 2.41635687732342e-05,
558
+ "loss": 9.108,
559
+ "step": 740
560
+ },
561
+ {
562
+ "epoch": 2.7859128822984243,
563
+ "grad_norm": 350.5856628417969,
564
+ "learning_rate": 2.4039653035935564e-05,
565
+ "loss": 9.884,
566
+ "step": 750
567
+ },
568
+ {
569
+ "epoch": 2.7859128822984243,
570
+ "eval_loss": 2.599517583847046,
571
+ "eval_runtime": 34.0592,
572
+ "eval_samples_per_second": 47.506,
573
+ "eval_steps_per_second": 6.812,
574
+ "step": 750
575
+ },
576
+ {
577
+ "epoch": 2.822984244670992,
578
+ "grad_norm": 285.14862060546875,
579
+ "learning_rate": 2.391573729863693e-05,
580
+ "loss": 11.3952,
581
+ "step": 760
582
+ },
583
+ {
584
+ "epoch": 2.860055607043559,
585
+ "grad_norm": 185.5862579345703,
586
+ "learning_rate": 2.379182156133829e-05,
587
+ "loss": 10.6798,
588
+ "step": 770
589
+ },
590
+ {
591
+ "epoch": 2.897126969416126,
592
+ "grad_norm": 77.20765686035156,
593
+ "learning_rate": 2.3667905824039656e-05,
594
+ "loss": 9.9795,
595
+ "step": 780
596
+ },
597
+ {
598
+ "epoch": 2.9341983317886933,
599
+ "grad_norm": 88.75109100341797,
600
+ "learning_rate": 2.3543990086741015e-05,
601
+ "loss": 9.3694,
602
+ "step": 790
603
+ },
604
+ {
605
+ "epoch": 2.9712696941612604,
606
+ "grad_norm": 53.416690826416016,
607
+ "learning_rate": 2.3420074349442377e-05,
608
+ "loss": 8.4631,
609
+ "step": 800
610
+ },
611
+ {
612
+ "epoch": 3.0111214087117704,
613
+ "grad_norm": 72.12966918945312,
614
+ "learning_rate": 2.3296158612143742e-05,
615
+ "loss": 9.3903,
616
+ "step": 810
617
+ },
618
+ {
619
+ "epoch": 3.0481927710843375,
620
+ "grad_norm": 159.3909912109375,
621
+ "learning_rate": 2.3172242874845104e-05,
622
+ "loss": 8.9608,
623
+ "step": 820
624
+ },
625
+ {
626
+ "epoch": 3.0852641334569046,
627
+ "grad_norm": 161.03713989257812,
628
+ "learning_rate": 2.304832713754647e-05,
629
+ "loss": 9.623,
630
+ "step": 830
631
+ },
632
+ {
633
+ "epoch": 3.122335495829472,
634
+ "grad_norm": 136.50045776367188,
635
+ "learning_rate": 2.2924411400247832e-05,
636
+ "loss": 8.5958,
637
+ "step": 840
638
+ },
639
+ {
640
+ "epoch": 3.159406858202039,
641
+ "grad_norm": 60.785926818847656,
642
+ "learning_rate": 2.2800495662949197e-05,
643
+ "loss": 8.6278,
644
+ "step": 850
645
+ },
646
+ {
647
+ "epoch": 3.196478220574606,
648
+ "grad_norm": 115.2509536743164,
649
+ "learning_rate": 2.267657992565056e-05,
650
+ "loss": 8.661,
651
+ "step": 860
652
+ },
653
+ {
654
+ "epoch": 3.233549582947173,
655
+ "grad_norm": 144.38912963867188,
656
+ "learning_rate": 2.255266418835192e-05,
657
+ "loss": 9.5836,
658
+ "step": 870
659
+ },
660
+ {
661
+ "epoch": 3.2706209453197403,
662
+ "grad_norm": 239.74520874023438,
663
+ "learning_rate": 2.2428748451053287e-05,
664
+ "loss": 8.6221,
665
+ "step": 880
666
+ },
667
+ {
668
+ "epoch": 3.3076923076923075,
669
+ "grad_norm": 215.12789916992188,
670
+ "learning_rate": 2.2304832713754645e-05,
671
+ "loss": 9.1995,
672
+ "step": 890
673
+ },
674
+ {
675
+ "epoch": 3.344763670064875,
676
+ "grad_norm": 113.77183532714844,
677
+ "learning_rate": 2.218091697645601e-05,
678
+ "loss": 8.6909,
679
+ "step": 900
680
+ },
681
+ {
682
+ "epoch": 3.344763670064875,
683
+ "eval_loss": 2.4246325492858887,
684
+ "eval_runtime": 34.1351,
685
+ "eval_samples_per_second": 47.4,
686
+ "eval_steps_per_second": 6.797,
687
+ "step": 900
688
+ },
689
+ {
690
+ "epoch": 3.381835032437442,
691
+ "grad_norm": 175.02731323242188,
692
+ "learning_rate": 2.2057001239157373e-05,
693
+ "loss": 8.7632,
694
+ "step": 910
695
+ },
696
+ {
697
+ "epoch": 3.4189063948100094,
698
+ "grad_norm": 142.76580810546875,
699
+ "learning_rate": 2.1933085501858735e-05,
700
+ "loss": 8.5604,
701
+ "step": 920
702
+ },
703
+ {
704
+ "epoch": 3.4559777571825765,
705
+ "grad_norm": 163.0391387939453,
706
+ "learning_rate": 2.18091697645601e-05,
707
+ "loss": 9.3871,
708
+ "step": 930
709
+ },
710
+ {
711
+ "epoch": 3.4930491195551436,
712
+ "grad_norm": 386.4294738769531,
713
+ "learning_rate": 2.1685254027261462e-05,
714
+ "loss": 9.6445,
715
+ "step": 940
716
+ },
717
+ {
718
+ "epoch": 3.5301204819277108,
719
+ "grad_norm": 86.92581939697266,
720
+ "learning_rate": 2.1561338289962827e-05,
721
+ "loss": 9.635,
722
+ "step": 950
723
+ },
724
+ {
725
+ "epoch": 3.567191844300278,
726
+ "grad_norm": 80.94845581054688,
727
+ "learning_rate": 2.143742255266419e-05,
728
+ "loss": 8.8689,
729
+ "step": 960
730
+ },
731
+ {
732
+ "epoch": 3.6042632066728455,
733
+ "grad_norm": 69.99708557128906,
734
+ "learning_rate": 2.1313506815365555e-05,
735
+ "loss": 9.1411,
736
+ "step": 970
737
+ },
738
+ {
739
+ "epoch": 3.641334569045412,
740
+ "grad_norm": 80.53229522705078,
741
+ "learning_rate": 2.1189591078066917e-05,
742
+ "loss": 8.7552,
743
+ "step": 980
744
+ },
745
+ {
746
+ "epoch": 3.67840593141798,
747
+ "grad_norm": 53.3475341796875,
748
+ "learning_rate": 2.1065675340768275e-05,
749
+ "loss": 8.5697,
750
+ "step": 990
751
+ },
752
+ {
753
+ "epoch": 3.715477293790547,
754
+ "grad_norm": 54.19875717163086,
755
+ "learning_rate": 2.094175960346964e-05,
756
+ "loss": 8.9008,
757
+ "step": 1000
758
+ },
759
+ {
760
+ "epoch": 3.752548656163114,
761
+ "grad_norm": 52.96628952026367,
762
+ "learning_rate": 2.0817843866171003e-05,
763
+ "loss": 8.9415,
764
+ "step": 1010
765
+ },
766
+ {
767
+ "epoch": 3.789620018535681,
768
+ "grad_norm": 64.08312225341797,
769
+ "learning_rate": 2.0693928128872368e-05,
770
+ "loss": 8.1303,
771
+ "step": 1020
772
+ },
773
+ {
774
+ "epoch": 3.8266913809082483,
775
+ "grad_norm": 68.22163391113281,
776
+ "learning_rate": 2.057001239157373e-05,
777
+ "loss": 8.241,
778
+ "step": 1030
779
+ },
780
+ {
781
+ "epoch": 3.8637627432808155,
782
+ "grad_norm": 66.70902252197266,
783
+ "learning_rate": 2.0446096654275092e-05,
784
+ "loss": 8.6969,
785
+ "step": 1040
786
+ },
787
+ {
788
+ "epoch": 3.9008341056533826,
789
+ "grad_norm": 49.94658279418945,
790
+ "learning_rate": 2.0322180916976458e-05,
791
+ "loss": 9.8392,
792
+ "step": 1050
793
+ },
794
+ {
795
+ "epoch": 3.9008341056533826,
796
+ "eval_loss": 2.533297300338745,
797
+ "eval_runtime": 34.1106,
798
+ "eval_samples_per_second": 47.434,
799
+ "eval_steps_per_second": 6.801,
800
+ "step": 1050
801
+ },
802
+ {
803
+ "epoch": 3.93790546802595,
804
+ "grad_norm": 73.9527816772461,
805
+ "learning_rate": 2.6765799256505576e-05,
806
+ "loss": 8.5934,
807
+ "step": 1060
808
+ },
809
+ {
810
+ "epoch": 3.974976830398517,
811
+ "grad_norm": 76.90135955810547,
812
+ "learning_rate": 2.6703841387856257e-05,
813
+ "loss": 8.006,
814
+ "step": 1070
815
+ },
816
+ {
817
+ "epoch": 4.014828544949027,
818
+ "grad_norm": 85.86236572265625,
819
+ "learning_rate": 2.664188351920694e-05,
820
+ "loss": 9.0081,
821
+ "step": 1080
822
+ },
823
+ {
824
+ "epoch": 4.051899907321594,
825
+ "grad_norm": 106.57842254638672,
826
+ "learning_rate": 2.6579925650557622e-05,
827
+ "loss": 8.6706,
828
+ "step": 1090
829
+ },
830
+ {
831
+ "epoch": 4.088971269694161,
832
+ "grad_norm": 68.10344696044922,
833
+ "learning_rate": 2.6517967781908303e-05,
834
+ "loss": 9.6146,
835
+ "step": 1100
836
+ },
837
+ {
838
+ "epoch": 4.126042632066729,
839
+ "grad_norm": 67.02091217041016,
840
+ "learning_rate": 2.6456009913258984e-05,
841
+ "loss": 9.225,
842
+ "step": 1110
843
+ },
844
+ {
845
+ "epoch": 4.163113994439295,
846
+ "grad_norm": 67.66644287109375,
847
+ "learning_rate": 2.6394052044609665e-05,
848
+ "loss": 8.7522,
849
+ "step": 1120
850
+ },
851
+ {
852
+ "epoch": 4.200185356811863,
853
+ "grad_norm": 59.26814651489258,
854
+ "learning_rate": 2.633209417596035e-05,
855
+ "loss": 9.0221,
856
+ "step": 1130
857
+ },
858
+ {
859
+ "epoch": 4.23725671918443,
860
+ "grad_norm": 88.07310485839844,
861
+ "learning_rate": 2.627013630731103e-05,
862
+ "loss": 9.6458,
863
+ "step": 1140
864
+ },
865
+ {
866
+ "epoch": 4.274328081556997,
867
+ "grad_norm": 69.33895874023438,
868
+ "learning_rate": 2.620817843866171e-05,
869
+ "loss": 8.7692,
870
+ "step": 1150
871
+ },
872
+ {
873
+ "epoch": 4.311399443929565,
874
+ "grad_norm": 43.823951721191406,
875
+ "learning_rate": 2.6146220570012392e-05,
876
+ "loss": 9.2874,
877
+ "step": 1160
878
+ },
879
+ {
880
+ "epoch": 4.348470806302132,
881
+ "grad_norm": 63.590980529785156,
882
+ "learning_rate": 2.6084262701363077e-05,
883
+ "loss": 8.9276,
884
+ "step": 1170
885
+ },
886
+ {
887
+ "epoch": 4.385542168674699,
888
+ "grad_norm": 43.4519157409668,
889
+ "learning_rate": 2.6022304832713758e-05,
890
+ "loss": 8.7444,
891
+ "step": 1180
892
+ },
893
+ {
894
+ "epoch": 4.422613531047266,
895
+ "grad_norm": 72.1529312133789,
896
+ "learning_rate": 2.5960346964064435e-05,
897
+ "loss": 8.7265,
898
+ "step": 1190
899
+ },
900
+ {
901
+ "epoch": 4.459684893419833,
902
+ "grad_norm": 101.67008972167969,
903
+ "learning_rate": 2.5898389095415116e-05,
904
+ "loss": 8.7642,
905
+ "step": 1200
906
+ },
907
+ {
908
+ "epoch": 4.459684893419833,
909
+ "eval_loss": 2.6471314430236816,
910
+ "eval_runtime": 34.2723,
911
+ "eval_samples_per_second": 47.21,
912
+ "eval_steps_per_second": 6.769,
913
+ "step": 1200
914
+ },
915
+ {
916
+ "epoch": 4.4967562557924,
917
+ "grad_norm": 66.03606414794922,
918
+ "learning_rate": 2.5836431226765797e-05,
919
+ "loss": 8.8917,
920
+ "step": 1210
921
+ },
922
+ {
923
+ "epoch": 4.533827618164968,
924
+ "grad_norm": 60.01662826538086,
925
+ "learning_rate": 2.5774473358116482e-05,
926
+ "loss": 9.2155,
927
+ "step": 1220
928
+ },
929
+ {
930
+ "epoch": 4.570898980537534,
931
+ "grad_norm": 83.86510467529297,
932
+ "learning_rate": 2.5712515489467163e-05,
933
+ "loss": 8.6101,
934
+ "step": 1230
935
+ },
936
+ {
937
+ "epoch": 4.607970342910102,
938
+ "grad_norm": 64.35486602783203,
939
+ "learning_rate": 2.5650557620817844e-05,
940
+ "loss": 8.9904,
941
+ "step": 1240
942
+ },
943
+ {
944
+ "epoch": 4.645041705282669,
945
+ "grad_norm": 60.44017791748047,
946
+ "learning_rate": 2.5588599752168525e-05,
947
+ "loss": 9.3272,
948
+ "step": 1250
949
+ },
950
+ {
951
+ "epoch": 4.682113067655236,
952
+ "grad_norm": 56.501102447509766,
953
+ "learning_rate": 2.5526641883519206e-05,
954
+ "loss": 7.9367,
955
+ "step": 1260
956
+ },
957
+ {
958
+ "epoch": 4.719184430027804,
959
+ "grad_norm": 65.01017761230469,
960
+ "learning_rate": 2.546468401486989e-05,
961
+ "loss": 8.5891,
962
+ "step": 1270
963
+ },
964
+ {
965
+ "epoch": 4.7562557924003706,
966
+ "grad_norm": 63.42623519897461,
967
+ "learning_rate": 2.540272614622057e-05,
968
+ "loss": 8.6286,
969
+ "step": 1280
970
+ },
971
+ {
972
+ "epoch": 4.793327154772938,
973
+ "grad_norm": 58.96747589111328,
974
+ "learning_rate": 2.5340768277571252e-05,
975
+ "loss": 7.9982,
976
+ "step": 1290
977
+ },
978
+ {
979
+ "epoch": 4.830398517145505,
980
+ "grad_norm": 96.77368927001953,
981
+ "learning_rate": 2.5278810408921933e-05,
982
+ "loss": 7.5587,
983
+ "step": 1300
984
+ },
985
+ {
986
+ "epoch": 4.867469879518072,
987
+ "grad_norm": 85.92269897460938,
988
+ "learning_rate": 2.5216852540272614e-05,
989
+ "loss": 7.9405,
990
+ "step": 1310
991
+ },
992
+ {
993
+ "epoch": 4.904541241890639,
994
+ "grad_norm": 86.37085723876953,
995
+ "learning_rate": 2.51548946716233e-05,
996
+ "loss": 9.7092,
997
+ "step": 1320
998
+ },
999
+ {
1000
+ "epoch": 4.941612604263207,
1001
+ "grad_norm": 65.88274383544922,
1002
+ "learning_rate": 2.509293680297398e-05,
1003
+ "loss": 8.1475,
1004
+ "step": 1330
1005
+ },
1006
+ {
1007
+ "epoch": 4.978683966635774,
1008
+ "grad_norm": 53.252742767333984,
1009
+ "learning_rate": 2.503097893432466e-05,
1010
+ "loss": 9.3603,
1011
+ "step": 1340
1012
+ },
1013
+ {
1014
+ "epoch": 5.014828544949027,
1015
+ "grad_norm": 182.35781860351562,
1016
+ "learning_rate": 2.4969021065675342e-05,
1017
+ "loss": 7.6621,
1018
+ "step": 1350
1019
+ },
1020
+ {
1021
+ "epoch": 5.014828544949027,
1022
+ "eval_loss": 2.8308892250061035,
1023
+ "eval_runtime": 34.1063,
1024
+ "eval_samples_per_second": 47.44,
1025
+ "eval_steps_per_second": 6.802,
1026
+ "step": 1350
1027
+ },
1028
+ {
1029
+ "epoch": 5.051899907321594,
1030
+ "grad_norm": 324.6659240722656,
1031
+ "learning_rate": 2.4907063197026023e-05,
1032
+ "loss": 9.2301,
1033
+ "step": 1360
1034
+ },
1035
+ {
1036
+ "epoch": 5.088971269694161,
1037
+ "grad_norm": 4839.4453125,
1038
+ "learning_rate": 2.4845105328376707e-05,
1039
+ "loss": 9.7789,
1040
+ "step": 1370
1041
+ },
1042
+ {
1043
+ "epoch": 5.126042632066729,
1044
+ "grad_norm": 408588.40625,
1045
+ "learning_rate": 2.4783147459727385e-05,
1046
+ "loss": 9.5359,
1047
+ "step": 1380
1048
+ },
1049
+ {
1050
+ "epoch": 5.163113994439295,
1051
+ "grad_norm": 932.5144653320312,
1052
+ "learning_rate": 2.4721189591078066e-05,
1053
+ "loss": 10.8065,
1054
+ "step": 1390
1055
+ },
1056
+ {
1057
+ "epoch": 5.200185356811863,
1058
+ "grad_norm": 148.0634765625,
1059
+ "learning_rate": 2.4659231722428747e-05,
1060
+ "loss": 10.0149,
1061
+ "step": 1400
1062
+ },
1063
+ {
1064
+ "epoch": 5.23725671918443,
1065
+ "grad_norm": 1214.7279052734375,
1066
+ "learning_rate": 2.459727385377943e-05,
1067
+ "loss": 10.2582,
1068
+ "step": 1410
1069
+ },
1070
+ {
1071
+ "epoch": 5.274328081556997,
1072
+ "grad_norm": 188.14292907714844,
1073
+ "learning_rate": 2.4535315985130112e-05,
1074
+ "loss": 10.16,
1075
+ "step": 1420
1076
+ },
1077
+ {
1078
+ "epoch": 5.311399443929565,
1079
+ "grad_norm": 388.7134094238281,
1080
+ "learning_rate": 2.4473358116480793e-05,
1081
+ "loss": 10.0763,
1082
+ "step": 1430
1083
+ },
1084
+ {
1085
+ "epoch": 5.348470806302132,
1086
+ "grad_norm": 270.61279296875,
1087
+ "learning_rate": 2.4411400247831474e-05,
1088
+ "loss": 9.5737,
1089
+ "step": 1440
1090
+ },
1091
+ {
1092
+ "epoch": 5.385542168674699,
1093
+ "grad_norm": 1637.854736328125,
1094
+ "learning_rate": 2.4349442379182155e-05,
1095
+ "loss": 10.4816,
1096
+ "step": 1450
1097
+ },
1098
+ {
1099
+ "epoch": 5.422613531047266,
1100
+ "grad_norm": 1118.7012939453125,
1101
+ "learning_rate": 2.428748451053284e-05,
1102
+ "loss": 8.6687,
1103
+ "step": 1460
1104
+ },
1105
+ {
1106
+ "epoch": 5.459684893419833,
1107
+ "grad_norm": 788.9707641601562,
1108
+ "learning_rate": 2.422552664188352e-05,
1109
+ "loss": 8.4066,
1110
+ "step": 1470
1111
+ },
1112
+ {
1113
+ "epoch": 5.4967562557924,
1114
+ "grad_norm": 185.22950744628906,
1115
+ "learning_rate": 2.41635687732342e-05,
1116
+ "loss": 9.386,
1117
+ "step": 1480
1118
+ },
1119
+ {
1120
+ "epoch": 5.533827618164968,
1121
+ "grad_norm": 257.726806640625,
1122
+ "learning_rate": 2.4101610904584883e-05,
1123
+ "loss": 8.3911,
1124
+ "step": 1490
1125
+ },
1126
+ {
1127
+ "epoch": 5.570898980537534,
1128
+ "grad_norm": 867.30908203125,
1129
+ "learning_rate": 2.4039653035935564e-05,
1130
+ "loss": 8.8025,
1131
+ "step": 1500
1132
+ },
1133
+ {
1134
+ "epoch": 5.570898980537534,
1135
+ "eval_loss": 2.5407650470733643,
1136
+ "eval_runtime": 34.0934,
1137
+ "eval_samples_per_second": 47.458,
1138
+ "eval_steps_per_second": 6.805,
1139
+ "step": 1500
1140
+ },
1141
+ {
1142
+ "epoch": 5.607970342910102,
1143
+ "grad_norm": 68.35711669921875,
1144
+ "learning_rate": 2.3977695167286248e-05,
1145
+ "loss": 8.7939,
1146
+ "step": 1510
1147
+ },
1148
+ {
1149
+ "epoch": 5.645041705282669,
1150
+ "grad_norm": 1419.1650390625,
1151
+ "learning_rate": 2.391573729863693e-05,
1152
+ "loss": 9.0903,
1153
+ "step": 1520
1154
+ },
1155
+ {
1156
+ "epoch": 5.682113067655236,
1157
+ "grad_norm": 60.88732147216797,
1158
+ "learning_rate": 2.385377942998761e-05,
1159
+ "loss": 8.9878,
1160
+ "step": 1530
1161
+ },
1162
+ {
1163
+ "epoch": 5.719184430027804,
1164
+ "grad_norm": 61.50148010253906,
1165
+ "learning_rate": 2.379182156133829e-05,
1166
+ "loss": 8.8642,
1167
+ "step": 1540
1168
+ },
1169
+ {
1170
+ "epoch": 5.7562557924003706,
1171
+ "grad_norm": 73.9307861328125,
1172
+ "learning_rate": 2.3729863692688972e-05,
1173
+ "loss": 8.8625,
1174
+ "step": 1550
1175
+ },
1176
+ {
1177
+ "epoch": 5.793327154772938,
1178
+ "grad_norm": 82.28329467773438,
1179
+ "learning_rate": 2.3667905824039656e-05,
1180
+ "loss": 8.4105,
1181
+ "step": 1560
1182
+ },
1183
+ {
1184
+ "epoch": 5.830398517145505,
1185
+ "grad_norm": 83.54141235351562,
1186
+ "learning_rate": 2.3605947955390337e-05,
1187
+ "loss": 9.0163,
1188
+ "step": 1570
1189
+ },
1190
+ {
1191
+ "epoch": 5.867469879518072,
1192
+ "grad_norm": 66.59397888183594,
1193
+ "learning_rate": 2.3543990086741015e-05,
1194
+ "loss": 8.8947,
1195
+ "step": 1580
1196
+ },
1197
+ {
1198
+ "epoch": 5.904541241890639,
1199
+ "grad_norm": 55.8841667175293,
1200
+ "learning_rate": 2.3482032218091696e-05,
1201
+ "loss": 8.5647,
1202
+ "step": 1590
1203
+ },
1204
+ {
1205
+ "epoch": 5.941612604263207,
1206
+ "grad_norm": 74.56892395019531,
1207
+ "learning_rate": 2.3420074349442377e-05,
1208
+ "loss": 7.7047,
1209
+ "step": 1600
1210
+ },
1211
+ {
1212
+ "epoch": 5.978683966635774,
1213
+ "grad_norm": 106.54405212402344,
1214
+ "learning_rate": 2.335811648079306e-05,
1215
+ "loss": 8.1484,
1216
+ "step": 1610
1217
+ },
1218
+ {
1219
+ "epoch": 6.014828544949027,
1220
+ "grad_norm": 107.8216781616211,
1221
+ "learning_rate": 2.3296158612143742e-05,
1222
+ "loss": 8.4079,
1223
+ "step": 1620
1224
+ },
1225
+ {
1226
+ "epoch": 6.051899907321594,
1227
+ "grad_norm": 100.98133087158203,
1228
+ "learning_rate": 2.3234200743494423e-05,
1229
+ "loss": 8.5027,
1230
+ "step": 1630
1231
+ },
1232
+ {
1233
+ "epoch": 6.088971269694161,
1234
+ "grad_norm": 67.31327819824219,
1235
+ "learning_rate": 2.3172242874845104e-05,
1236
+ "loss": 8.1805,
1237
+ "step": 1640
1238
+ },
1239
+ {
1240
+ "epoch": 6.126042632066729,
1241
+ "grad_norm": 61.10900115966797,
1242
+ "learning_rate": 2.311028500619579e-05,
1243
+ "loss": 8.4519,
1244
+ "step": 1650
1245
+ },
1246
+ {
1247
+ "epoch": 6.126042632066729,
1248
+ "eval_loss": 2.590090036392212,
1249
+ "eval_runtime": 34.1392,
1250
+ "eval_samples_per_second": 47.394,
1251
+ "eval_steps_per_second": 6.796,
1252
+ "step": 1650
1253
+ },
1254
+ {
1255
+ "epoch": 6.163113994439295,
1256
+ "grad_norm": 60.91183090209961,
1257
+ "learning_rate": 2.304832713754647e-05,
1258
+ "loss": 9.062,
1259
+ "step": 1660
1260
+ },
1261
+ {
1262
+ "epoch": 6.200185356811863,
1263
+ "grad_norm": 76.2873306274414,
1264
+ "learning_rate": 2.298636926889715e-05,
1265
+ "loss": 8.8499,
1266
+ "step": 1670
1267
+ },
1268
+ {
1269
+ "epoch": 6.23725671918443,
1270
+ "grad_norm": 74.2361068725586,
1271
+ "learning_rate": 2.2924411400247832e-05,
1272
+ "loss": 8.6576,
1273
+ "step": 1680
1274
+ },
1275
+ {
1276
+ "epoch": 6.274328081556997,
1277
+ "grad_norm": 84.99951934814453,
1278
+ "learning_rate": 2.2862453531598513e-05,
1279
+ "loss": 8.4652,
1280
+ "step": 1690
1281
+ },
1282
+ {
1283
+ "epoch": 6.311399443929565,
1284
+ "grad_norm": 86.40947723388672,
1285
+ "learning_rate": 2.2800495662949197e-05,
1286
+ "loss": 9.0782,
1287
+ "step": 1700
1288
+ },
1289
+ {
1290
+ "epoch": 6.348470806302132,
1291
+ "grad_norm": 75.45568084716797,
1292
+ "learning_rate": 2.2738537794299878e-05,
1293
+ "loss": 8.1532,
1294
+ "step": 1710
1295
+ },
1296
+ {
1297
+ "epoch": 6.385542168674699,
1298
+ "grad_norm": 86.65908813476562,
1299
+ "learning_rate": 2.267657992565056e-05,
1300
+ "loss": 8.5185,
1301
+ "step": 1720
1302
+ },
1303
+ {
1304
+ "epoch": 6.422613531047266,
1305
+ "grad_norm": 62.620758056640625,
1306
+ "learning_rate": 2.261462205700124e-05,
1307
+ "loss": 9.5908,
1308
+ "step": 1730
1309
+ },
1310
+ {
1311
+ "epoch": 6.459684893419833,
1312
+ "grad_norm": 73.63095092773438,
1313
+ "learning_rate": 2.255266418835192e-05,
1314
+ "loss": 8.4188,
1315
+ "step": 1740
1316
+ },
1317
+ {
1318
+ "epoch": 6.4967562557924,
1319
+ "grad_norm": 55.175045013427734,
1320
+ "learning_rate": 2.2490706319702606e-05,
1321
+ "loss": 8.1885,
1322
+ "step": 1750
1323
+ },
1324
+ {
1325
+ "epoch": 6.533827618164968,
1326
+ "grad_norm": 47.647621154785156,
1327
+ "learning_rate": 2.2428748451053287e-05,
1328
+ "loss": 8.7666,
1329
+ "step": 1760
1330
+ },
1331
+ {
1332
+ "epoch": 6.570898980537534,
1333
+ "grad_norm": 191.0419158935547,
1334
+ "learning_rate": 2.2366790582403964e-05,
1335
+ "loss": 8.6105,
1336
+ "step": 1770
1337
+ },
1338
+ {
1339
+ "epoch": 6.607970342910102,
1340
+ "grad_norm": 57.81939697265625,
1341
+ "learning_rate": 2.2304832713754645e-05,
1342
+ "loss": 8.664,
1343
+ "step": 1780
1344
+ },
1345
+ {
1346
+ "epoch": 6.645041705282669,
1347
+ "grad_norm": 85.04927825927734,
1348
+ "learning_rate": 2.2242874845105326e-05,
1349
+ "loss": 8.5294,
1350
+ "step": 1790
1351
+ },
1352
+ {
1353
+ "epoch": 6.682113067655236,
1354
+ "grad_norm": 55.604122161865234,
1355
+ "learning_rate": 2.218091697645601e-05,
1356
+ "loss": 9.1857,
1357
+ "step": 1800
1358
+ },
1359
+ {
1360
+ "epoch": 6.682113067655236,
1361
+ "eval_loss": 2.497358560562134,
1362
+ "eval_runtime": 34.0441,
1363
+ "eval_samples_per_second": 47.527,
1364
+ "eval_steps_per_second": 6.815,
1365
+ "step": 1800
1366
+ },
1367
+ {
1368
+ "epoch": 6.719184430027804,
1369
+ "grad_norm": 75.21812438964844,
1370
+ "learning_rate": 2.211895910780669e-05,
1371
+ "loss": 8.7053,
1372
+ "step": 1810
1373
+ },
1374
+ {
1375
+ "epoch": 6.7562557924003706,
1376
+ "grad_norm": 85.76676940917969,
1377
+ "learning_rate": 2.2057001239157373e-05,
1378
+ "loss": 8.1428,
1379
+ "step": 1820
1380
+ },
1381
+ {
1382
+ "epoch": 6.793327154772938,
1383
+ "grad_norm": 69.85575866699219,
1384
+ "learning_rate": 2.1995043370508054e-05,
1385
+ "loss": 8.4988,
1386
+ "step": 1830
1387
+ },
1388
+ {
1389
+ "epoch": 6.830398517145505,
1390
+ "grad_norm": 66.85325622558594,
1391
+ "learning_rate": 2.1933085501858735e-05,
1392
+ "loss": 8.4147,
1393
+ "step": 1840
1394
+ },
1395
+ {
1396
+ "epoch": 6.867469879518072,
1397
+ "grad_norm": 60.645294189453125,
1398
+ "learning_rate": 2.187112763320942e-05,
1399
+ "loss": 9.069,
1400
+ "step": 1850
1401
+ },
1402
+ {
1403
+ "epoch": 6.904541241890639,
1404
+ "grad_norm": 77.59921264648438,
1405
+ "learning_rate": 2.18091697645601e-05,
1406
+ "loss": 8.4405,
1407
+ "step": 1860
1408
+ },
1409
+ {
1410
+ "epoch": 6.941612604263207,
1411
+ "grad_norm": 56.27996826171875,
1412
+ "learning_rate": 2.174721189591078e-05,
1413
+ "loss": 9.2157,
1414
+ "step": 1870
1415
+ },
1416
+ {
1417
+ "epoch": 6.978683966635774,
1418
+ "grad_norm": 64.18400573730469,
1419
+ "learning_rate": 2.1685254027261462e-05,
1420
+ "loss": 9.5492,
1421
+ "step": 1880
1422
+ },
1423
+ {
1424
+ "epoch": 7.014828544949027,
1425
+ "grad_norm": 76.78484344482422,
1426
+ "learning_rate": 2.1623296158612143e-05,
1427
+ "loss": 8.1325,
1428
+ "step": 1890
1429
+ },
1430
+ {
1431
+ "epoch": 7.051899907321594,
1432
+ "grad_norm": 77.69871520996094,
1433
+ "learning_rate": 2.1561338289962827e-05,
1434
+ "loss": 8.324,
1435
+ "step": 1900
1436
+ },
1437
+ {
1438
+ "epoch": 7.088971269694161,
1439
+ "grad_norm": 102.43340301513672,
1440
+ "learning_rate": 2.149938042131351e-05,
1441
+ "loss": 7.7097,
1442
+ "step": 1910
1443
+ },
1444
+ {
1445
+ "epoch": 7.126042632066729,
1446
+ "grad_norm": 114.0189208984375,
1447
+ "learning_rate": 2.143742255266419e-05,
1448
+ "loss": 8.0982,
1449
+ "step": 1920
1450
+ },
1451
+ {
1452
+ "epoch": 7.163113994439295,
1453
+ "grad_norm": 66.60838317871094,
1454
+ "learning_rate": 2.137546468401487e-05,
1455
+ "loss": 7.7669,
1456
+ "step": 1930
1457
+ },
1458
+ {
1459
+ "epoch": 7.200185356811863,
1460
+ "grad_norm": 252.72503662109375,
1461
+ "learning_rate": 2.1313506815365555e-05,
1462
+ "loss": 7.809,
1463
+ "step": 1940
1464
+ },
1465
+ {
1466
+ "epoch": 7.23725671918443,
1467
+ "grad_norm": 91.0379409790039,
1468
+ "learning_rate": 2.1251548946716236e-05,
1469
+ "loss": 7.9729,
1470
+ "step": 1950
1471
+ },
1472
+ {
1473
+ "epoch": 7.23725671918443,
1474
+ "eval_loss": 2.610764741897583,
1475
+ "eval_runtime": 34.0774,
1476
+ "eval_samples_per_second": 47.48,
1477
+ "eval_steps_per_second": 6.808,
1478
+ "step": 1950
1479
+ },
1480
+ {
1481
+ "epoch": 7.274328081556997,
1482
+ "grad_norm": 96.09555053710938,
1483
+ "learning_rate": 2.1189591078066917e-05,
1484
+ "loss": 8.2125,
1485
+ "step": 1960
1486
+ },
1487
+ {
1488
+ "epoch": 7.311399443929565,
1489
+ "grad_norm": 68.51132202148438,
1490
+ "learning_rate": 2.1127633209417594e-05,
1491
+ "loss": 7.7403,
1492
+ "step": 1970
1493
+ },
1494
+ {
1495
+ "epoch": 7.348470806302132,
1496
+ "grad_norm": 94.45308685302734,
1497
+ "learning_rate": 2.1065675340768275e-05,
1498
+ "loss": 7.5494,
1499
+ "step": 1980
1500
+ },
1501
+ {
1502
+ "epoch": 7.385542168674699,
1503
+ "grad_norm": 56.785587310791016,
1504
+ "learning_rate": 2.100371747211896e-05,
1505
+ "loss": 8.2821,
1506
+ "step": 1990
1507
+ },
1508
+ {
1509
+ "epoch": 7.422613531047266,
1510
+ "grad_norm": 91.59173583984375,
1511
+ "learning_rate": 2.094175960346964e-05,
1512
+ "loss": 8.1644,
1513
+ "step": 2000
1514
+ },
1515
+ {
1516
+ "epoch": 7.459684893419833,
1517
+ "grad_norm": 78.57572174072266,
1518
+ "learning_rate": 2.0879801734820322e-05,
1519
+ "loss": 8.1664,
1520
+ "step": 2010
1521
+ },
1522
+ {
1523
+ "epoch": 7.4967562557924,
1524
+ "grad_norm": 71.83062744140625,
1525
+ "learning_rate": 2.0817843866171003e-05,
1526
+ "loss": 8.5876,
1527
+ "step": 2020
1528
+ },
1529
+ {
1530
+ "epoch": 7.533827618164968,
1531
+ "grad_norm": 74.75129699707031,
1532
+ "learning_rate": 2.0755885997521684e-05,
1533
+ "loss": 8.2753,
1534
+ "step": 2030
1535
+ },
1536
+ {
1537
+ "epoch": 7.570898980537534,
1538
+ "grad_norm": 96.26950073242188,
1539
+ "learning_rate": 2.0693928128872368e-05,
1540
+ "loss": 9.2057,
1541
+ "step": 2040
1542
+ },
1543
+ {
1544
+ "epoch": 7.607970342910102,
1545
+ "grad_norm": 96.87144470214844,
1546
+ "learning_rate": 2.063197026022305e-05,
1547
+ "loss": 8.0052,
1548
+ "step": 2050
1549
+ },
1550
+ {
1551
+ "epoch": 7.645041705282669,
1552
+ "grad_norm": 83.44422912597656,
1553
+ "learning_rate": 2.057001239157373e-05,
1554
+ "loss": 8.4954,
1555
+ "step": 2060
1556
+ },
1557
+ {
1558
+ "epoch": 7.682113067655236,
1559
+ "grad_norm": 86.1534194946289,
1560
+ "learning_rate": 2.050805452292441e-05,
1561
+ "loss": 8.0325,
1562
+ "step": 2070
1563
+ },
1564
+ {
1565
+ "epoch": 7.719184430027804,
1566
+ "grad_norm": 89.11744689941406,
1567
+ "learning_rate": 2.0446096654275092e-05,
1568
+ "loss": 8.2934,
1569
+ "step": 2080
1570
+ },
1571
+ {
1572
+ "epoch": 7.7562557924003706,
1573
+ "grad_norm": 60.81666946411133,
1574
+ "learning_rate": 2.0384138785625777e-05,
1575
+ "loss": 9.4019,
1576
+ "step": 2090
1577
+ },
1578
+ {
1579
+ "epoch": 7.793327154772938,
1580
+ "grad_norm": 82.93228912353516,
1581
+ "learning_rate": 2.0322180916976458e-05,
1582
+ "loss": 8.874,
1583
+ "step": 2100
1584
+ },
1585
+ {
1586
+ "epoch": 7.793327154772938,
1587
+ "eval_loss": 2.452894926071167,
1588
+ "eval_runtime": 34.0684,
1589
+ "eval_samples_per_second": 47.493,
1590
+ "eval_steps_per_second": 6.81,
1591
+ "step": 2100
1592
+ },
1593
+ {
1594
+ "epoch": 7.830398517145505,
1595
+ "grad_norm": 62.004817962646484,
1596
+ "learning_rate": 2.026022304832714e-05,
1597
+ "loss": 8.0985,
1598
+ "step": 2110
1599
+ },
1600
+ {
1601
+ "epoch": 7.867469879518072,
1602
+ "grad_norm": 72.79752349853516,
1603
+ "learning_rate": 2.019826517967782e-05,
1604
+ "loss": 8.9063,
1605
+ "step": 2120
1606
+ },
1607
+ {
1608
+ "epoch": 7.904541241890639,
1609
+ "grad_norm": 1507.2855224609375,
1610
+ "learning_rate": 2.01363073110285e-05,
1611
+ "loss": 8.6332,
1612
+ "step": 2130
1613
+ },
1614
+ {
1615
+ "epoch": 7.941612604263207,
1616
+ "grad_norm": 134.11378479003906,
1617
+ "learning_rate": 2.0074349442379185e-05,
1618
+ "loss": 9.4106,
1619
+ "step": 2140
1620
+ },
1621
+ {
1622
+ "epoch": 7.978683966635774,
1623
+ "grad_norm": 72.19046783447266,
1624
+ "learning_rate": 2.0012391573729866e-05,
1625
+ "loss": 8.2304,
1626
+ "step": 2150
1627
+ },
1628
+ {
1629
+ "epoch": 8.014828544949028,
1630
+ "grad_norm": 57.130165100097656,
1631
+ "learning_rate": 1.9950433705080544e-05,
1632
+ "loss": 7.9675,
1633
+ "step": 2160
1634
+ },
1635
+ {
1636
+ "epoch": 8.051899907321594,
1637
+ "grad_norm": 72.58036041259766,
1638
+ "learning_rate": 1.9888475836431225e-05,
1639
+ "loss": 7.602,
1640
+ "step": 2170
1641
+ },
1642
+ {
1643
+ "epoch": 8.088971269694161,
1644
+ "grad_norm": 91.77513885498047,
1645
+ "learning_rate": 1.982651796778191e-05,
1646
+ "loss": 7.9151,
1647
+ "step": 2180
1648
+ },
1649
+ {
1650
+ "epoch": 8.126042632066728,
1651
+ "grad_norm": 111.52696228027344,
1652
+ "learning_rate": 1.976456009913259e-05,
1653
+ "loss": 7.5653,
1654
+ "step": 2190
1655
+ },
1656
+ {
1657
+ "epoch": 8.163113994439296,
1658
+ "grad_norm": 74.9671401977539,
1659
+ "learning_rate": 1.970260223048327e-05,
1660
+ "loss": 7.1567,
1661
+ "step": 2200
1662
+ },
1663
+ {
1664
+ "epoch": 8.200185356811863,
1665
+ "grad_norm": 124.09498596191406,
1666
+ "learning_rate": 1.9640644361833952e-05,
1667
+ "loss": 8.1708,
1668
+ "step": 2210
1669
+ },
1670
+ {
1671
+ "epoch": 8.23725671918443,
1672
+ "grad_norm": 95.21754455566406,
1673
+ "learning_rate": 1.9578686493184633e-05,
1674
+ "loss": 7.0013,
1675
+ "step": 2220
1676
+ },
1677
+ {
1678
+ "epoch": 8.274328081556996,
1679
+ "grad_norm": 135.3839569091797,
1680
+ "learning_rate": 1.9516728624535318e-05,
1681
+ "loss": 7.5999,
1682
+ "step": 2230
1683
+ },
1684
+ {
1685
+ "epoch": 8.311399443929565,
1686
+ "grad_norm": 89.70751190185547,
1687
+ "learning_rate": 1.9454770755886e-05,
1688
+ "loss": 7.2028,
1689
+ "step": 2240
1690
+ },
1691
+ {
1692
+ "epoch": 8.348470806302132,
1693
+ "grad_norm": 70.08137512207031,
1694
+ "learning_rate": 1.939281288723668e-05,
1695
+ "loss": 8.3759,
1696
+ "step": 2250
1697
+ },
1698
+ {
1699
+ "epoch": 8.348470806302132,
1700
+ "eval_loss": 2.746619939804077,
1701
+ "eval_runtime": 34.0831,
1702
+ "eval_samples_per_second": 47.472,
1703
+ "eval_steps_per_second": 6.807,
1704
+ "step": 2250
1705
+ },
1706
+ {
1707
+ "epoch": 8.400370713623726,
1708
+ "grad_norm": 69.07305145263672,
1709
+ "learning_rate": 1.933085501858736e-05,
1710
+ "loss": 8.9083,
1711
+ "step": 2260
1712
+ },
1713
+ {
1714
+ "epoch": 8.437442075996293,
1715
+ "grad_norm": 66.43407440185547,
1716
+ "learning_rate": 1.926889714993804e-05,
1717
+ "loss": 6.9349,
1718
+ "step": 2270
1719
+ },
1720
+ {
1721
+ "epoch": 8.47451343836886,
1722
+ "grad_norm": 167.85784912109375,
1723
+ "learning_rate": 1.9206939281288726e-05,
1724
+ "loss": 7.5041,
1725
+ "step": 2280
1726
+ },
1727
+ {
1728
+ "epoch": 8.511584800741428,
1729
+ "grad_norm": 173.38304138183594,
1730
+ "learning_rate": 1.9144981412639407e-05,
1731
+ "loss": 7.3744,
1732
+ "step": 2290
1733
+ },
1734
+ {
1735
+ "epoch": 8.548656163113995,
1736
+ "grad_norm": 80.71511840820312,
1737
+ "learning_rate": 1.9083023543990088e-05,
1738
+ "loss": 8.6541,
1739
+ "step": 2300
1740
+ },
1741
+ {
1742
+ "epoch": 8.585727525486561,
1743
+ "grad_norm": 82.77088928222656,
1744
+ "learning_rate": 1.902106567534077e-05,
1745
+ "loss": 8.6305,
1746
+ "step": 2310
1747
+ },
1748
+ {
1749
+ "epoch": 8.62279888785913,
1750
+ "grad_norm": 55.3135871887207,
1751
+ "learning_rate": 1.895910780669145e-05,
1752
+ "loss": 8.2577,
1753
+ "step": 2320
1754
+ },
1755
+ {
1756
+ "epoch": 8.659870250231696,
1757
+ "grad_norm": 64.61204528808594,
1758
+ "learning_rate": 1.8897149938042134e-05,
1759
+ "loss": 7.6382,
1760
+ "step": 2330
1761
+ },
1762
+ {
1763
+ "epoch": 8.696941612604263,
1764
+ "grad_norm": 77.9918212890625,
1765
+ "learning_rate": 1.8835192069392815e-05,
1766
+ "loss": 8.114,
1767
+ "step": 2340
1768
+ },
1769
+ {
1770
+ "epoch": 8.73401297497683,
1771
+ "grad_norm": 50.139678955078125,
1772
+ "learning_rate": 1.8773234200743496e-05,
1773
+ "loss": 7.8875,
1774
+ "step": 2350
1775
+ },
1776
+ {
1777
+ "epoch": 8.771084337349398,
1778
+ "grad_norm": 241.43588256835938,
1779
+ "learning_rate": 1.8711276332094174e-05,
1780
+ "loss": 7.0444,
1781
+ "step": 2360
1782
+ },
1783
+ {
1784
+ "epoch": 8.808155699721965,
1785
+ "grad_norm": 133.25645446777344,
1786
+ "learning_rate": 1.8649318463444855e-05,
1787
+ "loss": 7.7393,
1788
+ "step": 2370
1789
+ },
1790
+ {
1791
+ "epoch": 8.845227062094532,
1792
+ "grad_norm": 94.1192855834961,
1793
+ "learning_rate": 1.858736059479554e-05,
1794
+ "loss": 8.8284,
1795
+ "step": 2380
1796
+ },
1797
+ {
1798
+ "epoch": 8.882298424467098,
1799
+ "grad_norm": 83.68805694580078,
1800
+ "learning_rate": 1.852540272614622e-05,
1801
+ "loss": 7.997,
1802
+ "step": 2390
1803
+ },
1804
+ {
1805
+ "epoch": 8.919369786839667,
1806
+ "grad_norm": 67.01426696777344,
1807
+ "learning_rate": 1.84634448574969e-05,
1808
+ "loss": 7.786,
1809
+ "step": 2400
1810
+ },
1811
+ {
1812
+ "epoch": 8.919369786839667,
1813
+ "eval_loss": 2.6791422367095947,
1814
+ "eval_runtime": 34.2417,
1815
+ "eval_samples_per_second": 47.252,
1816
+ "eval_steps_per_second": 6.775,
1817
+ "step": 2400
1818
+ },
1819
+ {
1820
+ "epoch": 8.956441149212234,
1821
+ "grad_norm": 72.36073303222656,
1822
+ "learning_rate": 1.8401486988847582e-05,
1823
+ "loss": 7.6257,
1824
+ "step": 2410
1825
+ },
1826
+ {
1827
+ "epoch": 8.9935125115848,
1828
+ "grad_norm": 70.3509521484375,
1829
+ "learning_rate": 1.8339529120198267e-05,
1830
+ "loss": 7.099,
1831
+ "step": 2420
1832
+ },
1833
+ {
1834
+ "epoch": 9.03336422613531,
1835
+ "grad_norm": 136.34727478027344,
1836
+ "learning_rate": 1.8277571251548948e-05,
1837
+ "loss": 8.041,
1838
+ "step": 2430
1839
+ },
1840
+ {
1841
+ "epoch": 9.070435588507877,
1842
+ "grad_norm": 81.48332214355469,
1843
+ "learning_rate": 1.821561338289963e-05,
1844
+ "loss": 7.8606,
1845
+ "step": 2440
1846
+ },
1847
+ {
1848
+ "epoch": 9.107506950880445,
1849
+ "grad_norm": 93.1724853515625,
1850
+ "learning_rate": 1.815365551425031e-05,
1851
+ "loss": 7.8551,
1852
+ "step": 2450
1853
+ },
1854
+ {
1855
+ "epoch": 9.144578313253012,
1856
+ "grad_norm": 132.82778930664062,
1857
+ "learning_rate": 1.809169764560099e-05,
1858
+ "loss": 7.3977,
1859
+ "step": 2460
1860
+ },
1861
+ {
1862
+ "epoch": 9.181649675625579,
1863
+ "grad_norm": 102.73971557617188,
1864
+ "learning_rate": 1.8029739776951675e-05,
1865
+ "loss": 7.8721,
1866
+ "step": 2470
1867
+ },
1868
+ {
1869
+ "epoch": 9.218721037998147,
1870
+ "grad_norm": 106.7470932006836,
1871
+ "learning_rate": 1.7967781908302356e-05,
1872
+ "loss": 7.5839,
1873
+ "step": 2480
1874
+ },
1875
+ {
1876
+ "epoch": 9.255792400370714,
1877
+ "grad_norm": 84.64981842041016,
1878
+ "learning_rate": 1.7905824039653037e-05,
1879
+ "loss": 7.1823,
1880
+ "step": 2490
1881
+ },
1882
+ {
1883
+ "epoch": 9.29286376274328,
1884
+ "grad_norm": 85.59486389160156,
1885
+ "learning_rate": 1.7843866171003718e-05,
1886
+ "loss": 7.5513,
1887
+ "step": 2500
1888
+ },
1889
+ {
1890
+ "epoch": 9.329935125115847,
1891
+ "grad_norm": 89.53803253173828,
1892
+ "learning_rate": 1.77819083023544e-05,
1893
+ "loss": 8.0879,
1894
+ "step": 2510
1895
+ },
1896
+ {
1897
+ "epoch": 9.367006487488416,
1898
+ "grad_norm": 43.886898040771484,
1899
+ "learning_rate": 1.7719950433705084e-05,
1900
+ "loss": 7.5694,
1901
+ "step": 2520
1902
+ },
1903
+ {
1904
+ "epoch": 9.404077849860982,
1905
+ "grad_norm": 73.4898910522461,
1906
+ "learning_rate": 1.7657992565055765e-05,
1907
+ "loss": 7.3436,
1908
+ "step": 2530
1909
+ },
1910
+ {
1911
+ "epoch": 9.44114921223355,
1912
+ "grad_norm": 100.42314147949219,
1913
+ "learning_rate": 1.7596034696406446e-05,
1914
+ "loss": 6.9425,
1915
+ "step": 2540
1916
+ },
1917
+ {
1918
+ "epoch": 9.478220574606116,
1919
+ "grad_norm": 121.53675079345703,
1920
+ "learning_rate": 1.7534076827757123e-05,
1921
+ "loss": 7.9461,
1922
+ "step": 2550
1923
+ },
1924
+ {
1925
+ "epoch": 9.478220574606116,
1926
+ "eval_loss": 2.6608545780181885,
1927
+ "eval_runtime": 34.2437,
1928
+ "eval_samples_per_second": 47.25,
1929
+ "eval_steps_per_second": 6.775,
1930
+ "step": 2550
1931
+ },
1932
+ {
1933
+ "epoch": 9.515291936978684,
1934
+ "grad_norm": 83.28184509277344,
1935
+ "learning_rate": 1.7472118959107804e-05,
1936
+ "loss": 6.782,
1937
+ "step": 2560
1938
+ },
1939
+ {
1940
+ "epoch": 9.552363299351251,
1941
+ "grad_norm": 81.46753692626953,
1942
+ "learning_rate": 1.741016109045849e-05,
1943
+ "loss": 7.3027,
1944
+ "step": 2570
1945
+ },
1946
+ {
1947
+ "epoch": 9.589434661723818,
1948
+ "grad_norm": 77.35752868652344,
1949
+ "learning_rate": 1.734820322180917e-05,
1950
+ "loss": 7.3348,
1951
+ "step": 2580
1952
+ },
1953
+ {
1954
+ "epoch": 9.626506024096386,
1955
+ "grad_norm": 77.17479705810547,
1956
+ "learning_rate": 1.728624535315985e-05,
1957
+ "loss": 7.7864,
1958
+ "step": 2590
1959
+ },
1960
+ {
1961
+ "epoch": 9.663577386468953,
1962
+ "grad_norm": 103.42965698242188,
1963
+ "learning_rate": 1.722428748451053e-05,
1964
+ "loss": 6.3552,
1965
+ "step": 2600
1966
+ },
1967
+ {
1968
+ "epoch": 9.70064874884152,
1969
+ "grad_norm": 103.3230972290039,
1970
+ "learning_rate": 1.7162329615861213e-05,
1971
+ "loss": 7.151,
1972
+ "step": 2610
1973
+ },
1974
+ {
1975
+ "epoch": 9.737720111214086,
1976
+ "grad_norm": 91.23753356933594,
1977
+ "learning_rate": 1.7100371747211897e-05,
1978
+ "loss": 6.1664,
1979
+ "step": 2620
1980
+ },
1981
+ {
1982
+ "epoch": 9.774791473586655,
1983
+ "grad_norm": 68.76666259765625,
1984
+ "learning_rate": 1.7038413878562578e-05,
1985
+ "loss": 6.0398,
1986
+ "step": 2630
1987
+ },
1988
+ {
1989
+ "epoch": 9.811862835959221,
1990
+ "grad_norm": 112.56900787353516,
1991
+ "learning_rate": 1.697645600991326e-05,
1992
+ "loss": 7.0452,
1993
+ "step": 2640
1994
+ },
1995
+ {
1996
+ "epoch": 9.848934198331788,
1997
+ "grad_norm": 142.0828399658203,
1998
+ "learning_rate": 1.691449814126394e-05,
1999
+ "loss": 7.2457,
2000
+ "step": 2650
2001
+ },
2002
+ {
2003
+ "epoch": 9.886005560704357,
2004
+ "grad_norm": 149.853515625,
2005
+ "learning_rate": 1.685254027261462e-05,
2006
+ "loss": 6.7531,
2007
+ "step": 2660
2008
+ },
2009
+ {
2010
+ "epoch": 9.923076923076923,
2011
+ "grad_norm": 107.76028442382812,
2012
+ "learning_rate": 1.6790582403965305e-05,
2013
+ "loss": 6.7149,
2014
+ "step": 2670
2015
+ },
2016
+ {
2017
+ "epoch": 9.96014828544949,
2018
+ "grad_norm": 83.82595825195312,
2019
+ "learning_rate": 1.6728624535315986e-05,
2020
+ "loss": 6.4635,
2021
+ "step": 2680
2022
+ },
2023
+ {
2024
+ "epoch": 9.997219647822057,
2025
+ "grad_norm": 106.68073272705078,
2026
+ "learning_rate": 1.6666666666666667e-05,
2027
+ "loss": 6.2237,
2028
+ "step": 2690
2029
+ },
2030
+ {
2031
+ "epoch": 10.037071362372567,
2032
+ "grad_norm": 78.0780029296875,
2033
+ "learning_rate": 1.660470879801735e-05,
2034
+ "loss": 6.1798,
2035
+ "step": 2700
2036
+ },
2037
+ {
2038
+ "epoch": 10.037071362372567,
2039
+ "eval_loss": 2.993870735168457,
2040
+ "eval_runtime": 34.3527,
2041
+ "eval_samples_per_second": 47.1,
2042
+ "eval_steps_per_second": 6.753,
2043
+ "step": 2700
2044
+ },
2045
+ {
2046
+ "epoch": 10.074142724745135,
2047
+ "grad_norm": 177.5696563720703,
2048
+ "learning_rate": 1.6542750929368033e-05,
2049
+ "loss": 7.2224,
2050
+ "step": 2710
2051
+ },
2052
+ {
2053
+ "epoch": 10.111214087117702,
2054
+ "grad_norm": 134.7563018798828,
2055
+ "learning_rate": 1.6480793060718714e-05,
2056
+ "loss": 6.5327,
2057
+ "step": 2720
2058
+ },
2059
+ {
2060
+ "epoch": 10.148285449490269,
2061
+ "grad_norm": 122.22810363769531,
2062
+ "learning_rate": 1.6418835192069395e-05,
2063
+ "loss": 7.4686,
2064
+ "step": 2730
2065
+ },
2066
+ {
2067
+ "epoch": 10.185356811862835,
2068
+ "grad_norm": 137.185302734375,
2069
+ "learning_rate": 1.6356877323420076e-05,
2070
+ "loss": 6.1404,
2071
+ "step": 2740
2072
+ },
2073
+ {
2074
+ "epoch": 10.222428174235404,
2075
+ "grad_norm": 100.84989166259766,
2076
+ "learning_rate": 1.6294919454770753e-05,
2077
+ "loss": 7.0005,
2078
+ "step": 2750
2079
+ },
2080
+ {
2081
+ "epoch": 10.25949953660797,
2082
+ "grad_norm": 122.00653839111328,
2083
+ "learning_rate": 1.6232961586121438e-05,
2084
+ "loss": 5.7726,
2085
+ "step": 2760
2086
+ },
2087
+ {
2088
+ "epoch": 10.296570898980537,
2089
+ "grad_norm": 172.2955780029297,
2090
+ "learning_rate": 1.617100371747212e-05,
2091
+ "loss": 6.5327,
2092
+ "step": 2770
2093
+ },
2094
+ {
2095
+ "epoch": 10.333642261353106,
2096
+ "grad_norm": 195.36851501464844,
2097
+ "learning_rate": 1.61090458488228e-05,
2098
+ "loss": 7.5015,
2099
+ "step": 2780
2100
+ },
2101
+ {
2102
+ "epoch": 10.370713623725672,
2103
+ "grad_norm": 135.3350372314453,
2104
+ "learning_rate": 1.604708798017348e-05,
2105
+ "loss": 6.5526,
2106
+ "step": 2790
2107
+ },
2108
+ {
2109
+ "epoch": 10.407784986098239,
2110
+ "grad_norm": 106.01554870605469,
2111
+ "learning_rate": 1.5985130111524162e-05,
2112
+ "loss": 6.2078,
2113
+ "step": 2800
2114
+ },
2115
+ {
2116
+ "epoch": 10.444856348470806,
2117
+ "grad_norm": 104.4194564819336,
2118
+ "learning_rate": 1.5923172242874846e-05,
2119
+ "loss": 6.1,
2120
+ "step": 2810
2121
+ },
2122
+ {
2123
+ "epoch": 10.481927710843374,
2124
+ "grad_norm": 118.46540069580078,
2125
+ "learning_rate": 1.5861214374225527e-05,
2126
+ "loss": 7.1027,
2127
+ "step": 2820
2128
+ },
2129
+ {
2130
+ "epoch": 10.51899907321594,
2131
+ "grad_norm": 108.23471069335938,
2132
+ "learning_rate": 1.5799256505576208e-05,
2133
+ "loss": 8.639,
2134
+ "step": 2830
2135
+ },
2136
+ {
2137
+ "epoch": 10.556070435588508,
2138
+ "grad_norm": 144.46780395507812,
2139
+ "learning_rate": 1.573729863692689e-05,
2140
+ "loss": 6.9937,
2141
+ "step": 2840
2142
+ },
2143
+ {
2144
+ "epoch": 10.593141797961074,
2145
+ "grad_norm": 108.4492416381836,
2146
+ "learning_rate": 1.567534076827757e-05,
2147
+ "loss": 7.2734,
2148
+ "step": 2850
2149
+ },
2150
+ {
2151
+ "epoch": 10.593141797961074,
2152
+ "eval_loss": 2.8532466888427734,
2153
+ "eval_runtime": 34.3677,
2154
+ "eval_samples_per_second": 47.079,
2155
+ "eval_steps_per_second": 6.751,
2156
+ "step": 2850
2157
+ },
2158
+ {
2159
+ "epoch": 10.630213160333643,
2160
+ "grad_norm": 143.1586151123047,
2161
+ "learning_rate": 1.5613382899628255e-05,
2162
+ "loss": 7.6321,
2163
+ "step": 2860
2164
+ },
2165
+ {
2166
+ "epoch": 10.66728452270621,
2167
+ "grad_norm": 98.63433837890625,
2168
+ "learning_rate": 1.5551425030978936e-05,
2169
+ "loss": 7.5788,
2170
+ "step": 2870
2171
+ },
2172
+ {
2173
+ "epoch": 10.704355885078776,
2174
+ "grad_norm": 90.4648666381836,
2175
+ "learning_rate": 1.5489467162329617e-05,
2176
+ "loss": 6.7864,
2177
+ "step": 2880
2178
+ },
2179
+ {
2180
+ "epoch": 10.741427247451345,
2181
+ "grad_norm": 141.69007873535156,
2182
+ "learning_rate": 1.5427509293680298e-05,
2183
+ "loss": 7.4237,
2184
+ "step": 2890
2185
+ },
2186
+ {
2187
+ "epoch": 10.778498609823911,
2188
+ "grad_norm": 126.74280548095703,
2189
+ "learning_rate": 1.536555142503098e-05,
2190
+ "loss": 6.9813,
2191
+ "step": 2900
2192
+ },
2193
+ {
2194
+ "epoch": 10.815569972196478,
2195
+ "grad_norm": 82.08953094482422,
2196
+ "learning_rate": 1.5303593556381663e-05,
2197
+ "loss": 6.6884,
2198
+ "step": 2910
2199
+ },
2200
+ {
2201
+ "epoch": 10.852641334569045,
2202
+ "grad_norm": 123.8572998046875,
2203
+ "learning_rate": 1.5241635687732344e-05,
2204
+ "loss": 6.7464,
2205
+ "step": 2920
2206
+ },
2207
+ {
2208
+ "epoch": 10.889712696941613,
2209
+ "grad_norm": 132.33477783203125,
2210
+ "learning_rate": 1.5179677819083025e-05,
2211
+ "loss": 7.7989,
2212
+ "step": 2930
2213
+ },
2214
+ {
2215
+ "epoch": 10.92678405931418,
2216
+ "grad_norm": 81.7636489868164,
2217
+ "learning_rate": 1.5117719950433704e-05,
2218
+ "loss": 7.3568,
2219
+ "step": 2940
2220
+ },
2221
+ {
2222
+ "epoch": 10.963855421686747,
2223
+ "grad_norm": 244.56277465820312,
2224
+ "learning_rate": 1.5055762081784385e-05,
2225
+ "loss": 8.6706,
2226
+ "step": 2950
2227
+ },
2228
+ {
2229
+ "epoch": 11.0,
2230
+ "grad_norm": 121.42695617675781,
2231
+ "learning_rate": 1.4993804213135068e-05,
2232
+ "loss": 6.5687,
2233
+ "step": 2960
2234
+ },
2235
+ {
2236
+ "epoch": 11.037071362372567,
2237
+ "grad_norm": 145.1683349609375,
2238
+ "learning_rate": 1.493184634448575e-05,
2239
+ "loss": 5.8992,
2240
+ "step": 2970
2241
+ },
2242
+ {
2243
+ "epoch": 11.074142724745135,
2244
+ "grad_norm": 109.68660736083984,
2245
+ "learning_rate": 1.4869888475836432e-05,
2246
+ "loss": 6.4543,
2247
+ "step": 2980
2248
+ },
2249
+ {
2250
+ "epoch": 11.111214087117702,
2251
+ "grad_norm": 93.12600708007812,
2252
+ "learning_rate": 1.4807930607187113e-05,
2253
+ "loss": 6.1386,
2254
+ "step": 2990
2255
+ },
2256
+ {
2257
+ "epoch": 11.148285449490269,
2258
+ "grad_norm": 167.23182678222656,
2259
+ "learning_rate": 1.4745972738537794e-05,
2260
+ "loss": 6.9047,
2261
+ "step": 3000
2262
+ },
2263
+ {
2264
+ "epoch": 11.148285449490269,
2265
+ "eval_loss": 2.9146969318389893,
2266
+ "eval_runtime": 34.386,
2267
+ "eval_samples_per_second": 47.054,
2268
+ "eval_steps_per_second": 6.747,
2269
+ "step": 3000
2270
+ }
2271
+ ],
2272
+ "logging_steps": 10,
2273
+ "max_steps": 5380,
2274
+ "num_input_tokens_seen": 0,
2275
+ "num_train_epochs": 20,
2276
+ "save_steps": 150,
2277
+ "stateful_callbacks": {
2278
+ "TrainerControl": {
2279
+ "args": {
2280
+ "should_epoch_stop": false,
2281
+ "should_evaluate": false,
2282
+ "should_log": false,
2283
+ "should_save": true,
2284
+ "should_training_stop": false
2285
+ },
2286
+ "attributes": {}
2287
+ }
2288
+ },
2289
+ "total_flos": 0.0,
2290
+ "train_batch_size": 7,
2291
+ "trial_name": null,
2292
+ "trial_params": null
2293
+ }
checkpoints/checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda94467724e48ac975735648aa63a75558d48b6c993506e918a3476acf80697
3
+ size 129
checkpoints/checkpoint-4050/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoints/checkpoint-4050/README.md ADDED
@@ -0,0 +1,962 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7552
8
+ - loss:CoSENTLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: How are calibration points linked to equipment?
12
+ sentences:
13
+ - 'How are flow computers and measurement systems related?
14
+
15
+ Flow computers can have multiple systems assigned to them. However, a measurement
16
+ system can only be assigned to one flow computer.
17
+
18
+
19
+ Database terminology:
20
+
21
+ In the database, this relationship is referred to as:
22
+
23
+ - Meter streams
24
+
25
+ - Meter runs
26
+
27
+ - Sections
28
+
29
+
30
+ Storage of the relationship:
31
+
32
+ The relationship between a flow computer and its assigned measurement system is
33
+ stored in a special table.
34
+
35
+
36
+ User context:
37
+
38
+ When a user refers to a "meter stream," they are indicating that they are searching
39
+ for a measurement system assigned to a specific flow computer.'
40
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
41
+ \ daily or hourly reports to provide users with operational data. These reports\
42
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
43
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
44
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
45
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
46
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
47
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
48
+ \ are linked to a Modbus table. This table contains the names corresponding to\
49
+ \ each value in the reports, making it easier to interpret the data."
50
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
51
+ \ and reliability of results obtained from equipment or measurement systems. It\
52
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
53
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
54
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
55
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
56
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
57
+ \ serves as a starting point for further calculations related to the equipment.\n\
58
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
59
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
60
+ \ the individual variables (magnitudes) and represents the combined margin of\
61
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
62
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
63
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
64
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
65
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
66
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
67
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
68
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
69
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
70
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
71
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
72
+ - To find the uncertainty of the measurement system, join the measurement systems\
73
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
74
+ \ of a specific variable (magnitude), join the measurement systems table with\
75
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
76
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
77
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
78
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
79
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
80
+ \ systems table + uncertainty of magnitudes table)."
81
+ - source_sentence: What is the primary key of the flow computer table?
82
+ sentences:
83
+ - 'What is equipment calibration?
84
+
85
+ Calibration is a metrological verification process used to ensure the accuracy
86
+ of measurement equipment. It is performed periodically, based on intervals set
87
+ by the company or a regulatory body.
88
+
89
+
90
+ Purpose of calibration:
91
+
92
+ The calibration process corrects any deviations in how the equipment measures
93
+ physical magnitudes (variables). This ensures the equipment provides accurate
94
+ and reliable data.
95
+
96
+
97
+ Calibration cycles:
98
+
99
+ There are two main calibration cycles:
100
+
101
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
102
+ are made. This cycle is almost always implemented.
103
+
104
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
105
+ are made. This cycle is used depending on regulatory requirements.
106
+
107
+
108
+ Calibration uncertainty:
109
+
110
+ - Uncertainty is included in the results of a calibration.
111
+
112
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
113
+ which also affects the uncertainty of the measured variable or magnitude.'
114
+ - 'What is equipment calibration?
115
+
116
+ Calibration is a metrological verification process used to ensure the accuracy
117
+ of measurement equipment. It is performed periodically, based on intervals set
118
+ by the company or a regulatory body.
119
+
120
+
121
+ Purpose of calibration:
122
+
123
+ The calibration process corrects any deviations in how the equipment measures
124
+ physical magnitudes (variables). This ensures the equipment provides accurate
125
+ and reliable data.
126
+
127
+
128
+ Calibration cycles:
129
+
130
+ There are two main calibration cycles:
131
+
132
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
133
+ are made. This cycle is almost always implemented.
134
+
135
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
136
+ are made. This cycle is used depending on regulatory requirements.
137
+
138
+
139
+ Calibration uncertainty:
140
+
141
+ - Uncertainty is included in the results of a calibration.
142
+
143
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
144
+ which also affects the uncertainty of the measured variable or magnitude.'
145
+ - "How does a flow computer generate and store reports?\nA flow computer generates\
146
+ \ daily or hourly reports to provide users with operational data. These reports\
147
+ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
148
+ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\
149
+ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
150
+ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
151
+ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\
152
+ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
153
+ \ are linked to a Modbus table. This table contains the names corresponding to\
154
+ \ each value in the reports, making it easier to interpret the data."
155
+ - source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
156
+ result for the specified tag and date?
157
+ sentences:
158
+ - 'What is equipment calibration?
159
+
160
+ Calibration is a metrological verification process used to ensure the accuracy
161
+ of measurement equipment. It is performed periodically, based on intervals set
162
+ by the company or a regulatory body.
163
+
164
+
165
+ Purpose of calibration:
166
+
167
+ The calibration process corrects any deviations in how the equipment measures
168
+ physical magnitudes (variables). This ensures the equipment provides accurate
169
+ and reliable data.
170
+
171
+
172
+ Calibration cycles:
173
+
174
+ There are two main calibration cycles:
175
+
176
+ 1. As-found: Represents the equipment''s measurement accuracy before any adjustments
177
+ are made. This cycle is almost always implemented.
178
+
179
+ 2. As-left: Represents the equipment''s measurement accuracy after adjustments
180
+ are made. This cycle is used depending on regulatory requirements.
181
+
182
+
183
+ Calibration uncertainty:
184
+
185
+ - Uncertainty is included in the results of a calibration.
186
+
187
+ - Calibration uncertainty refers to the margin of error in the device''s measurements,
188
+ which also affects the uncertainty of the measured variable or magnitude.'
189
+ - 'What kind of data store an equipment?
190
+
191
+ Equipments can capture meteorological data, such as pressure, temperature, and
192
+ volume (magnitudes). This data is essential for users to perform various calculations.
193
+
194
+
195
+ Data storage:
196
+
197
+ - The measured values are stored in a special table in the database for magnitudes.
198
+ This table contains the values of the variables captured by the equipments.
199
+
200
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
201
+ temperature, or volume readings). **They are not calculated values**, such as
202
+ uncertainty.
203
+
204
+ - The values stored in the variable values table are **different** from variable
205
+ uncertainty values, which are calculated separately and represent the margin of
206
+ error.
207
+
208
+
209
+ Accessing the data:
210
+
211
+ - Users typically access the data by referring to the readings from the measurement
212
+ system, not directly from the individual equipments.
213
+
214
+ - The readings are stored in a "variable values" table within the database.
215
+
216
+
217
+ Linking variable names:
218
+
219
+ If the user needs to know the name of a variable, they must link the data to another
220
+ table that stores information about the types of variables.'
221
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
222
+ \ and reliability of results obtained from equipment or measurement systems. It\
223
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
224
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
225
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
226
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
227
+ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
228
+ \ serves as a starting point for further calculations related to the equipment.\n\
229
+ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
230
+ \ for the overall flow measurement.\n - It depends on the uncertainties of\
231
+ \ the individual variables (magnitudes) and represents the combined margin of\
232
+ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
233
+ \ (variables) are the foundation for calculating the uncertainty of the measurement\
234
+ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
235
+ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
236
+ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
237
+ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
238
+ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
239
+ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
240
+ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
241
+ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
242
+ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
243
+ - To find the uncertainty of the measurement system, join the measurement systems\
244
+ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
245
+ \ of a specific variable (magnitude), join the measurement systems table with\
246
+ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
247
+ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
248
+ \ of the measurement system, use the first join (measurement systems table + uncertainty\
249
+ \ of the measurement system table).\n- If the user requests the uncertainty of\
250
+ \ a specific variable (magnitude) in a report, use the second join (measurement\
251
+ \ systems table + uncertainty of magnitudes table)."
252
+ - source_sentence: How are the secondary equipment and measurement system related?
253
+ sentences:
254
+ - 'What kind of data store an equipment?
255
+
256
+ Equipments can capture meteorological data, such as pressure, temperature, and
257
+ volume (magnitudes). This data is essential for users to perform various calculations.
258
+
259
+
260
+ Data storage:
261
+
262
+ - The measured values are stored in a special table in the database for magnitudes.
263
+ This table contains the values of the variables captured by the equipments.
264
+
265
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
266
+ temperature, or volume readings). **They are not calculated values**, such as
267
+ uncertainty.
268
+
269
+ - The values stored in the variable values table are **different** from variable
270
+ uncertainty values, which are calculated separately and represent the margin of
271
+ error.
272
+
273
+
274
+ Accessing the data:
275
+
276
+ - Users typically access the data by referring to the readings from the measurement
277
+ system, not directly from the individual equipments.
278
+
279
+ - The readings are stored in a "variable values" table within the database.
280
+
281
+
282
+ Linking variable names:
283
+
284
+ If the user needs to know the name of a variable, they must link the data to another
285
+ table that stores information about the types of variables.'
286
+ - 'What do measurement equipment measure?
287
+
288
+ Each equipment measures a physical magnitude, also known as a variable. Based
289
+ on the type of variable they measure, devices are classified into different categories.
290
+
291
+
292
+ Equipment classification:
293
+
294
+ - Primary meter: Assigned by default to equipments like orifice plates.
295
+
296
+ - Secondary meter: Assigned by default to equipments like transmitters.
297
+
298
+ - Tertiary meter: Used for other types of equipments.
299
+
300
+
301
+ Equipment types in the database:
302
+
303
+ The database includes a table listing all equipment types. Examples of equipment
304
+ types are:
305
+
306
+ - Differential pressure transmitters
307
+
308
+ - RTDs (Resistance Temperature Detectors)
309
+
310
+ - Orifice plates
311
+
312
+ - Multivariable transmitters
313
+
314
+ - Ultrasonic meters
315
+
316
+
317
+ Meteorological checks for equipments:
318
+
319
+ Each equipment type is assigned a meteorological check, which can be either:
320
+
321
+ - Calibration: To ensure measurement accuracy.
322
+
323
+ - Inspection: To verify proper functioning.
324
+
325
+
326
+ Data storage in tables:
327
+
328
+ The database also includes a separate table for equipment classifications, which
329
+ are:
330
+
331
+ - Primary meter
332
+
333
+ - Secondary meter
334
+
335
+ - Tertiary meter
336
+
337
+ So, an equipment has equipment types and this types has classifications.'
338
+ - 'What kind of data store an equipment?
339
+
340
+ Equipments can capture meteorological data, such as pressure, temperature, and
341
+ volume (magnitudes). This data is essential for users to perform various calculations.
342
+
343
+
344
+ Data storage:
345
+
346
+ - The measured values are stored in a special table in the database for magnitudes.
347
+ This table contains the values of the variables captured by the equipments.
348
+
349
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
350
+ temperature, or volume readings). **They are not calculated values**, such as
351
+ uncertainty.
352
+
353
+ - The values stored in the variable values table are **different** from variable
354
+ uncertainty values, which are calculated separately and represent the margin of
355
+ error.
356
+
357
+
358
+ Accessing the data:
359
+
360
+ - Users typically access the data by referring to the readings from the measurement
361
+ system, not directly from the individual equipments.
362
+
363
+ - The readings are stored in a "variable values" table within the database.
364
+
365
+
366
+ Linking variable names:
367
+
368
+ If the user needs to know the name of a variable, they must link the data to another
369
+ table that stores information about the types of variables.'
370
+ - source_sentence: What is the table structure for secondary equipment?
371
+ sentences:
372
+ - 'What kind of data store an equipment?
373
+
374
+ Equipments can capture meteorological data, such as pressure, temperature, and
375
+ volume (magnitudes). This data is essential for users to perform various calculations.
376
+
377
+
378
+ Data storage:
379
+
380
+ - The measured values are stored in a special table in the database for magnitudes.
381
+ This table contains the values of the variables captured by the equipments.
382
+
383
+ - These values are **direct measurements** from the fluid (e.g., raw pressure,
384
+ temperature, or volume readings). **They are not calculated values**, such as
385
+ uncertainty.
386
+
387
+ - The values stored in the variable values table are **different** from variable
388
+ uncertainty values, which are calculated separately and represent the margin of
389
+ error.
390
+
391
+
392
+ Accessing the data:
393
+
394
+ - Users typically access the data by referring to the readings from the measurement
395
+ system, not directly from the individual equipments.
396
+
397
+ - The readings are stored in a "variable values" table within the database.
398
+
399
+
400
+ Linking variable names:
401
+
402
+ If the user needs to know the name of a variable, they must link the data to another
403
+ table that stores information about the types of variables.'
404
+ - 'How are flow computers and measurement systems related?
405
+
406
+ Flow computers can have multiple systems assigned to them. However, a measurement
407
+ system can only be assigned to one flow computer.
408
+
409
+
410
+ Database terminology:
411
+
412
+ In the database, this relationship is referred to as:
413
+
414
+ - Meter streams
415
+
416
+ - Meter runs
417
+
418
+ - Sections
419
+
420
+
421
+ Storage of the relationship:
422
+
423
+ The relationship between a flow computer and its assigned measurement system is
424
+ stored in a special table.
425
+
426
+
427
+ User context:
428
+
429
+ When a user refers to a "meter stream," they are indicating that they are searching
430
+ for a measurement system assigned to a specific flow computer.'
431
+ - 'How are flow computers and measurement systems related?
432
+
433
+ Flow computers can have multiple systems assigned to them. However, a measurement
434
+ system can only be assigned to one flow computer.
435
+
436
+
437
+ Database terminology:
438
+
439
+ In the database, this relationship is referred to as:
440
+
441
+ - Meter streams
442
+
443
+ - Meter runs
444
+
445
+ - Sections
446
+
447
+
448
+ Storage of the relationship:
449
+
450
+ The relationship between a flow computer and its assigned measurement system is
451
+ stored in a special table.
452
+
453
+
454
+ User context:
455
+
456
+ When a user refers to a "meter stream," they are indicating that they are searching
457
+ for a measurement system assigned to a specific flow computer.'
458
+ datasets:
459
+ - Lauther/measuring-embeddings-v3
460
+ pipeline_tag: sentence-similarity
461
+ library_name: sentence-transformers
462
+ ---
463
+
464
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
465
+
466
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
467
+
468
+ ## Model Details
469
+
470
+ ### Model Description
471
+ - **Model Type:** Sentence Transformer
472
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
473
+ - **Maximum Sequence Length:** 512 tokens
474
+ - **Output Dimensionality:** 1024 dimensions
475
+ - **Similarity Function:** Cosine Similarity
476
+ - **Training Dataset:**
477
+ - [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
478
+ <!-- - **Language:** Unknown -->
479
+ <!-- - **License:** Unknown -->
480
+
481
+ ### Model Sources
482
+
483
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
484
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
485
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
486
+
487
+ ### Full Model Architecture
488
+
489
+ ```
490
+ SentenceTransformer(
491
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
492
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
493
+ (2): Normalize()
494
+ )
495
+ ```
496
+
497
+ ## Usage
498
+
499
+ ### Direct Usage (Sentence Transformers)
500
+
501
+ First install the Sentence Transformers library:
502
+
503
+ ```bash
504
+ pip install -U sentence-transformers
505
+ ```
506
+
507
+ Then you can load this model and run inference.
508
+ ```python
509
+ from sentence_transformers import SentenceTransformer
510
+
511
+ # Download from the 🤗 Hub
512
+ model = SentenceTransformer("sentence_transformers_model_id")
513
+ # Run inference
514
+ sentences = [
515
+ 'What is the table structure for secondary equipment?',
516
+ 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
517
+ 'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
518
+ ]
519
+ embeddings = model.encode(sentences)
520
+ print(embeddings.shape)
521
+ # [3, 1024]
522
+
523
+ # Get the similarity scores for the embeddings
524
+ similarities = model.similarity(embeddings, embeddings)
525
+ print(similarities.shape)
526
+ # [3, 3]
527
+ ```
528
+
529
+ <!--
530
+ ### Direct Usage (Transformers)
531
+
532
+ <details><summary>Click to see the direct usage in Transformers</summary>
533
+
534
+ </details>
535
+ -->
536
+
537
+ <!--
538
+ ### Downstream Usage (Sentence Transformers)
539
+
540
+ You can finetune this model on your own dataset.
541
+
542
+ <details><summary>Click to expand</summary>
543
+
544
+ </details>
545
+ -->
546
+
547
+ <!--
548
+ ### Out-of-Scope Use
549
+
550
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
551
+ -->
552
+
553
+ <!--
554
+ ## Bias, Risks and Limitations
555
+
556
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
557
+ -->
558
+
559
+ <!--
560
+ ### Recommendations
561
+
562
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
563
+ -->
564
+
565
+ ## Training Details
566
+
567
+ ### Training Dataset
568
+
569
+ #### measuring-embeddings-v3
570
+
571
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
572
+ * Size: 7,552 training samples
573
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
574
+ * Approximate statistics based on the first 1000 samples:
575
+ | | sentence1 | sentence2 | score |
576
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
577
+ | type | string | string | float |
578
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
579
+ * Samples:
580
+ | sentence1 | sentence2 | score |
581
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
582
+ | <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
583
+ | <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
584
+ | <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
585
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
586
+ ```json
587
+ {
588
+ "scale": 20.0,
589
+ "similarity_fct": "pairwise_cos_sim"
590
+ }
591
+ ```
592
+
593
+ ### Evaluation Dataset
594
+
595
+ #### measuring-embeddings-v3
596
+
597
+ * Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
598
+ * Size: 1,618 evaluation samples
599
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
600
+ * Approximate statistics based on the first 1000 samples:
601
+ | | sentence1 | sentence2 | score |
602
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
603
+ | type | string | string | float |
604
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
605
+ * Samples:
606
+ | sentence1 | sentence2 | score |
607
+ |:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
608
+ | <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
609
+ | <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
610
+ | <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
611
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
612
+ ```json
613
+ {
614
+ "scale": 20.0,
615
+ "similarity_fct": "pairwise_cos_sim"
616
+ }
617
+ ```
618
+
619
+ ### Training Hyperparameters
620
+ #### Non-Default Hyperparameters
621
+
622
+ - `eval_strategy`: steps
623
+ - `per_device_train_batch_size`: 7
624
+ - `per_device_eval_batch_size`: 7
625
+ - `gradient_accumulation_steps`: 4
626
+ - `learning_rate`: 3e-05
627
+ - `num_train_epochs`: 20
628
+ - `warmup_ratio`: 0.1
629
+
630
+ #### All Hyperparameters
631
+ <details><summary>Click to expand</summary>
632
+
633
+ - `overwrite_output_dir`: False
634
+ - `do_predict`: False
635
+ - `eval_strategy`: steps
636
+ - `prediction_loss_only`: True
637
+ - `per_device_train_batch_size`: 7
638
+ - `per_device_eval_batch_size`: 7
639
+ - `per_gpu_train_batch_size`: None
640
+ - `per_gpu_eval_batch_size`: None
641
+ - `gradient_accumulation_steps`: 4
642
+ - `eval_accumulation_steps`: None
643
+ - `torch_empty_cache_steps`: None
644
+ - `learning_rate`: 3e-05
645
+ - `weight_decay`: 0.0
646
+ - `adam_beta1`: 0.9
647
+ - `adam_beta2`: 0.999
648
+ - `adam_epsilon`: 1e-08
649
+ - `max_grad_norm`: 1.0
650
+ - `num_train_epochs`: 20
651
+ - `max_steps`: -1
652
+ - `lr_scheduler_type`: linear
653
+ - `lr_scheduler_kwargs`: {}
654
+ - `warmup_ratio`: 0.1
655
+ - `warmup_steps`: 0
656
+ - `log_level`: passive
657
+ - `log_level_replica`: warning
658
+ - `log_on_each_node`: True
659
+ - `logging_nan_inf_filter`: True
660
+ - `save_safetensors`: True
661
+ - `save_on_each_node`: False
662
+ - `save_only_model`: False
663
+ - `restore_callback_states_from_checkpoint`: False
664
+ - `no_cuda`: False
665
+ - `use_cpu`: False
666
+ - `use_mps_device`: False
667
+ - `seed`: 42
668
+ - `data_seed`: None
669
+ - `jit_mode_eval`: False
670
+ - `use_ipex`: False
671
+ - `bf16`: False
672
+ - `fp16`: False
673
+ - `fp16_opt_level`: O1
674
+ - `half_precision_backend`: auto
675
+ - `bf16_full_eval`: False
676
+ - `fp16_full_eval`: False
677
+ - `tf32`: None
678
+ - `local_rank`: 0
679
+ - `ddp_backend`: None
680
+ - `tpu_num_cores`: None
681
+ - `tpu_metrics_debug`: False
682
+ - `debug`: []
683
+ - `dataloader_drop_last`: False
684
+ - `dataloader_num_workers`: 0
685
+ - `dataloader_prefetch_factor`: None
686
+ - `past_index`: -1
687
+ - `disable_tqdm`: False
688
+ - `remove_unused_columns`: True
689
+ - `label_names`: None
690
+ - `load_best_model_at_end`: False
691
+ - `ignore_data_skip`: False
692
+ - `fsdp`: []
693
+ - `fsdp_min_num_params`: 0
694
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
695
+ - `fsdp_transformer_layer_cls_to_wrap`: None
696
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
697
+ - `deepspeed`: None
698
+ - `label_smoothing_factor`: 0.0
699
+ - `optim`: adamw_torch
700
+ - `optim_args`: None
701
+ - `adafactor`: False
702
+ - `group_by_length`: False
703
+ - `length_column_name`: length
704
+ - `ddp_find_unused_parameters`: None
705
+ - `ddp_bucket_cap_mb`: None
706
+ - `ddp_broadcast_buffers`: False
707
+ - `dataloader_pin_memory`: True
708
+ - `dataloader_persistent_workers`: False
709
+ - `skip_memory_metrics`: True
710
+ - `use_legacy_prediction_loop`: False
711
+ - `push_to_hub`: False
712
+ - `resume_from_checkpoint`: None
713
+ - `hub_model_id`: None
714
+ - `hub_strategy`: every_save
715
+ - `hub_private_repo`: None
716
+ - `hub_always_push`: False
717
+ - `gradient_checkpointing`: False
718
+ - `gradient_checkpointing_kwargs`: None
719
+ - `include_inputs_for_metrics`: False
720
+ - `include_for_metrics`: []
721
+ - `eval_do_concat_batches`: True
722
+ - `fp16_backend`: auto
723
+ - `push_to_hub_model_id`: None
724
+ - `push_to_hub_organization`: None
725
+ - `mp_parameters`:
726
+ - `auto_find_batch_size`: False
727
+ - `full_determinism`: False
728
+ - `torchdynamo`: None
729
+ - `ray_scope`: last
730
+ - `ddp_timeout`: 1800
731
+ - `torch_compile`: False
732
+ - `torch_compile_backend`: None
733
+ - `torch_compile_mode`: None
734
+ - `dispatch_batches`: None
735
+ - `split_batches`: None
736
+ - `include_tokens_per_second`: False
737
+ - `include_num_input_tokens_seen`: False
738
+ - `neftune_noise_alpha`: None
739
+ - `optim_target_modules`: None
740
+ - `batch_eval_metrics`: False
741
+ - `eval_on_start`: False
742
+ - `use_liger_kernel`: False
743
+ - `eval_use_gather_object`: False
744
+ - `average_tokens_across_devices`: False
745
+ - `prompts`: None
746
+ - `batch_sampler`: batch_sampler
747
+ - `multi_dataset_batch_sampler`: proportional
748
+
749
+ </details>
750
+
751
+ ### Training Logs
752
+ <details><summary>Click to expand</summary>
753
+
754
+ | Epoch | Step | Training Loss | Validation Loss |
755
+ |:-------:|:----:|:-------------:|:---------------:|
756
+ | 9.5153 | 2560 | 6.782 | - |
757
+ | 9.5524 | 2570 | 7.3027 | - |
758
+ | 9.5894 | 2580 | 7.3348 | - |
759
+ | 9.6265 | 2590 | 7.7864 | - |
760
+ | 9.6636 | 2600 | 6.3552 | - |
761
+ | 9.7006 | 2610 | 7.151 | - |
762
+ | 9.7377 | 2620 | 6.1664 | - |
763
+ | 9.7748 | 2630 | 6.0398 | - |
764
+ | 9.8119 | 2640 | 7.0452 | - |
765
+ | 9.8489 | 2650 | 7.2457 | - |
766
+ | 9.8860 | 2660 | 6.7531 | - |
767
+ | 9.9231 | 2670 | 6.7149 | - |
768
+ | 9.9601 | 2680 | 6.4635 | - |
769
+ | 9.9972 | 2690 | 6.2237 | - |
770
+ | 10.0371 | 2700 | 6.1798 | 2.9939 |
771
+ | 10.0741 | 2710 | 7.2224 | - |
772
+ | 10.1112 | 2720 | 6.5327 | - |
773
+ | 10.1483 | 2730 | 7.4686 | - |
774
+ | 10.1854 | 2740 | 6.1404 | - |
775
+ | 10.2224 | 2750 | 7.0005 | - |
776
+ | 10.2595 | 2760 | 5.7726 | - |
777
+ | 10.2966 | 2770 | 6.5327 | - |
778
+ | 10.3336 | 2780 | 7.5015 | - |
779
+ | 10.3707 | 2790 | 6.5526 | - |
780
+ | 10.4078 | 2800 | 6.2078 | - |
781
+ | 10.4449 | 2810 | 6.1 | - |
782
+ | 10.4819 | 2820 | 7.1027 | - |
783
+ | 10.5190 | 2830 | 8.639 | - |
784
+ | 10.5561 | 2840 | 6.9937 | - |
785
+ | 10.5931 | 2850 | 7.2734 | 2.8532 |
786
+ | 10.6302 | 2860 | 7.6321 | - |
787
+ | 10.6673 | 2870 | 7.5788 | - |
788
+ | 10.7044 | 2880 | 6.7864 | - |
789
+ | 10.7414 | 2890 | 7.4237 | - |
790
+ | 10.7785 | 2900 | 6.9813 | - |
791
+ | 10.8156 | 2910 | 6.6884 | - |
792
+ | 10.8526 | 2920 | 6.7464 | - |
793
+ | 10.8897 | 2930 | 7.7989 | - |
794
+ | 10.9268 | 2940 | 7.3568 | - |
795
+ | 10.9639 | 2950 | 8.6706 | - |
796
+ | 11.0 | 2960 | 6.5687 | - |
797
+ | 11.0371 | 2970 | 5.8992 | - |
798
+ | 11.0741 | 2980 | 6.4543 | - |
799
+ | 11.1112 | 2990 | 6.1386 | - |
800
+ | 11.1483 | 3000 | 6.9047 | 2.9147 |
801
+ | 11.1854 | 3010 | 7.405 | - |
802
+ | 11.2224 | 3020 | 7.5441 | - |
803
+ | 11.2595 | 3030 | 6.7524 | - |
804
+ | 11.2966 | 3040 | 7.698 | - |
805
+ | 11.3336 | 3050 | 7.6167 | - |
806
+ | 11.3707 | 3060 | 7.1516 | - |
807
+ | 11.4078 | 3070 | 6.7458 | - |
808
+ | 11.4449 | 3080 | 6.7608 | - |
809
+ | 11.4819 | 3090 | 7.1508 | - |
810
+ | 11.5190 | 3100 | 6.9155 | - |
811
+ | 11.5561 | 3110 | 6.6664 | - |
812
+ | 11.5931 | 3120 | 8.3841 | - |
813
+ | 11.6302 | 3130 | 7.1934 | - |
814
+ | 11.6673 | 3140 | 6.9681 | - |
815
+ | 11.7044 | 3150 | 7.2187 | 2.7509 |
816
+ | 11.7414 | 3160 | 7.3155 | - |
817
+ | 11.7785 | 3170 | 7.3103 | - |
818
+ | 11.8156 | 3180 | 7.1959 | - |
819
+ | 11.8526 | 3190 | 6.8164 | - |
820
+ | 11.8897 | 3200 | 7.5836 | - |
821
+ | 11.9268 | 3210 | 5.2671 | - |
822
+ | 11.9639 | 3220 | 6.4929 | - |
823
+ | 12.0 | 3230 | 7.0892 | - |
824
+ | 12.0371 | 3240 | 7.0877 | - |
825
+ | 12.0741 | 3250 | 5.8302 | - |
826
+ | 12.1112 | 3260 | 5.6145 | - |
827
+ | 12.1483 | 3270 | 6.5808 | - |
828
+ | 12.1854 | 3280 | 6.6826 | - |
829
+ | 12.2224 | 3290 | 5.9819 | - |
830
+ | 12.2595 | 3300 | 6.68 | 3.0175 |
831
+ | 12.2966 | 3310 | 6.1685 | - |
832
+ | 12.3336 | 3320 | 6.4473 | - |
833
+ | 12.3707 | 3330 | 6.3965 | - |
834
+ | 12.4078 | 3340 | 6.6278 | - |
835
+ | 12.4449 | 3350 | 5.4575 | - |
836
+ | 12.4819 | 3360 | 7.3019 | - |
837
+ | 12.5190 | 3370 | 7.4843 | - |
838
+ | 12.5561 | 3380 | 6.709 | - |
839
+ | 12.5931 | 3390 | 6.7168 | - |
840
+ | 12.6302 | 3400 | 7.0223 | - |
841
+ | 12.6673 | 3410 | 6.5089 | - |
842
+ | 12.7044 | 3420 | 6.5094 | - |
843
+ | 12.7414 | 3430 | 7.2317 | - |
844
+ | 12.7785 | 3440 | 6.6885 | - |
845
+ | 12.8156 | 3450 | 6.9693 | 2.8462 |
846
+ | 12.8526 | 3460 | 6.8242 | - |
847
+ | 12.8897 | 3470 | 6.6899 | - |
848
+ | 12.9268 | 3480 | 6.9113 | - |
849
+ | 12.9639 | 3490 | 7.1903 | - |
850
+ | 13.0 | 3500 | 7.3286 | - |
851
+ | 13.0371 | 3510 | 6.5465 | - |
852
+ | 13.0741 | 3520 | 5.6804 | - |
853
+ | 13.1112 | 3530 | 5.6412 | - |
854
+ | 13.1483 | 3540 | 6.6161 | - |
855
+ | 13.1854 | 3550 | 5.761 | - |
856
+ | 13.2224 | 3560 | 5.5669 | - |
857
+ | 13.2595 | 3570 | 5.6184 | - |
858
+ | 13.2966 | 3580 | 6.2996 | - |
859
+ | 13.3336 | 3590 | 4.99 | - |
860
+ | 13.3707 | 3600 | 5.9974 | 3.2358 |
861
+ | 13.4078 | 3610 | 5.6962 | - |
862
+ | 13.4449 | 3620 | 6.3662 | - |
863
+ | 13.4819 | 3630 | 7.0398 | - |
864
+ | 13.5190 | 3640 | 7.7358 | - |
865
+ | 13.5561 | 3650 | 7.9063 | - |
866
+ | 13.5931 | 3660 | 5.7823 | - |
867
+ | 13.6302 | 3670 | 6.9861 | - |
868
+ | 13.6673 | 3680 | 7.2855 | - |
869
+ | 13.7044 | 3690 | 5.6785 | - |
870
+ | 13.7414 | 3700 | 6.4071 | - |
871
+ | 13.7785 | 3710 | 6.4294 | - |
872
+ | 13.8156 | 3720 | 6.0842 | - |
873
+ | 13.8526 | 3730 | 5.9422 | - |
874
+ | 13.8897 | 3740 | 7.0778 | - |
875
+ | 13.9268 | 3750 | 8.1597 | 3.0093 |
876
+ | 13.9639 | 3760 | 6.3154 | - |
877
+ | 14.0 | 3770 | 6.2416 | - |
878
+ | 14.0371 | 3780 | 5.9958 | - |
879
+ | 14.0741 | 3790 | 5.7032 | - |
880
+ | 14.1112 | 3800 | 4.9524 | - |
881
+ | 14.1483 | 3810 | 5.386 | - |
882
+ | 14.1854 | 3820 | 5.6353 | - |
883
+ | 14.2224 | 3830 | 5.0873 | - |
884
+ | 14.2595 | 3840 | 4.9255 | - |
885
+ | 14.2966 | 3850 | 5.1423 | - |
886
+ | 14.3336 | 3860 | 6.0775 | - |
887
+ | 14.3707 | 3870 | 4.5073 | - |
888
+ | 14.4078 | 3880 | 6.8347 | - |
889
+ | 14.4449 | 3890 | 6.5397 | - |
890
+ | 14.4819 | 3900 | 7.2143 | 3.3080 |
891
+ | 14.5190 | 3910 | 6.1123 | - |
892
+ | 14.5561 | 3920 | 6.6048 | - |
893
+ | 14.5931 | 3930 | 6.3464 | - |
894
+ | 14.6302 | 3940 | 6.3618 | - |
895
+ | 14.6673 | 3950 | 6.5718 | - |
896
+ | 14.7044 | 3960 | 5.9785 | - |
897
+ | 14.7414 | 3970 | 6.5758 | - |
898
+ | 14.7785 | 3980 | 6.4308 | - |
899
+ | 14.8156 | 3990 | 6.0208 | - |
900
+ | 14.8526 | 4000 | 6.0303 | - |
901
+ | 14.8897 | 4010 | 6.6396 | - |
902
+ | 14.9268 | 4020 | 6.0184 | - |
903
+ | 14.9639 | 4030 | 6.6248 | - |
904
+ | 15.0 | 4040 | 6.4538 | - |
905
+ | 15.0371 | 4050 | 6.4742 | 3.1761 |
906
+
907
+ </details>
908
+
909
+ ### Framework Versions
910
+ - Python: 3.11.0
911
+ - Sentence Transformers: 3.4.0
912
+ - Transformers: 4.48.1
913
+ - PyTorch: 2.5.1+cu124
914
+ - Accelerate: 1.3.0
915
+ - Datasets: 3.2.0
916
+ - Tokenizers: 0.21.0
917
+
918
+ ## Citation
919
+
920
+ ### BibTeX
921
+
922
+ #### Sentence Transformers
923
+ ```bibtex
924
+ @inproceedings{reimers-2019-sentence-bert,
925
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
926
+ author = "Reimers, Nils and Gurevych, Iryna",
927
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
928
+ month = "11",
929
+ year = "2019",
930
+ publisher = "Association for Computational Linguistics",
931
+ url = "https://arxiv.org/abs/1908.10084",
932
+ }
933
+ ```
934
+
935
+ #### CoSENTLoss
936
+ ```bibtex
937
+ @online{kexuefm-8847,
938
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
939
+ author={Su Jianlin},
940
+ year={2022},
941
+ month={Jan},
942
+ url={https://kexue.fm/archives/8847},
943
+ }
944
+ ```
945
+
946
+ <!--
947
+ ## Glossary
948
+
949
+ *Clearly define terms in order to be accessible across audiences.*
950
+ -->
951
+
952
+ <!--
953
+ ## Model Card Authors
954
+
955
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
956
+ -->
957
+
958
+ <!--
959
+ ## Model Card Contact
960
+
961
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
962
+ -->
checkpoints/checkpoint-4050/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoints/checkpoint-4050/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoints/checkpoint-4050/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:744747a222d89369979383193e85ed3d9f744ae075e8ebe3f415ae1943e53795
3
+ size 135