Uploaded model checkpoints
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- checkpoints/checkpoint-2100/1_Pooling/config.json +10 -0
- checkpoints/checkpoint-2100/README.md +917 -0
- checkpoints/checkpoint-2100/config.json +28 -0
- checkpoints/checkpoint-2100/config_sentence_transformers.json +10 -0
- checkpoints/checkpoint-2100/model.safetensors +3 -0
- checkpoints/checkpoint-2100/modules.json +20 -0
- checkpoints/checkpoint-2100/optimizer.pt +3 -0
- checkpoints/checkpoint-2100/rng_state.pth +3 -0
- checkpoints/checkpoint-2100/scheduler.pt +3 -0
- checkpoints/checkpoint-2100/sentence_bert_config.json +4 -0
- checkpoints/checkpoint-2100/special_tokens_map.json +51 -0
- checkpoints/checkpoint-2100/tokenizer.json +3 -0
- checkpoints/checkpoint-2100/tokenizer_config.json +56 -0
- checkpoints/checkpoint-2100/trainer_state.json +1615 -0
- checkpoints/checkpoint-2100/training_args.bin +3 -0
- checkpoints/checkpoint-2550/1_Pooling/config.json +10 -0
- checkpoints/checkpoint-2550/README.md +839 -0
- checkpoints/checkpoint-2550/config.json +28 -0
- checkpoints/checkpoint-2550/config_sentence_transformers.json +10 -0
- checkpoints/checkpoint-2550/model.safetensors +3 -0
- checkpoints/checkpoint-2550/modules.json +20 -0
- checkpoints/checkpoint-2550/optimizer.pt +3 -0
- checkpoints/checkpoint-2550/rng_state.pth +3 -0
- checkpoints/checkpoint-2550/scheduler.pt +3 -0
- checkpoints/checkpoint-2550/sentence_bert_config.json +4 -0
- checkpoints/checkpoint-2550/special_tokens_map.json +51 -0
- checkpoints/checkpoint-2550/tokenizer.json +3 -0
- checkpoints/checkpoint-2550/tokenizer_config.json +56 -0
- checkpoints/checkpoint-2550/trainer_state.json +1954 -0
- checkpoints/checkpoint-2550/training_args.bin +3 -0
- checkpoints/checkpoint-3000/1_Pooling/config.json +10 -0
- checkpoints/checkpoint-3000/README.md +854 -0
- checkpoints/checkpoint-3000/config.json +28 -0
- checkpoints/checkpoint-3000/config_sentence_transformers.json +10 -0
- checkpoints/checkpoint-3000/model.safetensors +3 -0
- checkpoints/checkpoint-3000/modules.json +20 -0
- checkpoints/checkpoint-3000/optimizer.pt +3 -0
- checkpoints/checkpoint-3000/rng_state.pth +3 -0
- checkpoints/checkpoint-3000/scheduler.pt +3 -0
- checkpoints/checkpoint-3000/sentence_bert_config.json +4 -0
- checkpoints/checkpoint-3000/special_tokens_map.json +51 -0
- checkpoints/checkpoint-3000/tokenizer.json +3 -0
- checkpoints/checkpoint-3000/tokenizer_config.json +56 -0
- checkpoints/checkpoint-3000/trainer_state.json +2293 -0
- checkpoints/checkpoint-3000/training_args.bin +3 -0
- checkpoints/checkpoint-4050/1_Pooling/config.json +10 -0
- checkpoints/checkpoint-4050/README.md +962 -0
- checkpoints/checkpoint-4050/config.json +28 -0
- checkpoints/checkpoint-4050/config_sentence_transformers.json +10 -0
- checkpoints/checkpoint-4050/model.safetensors +3 -0
checkpoints/checkpoint-2100/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoints/checkpoint-2100/README.md
ADDED
@@ -0,0 +1,917 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:7552
|
8 |
+
- loss:CoSENTLoss
|
9 |
+
base_model: intfloat/multilingual-e5-large-instruct
|
10 |
+
widget:
|
11 |
+
- source_sentence: How are calibration points linked to equipment?
|
12 |
+
sentences:
|
13 |
+
- 'How are flow computers and measurement systems related?
|
14 |
+
|
15 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
16 |
+
system can only be assigned to one flow computer.
|
17 |
+
|
18 |
+
|
19 |
+
Database terminology:
|
20 |
+
|
21 |
+
In the database, this relationship is referred to as:
|
22 |
+
|
23 |
+
- Meter streams
|
24 |
+
|
25 |
+
- Meter runs
|
26 |
+
|
27 |
+
- Sections
|
28 |
+
|
29 |
+
|
30 |
+
Storage of the relationship:
|
31 |
+
|
32 |
+
The relationship between a flow computer and its assigned measurement system is
|
33 |
+
stored in a special table.
|
34 |
+
|
35 |
+
|
36 |
+
User context:
|
37 |
+
|
38 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
39 |
+
for a measurement system assigned to a specific flow computer.'
|
40 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
41 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
42 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
43 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
44 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
45 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
46 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
47 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
48 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
49 |
+
\ each value in the reports, making it easier to interpret the data."
|
50 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
51 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
52 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
53 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
54 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
55 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
56 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
57 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
58 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
59 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
60 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
61 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
62 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
63 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
64 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
65 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
66 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
67 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
68 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
69 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
70 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
71 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
72 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
73 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
74 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
75 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
76 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
77 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
78 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
79 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
80 |
+
\ systems table + uncertainty of magnitudes table)."
|
81 |
+
- source_sentence: What is the primary key of the flow computer table?
|
82 |
+
sentences:
|
83 |
+
- 'What is equipment calibration?
|
84 |
+
|
85 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
86 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
87 |
+
by the company or a regulatory body.
|
88 |
+
|
89 |
+
|
90 |
+
Purpose of calibration:
|
91 |
+
|
92 |
+
The calibration process corrects any deviations in how the equipment measures
|
93 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
94 |
+
and reliable data.
|
95 |
+
|
96 |
+
|
97 |
+
Calibration cycles:
|
98 |
+
|
99 |
+
There are two main calibration cycles:
|
100 |
+
|
101 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
102 |
+
are made. This cycle is almost always implemented.
|
103 |
+
|
104 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
105 |
+
are made. This cycle is used depending on regulatory requirements.
|
106 |
+
|
107 |
+
|
108 |
+
Calibration uncertainty:
|
109 |
+
|
110 |
+
- Uncertainty is included in the results of a calibration.
|
111 |
+
|
112 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
113 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
114 |
+
- 'What is equipment calibration?
|
115 |
+
|
116 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
117 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
118 |
+
by the company or a regulatory body.
|
119 |
+
|
120 |
+
|
121 |
+
Purpose of calibration:
|
122 |
+
|
123 |
+
The calibration process corrects any deviations in how the equipment measures
|
124 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
125 |
+
and reliable data.
|
126 |
+
|
127 |
+
|
128 |
+
Calibration cycles:
|
129 |
+
|
130 |
+
There are two main calibration cycles:
|
131 |
+
|
132 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
133 |
+
are made. This cycle is almost always implemented.
|
134 |
+
|
135 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
136 |
+
are made. This cycle is used depending on regulatory requirements.
|
137 |
+
|
138 |
+
|
139 |
+
Calibration uncertainty:
|
140 |
+
|
141 |
+
- Uncertainty is included in the results of a calibration.
|
142 |
+
|
143 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
144 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
145 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
146 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
147 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
148 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
149 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
150 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
151 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
152 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
153 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
154 |
+
\ each value in the reports, making it easier to interpret the data."
|
155 |
+
- source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
|
156 |
+
result for the specified tag and date?
|
157 |
+
sentences:
|
158 |
+
- 'What is equipment calibration?
|
159 |
+
|
160 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
161 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
162 |
+
by the company or a regulatory body.
|
163 |
+
|
164 |
+
|
165 |
+
Purpose of calibration:
|
166 |
+
|
167 |
+
The calibration process corrects any deviations in how the equipment measures
|
168 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
169 |
+
and reliable data.
|
170 |
+
|
171 |
+
|
172 |
+
Calibration cycles:
|
173 |
+
|
174 |
+
There are two main calibration cycles:
|
175 |
+
|
176 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
177 |
+
are made. This cycle is almost always implemented.
|
178 |
+
|
179 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
180 |
+
are made. This cycle is used depending on regulatory requirements.
|
181 |
+
|
182 |
+
|
183 |
+
Calibration uncertainty:
|
184 |
+
|
185 |
+
- Uncertainty is included in the results of a calibration.
|
186 |
+
|
187 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
188 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
189 |
+
- 'What kind of data store an equipment?
|
190 |
+
|
191 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
192 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
193 |
+
|
194 |
+
|
195 |
+
Data storage:
|
196 |
+
|
197 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
198 |
+
This table contains the values of the variables captured by the equipments.
|
199 |
+
|
200 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
201 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
202 |
+
uncertainty.
|
203 |
+
|
204 |
+
- The values stored in the variable values table are **different** from variable
|
205 |
+
uncertainty values, which are calculated separately and represent the margin of
|
206 |
+
error.
|
207 |
+
|
208 |
+
|
209 |
+
Accessing the data:
|
210 |
+
|
211 |
+
- Users typically access the data by referring to the readings from the measurement
|
212 |
+
system, not directly from the individual equipments.
|
213 |
+
|
214 |
+
- The readings are stored in a "variable values" table within the database.
|
215 |
+
|
216 |
+
|
217 |
+
Linking variable names:
|
218 |
+
|
219 |
+
If the user needs to know the name of a variable, they must link the data to another
|
220 |
+
table that stores information about the types of variables.'
|
221 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
222 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
223 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
224 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
225 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
226 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
227 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
228 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
229 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
230 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
231 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
232 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
233 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
234 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
235 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
236 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
237 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
238 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
239 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
240 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
241 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
242 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
243 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
244 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
245 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
246 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
247 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
248 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
249 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
250 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
251 |
+
\ systems table + uncertainty of magnitudes table)."
|
252 |
+
- source_sentence: How are the secondary equipment and measurement system related?
|
253 |
+
sentences:
|
254 |
+
- 'What kind of data store an equipment?
|
255 |
+
|
256 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
257 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
258 |
+
|
259 |
+
|
260 |
+
Data storage:
|
261 |
+
|
262 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
263 |
+
This table contains the values of the variables captured by the equipments.
|
264 |
+
|
265 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
266 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
267 |
+
uncertainty.
|
268 |
+
|
269 |
+
- The values stored in the variable values table are **different** from variable
|
270 |
+
uncertainty values, which are calculated separately and represent the margin of
|
271 |
+
error.
|
272 |
+
|
273 |
+
|
274 |
+
Accessing the data:
|
275 |
+
|
276 |
+
- Users typically access the data by referring to the readings from the measurement
|
277 |
+
system, not directly from the individual equipments.
|
278 |
+
|
279 |
+
- The readings are stored in a "variable values" table within the database.
|
280 |
+
|
281 |
+
|
282 |
+
Linking variable names:
|
283 |
+
|
284 |
+
If the user needs to know the name of a variable, they must link the data to another
|
285 |
+
table that stores information about the types of variables.'
|
286 |
+
- 'What do measurement equipment measure?
|
287 |
+
|
288 |
+
Each equipment measures a physical magnitude, also known as a variable. Based
|
289 |
+
on the type of variable they measure, devices are classified into different categories.
|
290 |
+
|
291 |
+
|
292 |
+
Equipment classification:
|
293 |
+
|
294 |
+
- Primary meter: Assigned by default to equipments like orifice plates.
|
295 |
+
|
296 |
+
- Secondary meter: Assigned by default to equipments like transmitters.
|
297 |
+
|
298 |
+
- Tertiary meter: Used for other types of equipments.
|
299 |
+
|
300 |
+
|
301 |
+
Equipment types in the database:
|
302 |
+
|
303 |
+
The database includes a table listing all equipment types. Examples of equipment
|
304 |
+
types are:
|
305 |
+
|
306 |
+
- Differential pressure transmitters
|
307 |
+
|
308 |
+
- RTDs (Resistance Temperature Detectors)
|
309 |
+
|
310 |
+
- Orifice plates
|
311 |
+
|
312 |
+
- Multivariable transmitters
|
313 |
+
|
314 |
+
- Ultrasonic meters
|
315 |
+
|
316 |
+
|
317 |
+
Meteorological checks for equipments:
|
318 |
+
|
319 |
+
Each equipment type is assigned a meteorological check, which can be either:
|
320 |
+
|
321 |
+
- Calibration: To ensure measurement accuracy.
|
322 |
+
|
323 |
+
- Inspection: To verify proper functioning.
|
324 |
+
|
325 |
+
|
326 |
+
Data storage in tables:
|
327 |
+
|
328 |
+
The database also includes a separate table for equipment classifications, which
|
329 |
+
are:
|
330 |
+
|
331 |
+
- Primary meter
|
332 |
+
|
333 |
+
- Secondary meter
|
334 |
+
|
335 |
+
- Tertiary meter
|
336 |
+
|
337 |
+
So, an equipment has equipment types and this types has classifications.'
|
338 |
+
- 'What kind of data store an equipment?
|
339 |
+
|
340 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
341 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
342 |
+
|
343 |
+
|
344 |
+
Data storage:
|
345 |
+
|
346 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
347 |
+
This table contains the values of the variables captured by the equipments.
|
348 |
+
|
349 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
350 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
351 |
+
uncertainty.
|
352 |
+
|
353 |
+
- The values stored in the variable values table are **different** from variable
|
354 |
+
uncertainty values, which are calculated separately and represent the margin of
|
355 |
+
error.
|
356 |
+
|
357 |
+
|
358 |
+
Accessing the data:
|
359 |
+
|
360 |
+
- Users typically access the data by referring to the readings from the measurement
|
361 |
+
system, not directly from the individual equipments.
|
362 |
+
|
363 |
+
- The readings are stored in a "variable values" table within the database.
|
364 |
+
|
365 |
+
|
366 |
+
Linking variable names:
|
367 |
+
|
368 |
+
If the user needs to know the name of a variable, they must link the data to another
|
369 |
+
table that stores information about the types of variables.'
|
370 |
+
- source_sentence: What is the table structure for secondary equipment?
|
371 |
+
sentences:
|
372 |
+
- 'What kind of data store an equipment?
|
373 |
+
|
374 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
375 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
376 |
+
|
377 |
+
|
378 |
+
Data storage:
|
379 |
+
|
380 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
381 |
+
This table contains the values of the variables captured by the equipments.
|
382 |
+
|
383 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
384 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
385 |
+
uncertainty.
|
386 |
+
|
387 |
+
- The values stored in the variable values table are **different** from variable
|
388 |
+
uncertainty values, which are calculated separately and represent the margin of
|
389 |
+
error.
|
390 |
+
|
391 |
+
|
392 |
+
Accessing the data:
|
393 |
+
|
394 |
+
- Users typically access the data by referring to the readings from the measurement
|
395 |
+
system, not directly from the individual equipments.
|
396 |
+
|
397 |
+
- The readings are stored in a "variable values" table within the database.
|
398 |
+
|
399 |
+
|
400 |
+
Linking variable names:
|
401 |
+
|
402 |
+
If the user needs to know the name of a variable, they must link the data to another
|
403 |
+
table that stores information about the types of variables.'
|
404 |
+
- 'How are flow computers and measurement systems related?
|
405 |
+
|
406 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
407 |
+
system can only be assigned to one flow computer.
|
408 |
+
|
409 |
+
|
410 |
+
Database terminology:
|
411 |
+
|
412 |
+
In the database, this relationship is referred to as:
|
413 |
+
|
414 |
+
- Meter streams
|
415 |
+
|
416 |
+
- Meter runs
|
417 |
+
|
418 |
+
- Sections
|
419 |
+
|
420 |
+
|
421 |
+
Storage of the relationship:
|
422 |
+
|
423 |
+
The relationship between a flow computer and its assigned measurement system is
|
424 |
+
stored in a special table.
|
425 |
+
|
426 |
+
|
427 |
+
User context:
|
428 |
+
|
429 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
430 |
+
for a measurement system assigned to a specific flow computer.'
|
431 |
+
- 'How are flow computers and measurement systems related?
|
432 |
+
|
433 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
434 |
+
system can only be assigned to one flow computer.
|
435 |
+
|
436 |
+
|
437 |
+
Database terminology:
|
438 |
+
|
439 |
+
In the database, this relationship is referred to as:
|
440 |
+
|
441 |
+
- Meter streams
|
442 |
+
|
443 |
+
- Meter runs
|
444 |
+
|
445 |
+
- Sections
|
446 |
+
|
447 |
+
|
448 |
+
Storage of the relationship:
|
449 |
+
|
450 |
+
The relationship between a flow computer and its assigned measurement system is
|
451 |
+
stored in a special table.
|
452 |
+
|
453 |
+
|
454 |
+
User context:
|
455 |
+
|
456 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
457 |
+
for a measurement system assigned to a specific flow computer.'
|
458 |
+
datasets:
|
459 |
+
- Lauther/measuring-embeddings-v3
|
460 |
+
pipeline_tag: sentence-similarity
|
461 |
+
library_name: sentence-transformers
|
462 |
+
---
|
463 |
+
|
464 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large-instruct
|
465 |
+
|
466 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
467 |
+
|
468 |
+
## Model Details
|
469 |
+
|
470 |
+
### Model Description
|
471 |
+
- **Model Type:** Sentence Transformer
|
472 |
+
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
|
473 |
+
- **Maximum Sequence Length:** 512 tokens
|
474 |
+
- **Output Dimensionality:** 1024 dimensions
|
475 |
+
- **Similarity Function:** Cosine Similarity
|
476 |
+
- **Training Dataset:**
|
477 |
+
- [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
|
478 |
+
<!-- - **Language:** Unknown -->
|
479 |
+
<!-- - **License:** Unknown -->
|
480 |
+
|
481 |
+
### Model Sources
|
482 |
+
|
483 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
484 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
485 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
486 |
+
|
487 |
+
### Full Model Architecture
|
488 |
+
|
489 |
+
```
|
490 |
+
SentenceTransformer(
|
491 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
492 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
493 |
+
(2): Normalize()
|
494 |
+
)
|
495 |
+
```
|
496 |
+
|
497 |
+
## Usage
|
498 |
+
|
499 |
+
### Direct Usage (Sentence Transformers)
|
500 |
+
|
501 |
+
First install the Sentence Transformers library:
|
502 |
+
|
503 |
+
```bash
|
504 |
+
pip install -U sentence-transformers
|
505 |
+
```
|
506 |
+
|
507 |
+
Then you can load this model and run inference.
|
508 |
+
```python
|
509 |
+
from sentence_transformers import SentenceTransformer
|
510 |
+
|
511 |
+
# Download from the 🤗 Hub
|
512 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
513 |
+
# Run inference
|
514 |
+
sentences = [
|
515 |
+
'What is the table structure for secondary equipment?',
|
516 |
+
'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
|
517 |
+
'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
|
518 |
+
]
|
519 |
+
embeddings = model.encode(sentences)
|
520 |
+
print(embeddings.shape)
|
521 |
+
# [3, 1024]
|
522 |
+
|
523 |
+
# Get the similarity scores for the embeddings
|
524 |
+
similarities = model.similarity(embeddings, embeddings)
|
525 |
+
print(similarities.shape)
|
526 |
+
# [3, 3]
|
527 |
+
```
|
528 |
+
|
529 |
+
<!--
|
530 |
+
### Direct Usage (Transformers)
|
531 |
+
|
532 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
533 |
+
|
534 |
+
</details>
|
535 |
+
-->
|
536 |
+
|
537 |
+
<!--
|
538 |
+
### Downstream Usage (Sentence Transformers)
|
539 |
+
|
540 |
+
You can finetune this model on your own dataset.
|
541 |
+
|
542 |
+
<details><summary>Click to expand</summary>
|
543 |
+
|
544 |
+
</details>
|
545 |
+
-->
|
546 |
+
|
547 |
+
<!--
|
548 |
+
### Out-of-Scope Use
|
549 |
+
|
550 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
551 |
+
-->
|
552 |
+
|
553 |
+
<!--
|
554 |
+
## Bias, Risks and Limitations
|
555 |
+
|
556 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
557 |
+
-->
|
558 |
+
|
559 |
+
<!--
|
560 |
+
### Recommendations
|
561 |
+
|
562 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
563 |
+
-->
|
564 |
+
|
565 |
+
## Training Details
|
566 |
+
|
567 |
+
### Training Dataset
|
568 |
+
|
569 |
+
#### measuring-embeddings-v3
|
570 |
+
|
571 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
572 |
+
* Size: 7,552 training samples
|
573 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
574 |
+
* Approximate statistics based on the first 1000 samples:
|
575 |
+
| | sentence1 | sentence2 | score |
|
576 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
577 |
+
| type | string | string | float |
|
578 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
|
579 |
+
* Samples:
|
580 |
+
| sentence1 | sentence2 | score |
|
581 |
+
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
582 |
+
| <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
|
583 |
+
| <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
|
584 |
+
| <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
|
585 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
586 |
+
```json
|
587 |
+
{
|
588 |
+
"scale": 20.0,
|
589 |
+
"similarity_fct": "pairwise_cos_sim"
|
590 |
+
}
|
591 |
+
```
|
592 |
+
|
593 |
+
### Evaluation Dataset
|
594 |
+
|
595 |
+
#### measuring-embeddings-v3
|
596 |
+
|
597 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
598 |
+
* Size: 1,618 evaluation samples
|
599 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
600 |
+
* Approximate statistics based on the first 1000 samples:
|
601 |
+
| | sentence1 | sentence2 | score |
|
602 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
603 |
+
| type | string | string | float |
|
604 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
|
605 |
+
* Samples:
|
606 |
+
| sentence1 | sentence2 | score |
|
607 |
+
|:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
608 |
+
| <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
|
609 |
+
| <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
|
610 |
+
| <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
|
611 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
612 |
+
```json
|
613 |
+
{
|
614 |
+
"scale": 20.0,
|
615 |
+
"similarity_fct": "pairwise_cos_sim"
|
616 |
+
}
|
617 |
+
```
|
618 |
+
|
619 |
+
### Training Hyperparameters
|
620 |
+
#### Non-Default Hyperparameters
|
621 |
+
|
622 |
+
- `eval_strategy`: steps
|
623 |
+
- `per_device_train_batch_size`: 7
|
624 |
+
- `per_device_eval_batch_size`: 7
|
625 |
+
- `gradient_accumulation_steps`: 4
|
626 |
+
- `learning_rate`: 3e-05
|
627 |
+
- `num_train_epochs`: 20
|
628 |
+
- `warmup_ratio`: 0.1
|
629 |
+
|
630 |
+
#### All Hyperparameters
|
631 |
+
<details><summary>Click to expand</summary>
|
632 |
+
|
633 |
+
- `overwrite_output_dir`: False
|
634 |
+
- `do_predict`: False
|
635 |
+
- `eval_strategy`: steps
|
636 |
+
- `prediction_loss_only`: True
|
637 |
+
- `per_device_train_batch_size`: 7
|
638 |
+
- `per_device_eval_batch_size`: 7
|
639 |
+
- `per_gpu_train_batch_size`: None
|
640 |
+
- `per_gpu_eval_batch_size`: None
|
641 |
+
- `gradient_accumulation_steps`: 4
|
642 |
+
- `eval_accumulation_steps`: None
|
643 |
+
- `torch_empty_cache_steps`: None
|
644 |
+
- `learning_rate`: 3e-05
|
645 |
+
- `weight_decay`: 0.0
|
646 |
+
- `adam_beta1`: 0.9
|
647 |
+
- `adam_beta2`: 0.999
|
648 |
+
- `adam_epsilon`: 1e-08
|
649 |
+
- `max_grad_norm`: 1.0
|
650 |
+
- `num_train_epochs`: 20
|
651 |
+
- `max_steps`: -1
|
652 |
+
- `lr_scheduler_type`: linear
|
653 |
+
- `lr_scheduler_kwargs`: {}
|
654 |
+
- `warmup_ratio`: 0.1
|
655 |
+
- `warmup_steps`: 0
|
656 |
+
- `log_level`: passive
|
657 |
+
- `log_level_replica`: warning
|
658 |
+
- `log_on_each_node`: True
|
659 |
+
- `logging_nan_inf_filter`: True
|
660 |
+
- `save_safetensors`: True
|
661 |
+
- `save_on_each_node`: False
|
662 |
+
- `save_only_model`: False
|
663 |
+
- `restore_callback_states_from_checkpoint`: False
|
664 |
+
- `no_cuda`: False
|
665 |
+
- `use_cpu`: False
|
666 |
+
- `use_mps_device`: False
|
667 |
+
- `seed`: 42
|
668 |
+
- `data_seed`: None
|
669 |
+
- `jit_mode_eval`: False
|
670 |
+
- `use_ipex`: False
|
671 |
+
- `bf16`: False
|
672 |
+
- `fp16`: False
|
673 |
+
- `fp16_opt_level`: O1
|
674 |
+
- `half_precision_backend`: auto
|
675 |
+
- `bf16_full_eval`: False
|
676 |
+
- `fp16_full_eval`: False
|
677 |
+
- `tf32`: None
|
678 |
+
- `local_rank`: 0
|
679 |
+
- `ddp_backend`: None
|
680 |
+
- `tpu_num_cores`: None
|
681 |
+
- `tpu_metrics_debug`: False
|
682 |
+
- `debug`: []
|
683 |
+
- `dataloader_drop_last`: False
|
684 |
+
- `dataloader_num_workers`: 0
|
685 |
+
- `dataloader_prefetch_factor`: None
|
686 |
+
- `past_index`: -1
|
687 |
+
- `disable_tqdm`: False
|
688 |
+
- `remove_unused_columns`: True
|
689 |
+
- `label_names`: None
|
690 |
+
- `load_best_model_at_end`: False
|
691 |
+
- `ignore_data_skip`: False
|
692 |
+
- `fsdp`: []
|
693 |
+
- `fsdp_min_num_params`: 0
|
694 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
695 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
696 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
697 |
+
- `deepspeed`: None
|
698 |
+
- `label_smoothing_factor`: 0.0
|
699 |
+
- `optim`: adamw_torch
|
700 |
+
- `optim_args`: None
|
701 |
+
- `adafactor`: False
|
702 |
+
- `group_by_length`: False
|
703 |
+
- `length_column_name`: length
|
704 |
+
- `ddp_find_unused_parameters`: None
|
705 |
+
- `ddp_bucket_cap_mb`: None
|
706 |
+
- `ddp_broadcast_buffers`: False
|
707 |
+
- `dataloader_pin_memory`: True
|
708 |
+
- `dataloader_persistent_workers`: False
|
709 |
+
- `skip_memory_metrics`: True
|
710 |
+
- `use_legacy_prediction_loop`: False
|
711 |
+
- `push_to_hub`: False
|
712 |
+
- `resume_from_checkpoint`: None
|
713 |
+
- `hub_model_id`: None
|
714 |
+
- `hub_strategy`: every_save
|
715 |
+
- `hub_private_repo`: None
|
716 |
+
- `hub_always_push`: False
|
717 |
+
- `gradient_checkpointing`: False
|
718 |
+
- `gradient_checkpointing_kwargs`: None
|
719 |
+
- `include_inputs_for_metrics`: False
|
720 |
+
- `include_for_metrics`: []
|
721 |
+
- `eval_do_concat_batches`: True
|
722 |
+
- `fp16_backend`: auto
|
723 |
+
- `push_to_hub_model_id`: None
|
724 |
+
- `push_to_hub_organization`: None
|
725 |
+
- `mp_parameters`:
|
726 |
+
- `auto_find_batch_size`: False
|
727 |
+
- `full_determinism`: False
|
728 |
+
- `torchdynamo`: None
|
729 |
+
- `ray_scope`: last
|
730 |
+
- `ddp_timeout`: 1800
|
731 |
+
- `torch_compile`: False
|
732 |
+
- `torch_compile_backend`: None
|
733 |
+
- `torch_compile_mode`: None
|
734 |
+
- `dispatch_batches`: None
|
735 |
+
- `split_batches`: None
|
736 |
+
- `include_tokens_per_second`: False
|
737 |
+
- `include_num_input_tokens_seen`: False
|
738 |
+
- `neftune_noise_alpha`: None
|
739 |
+
- `optim_target_modules`: None
|
740 |
+
- `batch_eval_metrics`: False
|
741 |
+
- `eval_on_start`: False
|
742 |
+
- `use_liger_kernel`: False
|
743 |
+
- `eval_use_gather_object`: False
|
744 |
+
- `average_tokens_across_devices`: False
|
745 |
+
- `prompts`: None
|
746 |
+
- `batch_sampler`: batch_sampler
|
747 |
+
- `multi_dataset_batch_sampler`: proportional
|
748 |
+
|
749 |
+
</details>
|
750 |
+
|
751 |
+
### Training Logs
|
752 |
+
<details><summary>Click to expand</summary>
|
753 |
+
|
754 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
755 |
+
|:------:|:----:|:-------------:|:---------------:|
|
756 |
+
| 3.9379 | 1060 | 8.5934 | - |
|
757 |
+
| 3.9750 | 1070 | 8.006 | - |
|
758 |
+
| 4.0148 | 1080 | 9.0081 | - |
|
759 |
+
| 4.0519 | 1090 | 8.6706 | - |
|
760 |
+
| 4.0890 | 1100 | 9.6146 | - |
|
761 |
+
| 4.1260 | 1110 | 9.225 | - |
|
762 |
+
| 4.1631 | 1120 | 8.7522 | - |
|
763 |
+
| 4.2002 | 1130 | 9.0221 | - |
|
764 |
+
| 4.2373 | 1140 | 9.6458 | - |
|
765 |
+
| 4.2743 | 1150 | 8.7692 | - |
|
766 |
+
| 4.3114 | 1160 | 9.2874 | - |
|
767 |
+
| 4.3485 | 1170 | 8.9276 | - |
|
768 |
+
| 4.3855 | 1180 | 8.7444 | - |
|
769 |
+
| 4.4226 | 1190 | 8.7265 | - |
|
770 |
+
| 4.4597 | 1200 | 8.7642 | 2.6471 |
|
771 |
+
| 4.4968 | 1210 | 8.8917 | - |
|
772 |
+
| 4.5338 | 1220 | 9.2155 | - |
|
773 |
+
| 4.5709 | 1230 | 8.6101 | - |
|
774 |
+
| 4.6080 | 1240 | 8.9904 | - |
|
775 |
+
| 4.6450 | 1250 | 9.3272 | - |
|
776 |
+
| 4.6821 | 1260 | 7.9367 | - |
|
777 |
+
| 4.7192 | 1270 | 8.5891 | - |
|
778 |
+
| 4.7563 | 1280 | 8.6286 | - |
|
779 |
+
| 4.7933 | 1290 | 7.9982 | - |
|
780 |
+
| 4.8304 | 1300 | 7.5587 | - |
|
781 |
+
| 4.8675 | 1310 | 7.9405 | - |
|
782 |
+
| 4.9045 | 1320 | 9.7092 | - |
|
783 |
+
| 4.9416 | 1330 | 8.1475 | - |
|
784 |
+
| 4.9787 | 1340 | 9.3603 | - |
|
785 |
+
| 5.0148 | 1350 | 7.6621 | 2.8309 |
|
786 |
+
| 5.0519 | 1360 | 9.2301 | - |
|
787 |
+
| 5.0890 | 1370 | 9.7789 | - |
|
788 |
+
| 5.1260 | 1380 | 9.5359 | - |
|
789 |
+
| 5.1631 | 1390 | 10.8065 | - |
|
790 |
+
| 5.2002 | 1400 | 10.0149 | - |
|
791 |
+
| 5.2373 | 1410 | 10.2582 | - |
|
792 |
+
| 5.2743 | 1420 | 10.16 | - |
|
793 |
+
| 5.3114 | 1430 | 10.0763 | - |
|
794 |
+
| 5.3485 | 1440 | 9.5737 | - |
|
795 |
+
| 5.3855 | 1450 | 10.4816 | - |
|
796 |
+
| 5.4226 | 1460 | 8.6687 | - |
|
797 |
+
| 5.4597 | 1470 | 8.4066 | - |
|
798 |
+
| 5.4968 | 1480 | 9.386 | - |
|
799 |
+
| 5.5338 | 1490 | 8.3911 | - |
|
800 |
+
| 5.5709 | 1500 | 8.8025 | 2.5408 |
|
801 |
+
| 5.6080 | 1510 | 8.7939 | - |
|
802 |
+
| 5.6450 | 1520 | 9.0903 | - |
|
803 |
+
| 5.6821 | 1530 | 8.9878 | - |
|
804 |
+
| 5.7192 | 1540 | 8.8642 | - |
|
805 |
+
| 5.7563 | 1550 | 8.8625 | - |
|
806 |
+
| 5.7933 | 1560 | 8.4105 | - |
|
807 |
+
| 5.8304 | 1570 | 9.0163 | - |
|
808 |
+
| 5.8675 | 1580 | 8.8947 | - |
|
809 |
+
| 5.9045 | 1590 | 8.5647 | - |
|
810 |
+
| 5.9416 | 1600 | 7.7047 | - |
|
811 |
+
| 5.9787 | 1610 | 8.1484 | - |
|
812 |
+
| 6.0148 | 1620 | 8.4079 | - |
|
813 |
+
| 6.0519 | 1630 | 8.5027 | - |
|
814 |
+
| 6.0890 | 1640 | 8.1805 | - |
|
815 |
+
| 6.1260 | 1650 | 8.4519 | 2.5901 |
|
816 |
+
| 6.1631 | 1660 | 9.062 | - |
|
817 |
+
| 6.2002 | 1670 | 8.8499 | - |
|
818 |
+
| 6.2373 | 1680 | 8.6576 | - |
|
819 |
+
| 6.2743 | 1690 | 8.4652 | - |
|
820 |
+
| 6.3114 | 1700 | 9.0782 | - |
|
821 |
+
| 6.3485 | 1710 | 8.1532 | - |
|
822 |
+
| 6.3855 | 1720 | 8.5185 | - |
|
823 |
+
| 6.4226 | 1730 | 9.5908 | - |
|
824 |
+
| 6.4597 | 1740 | 8.4188 | - |
|
825 |
+
| 6.4968 | 1750 | 8.1885 | - |
|
826 |
+
| 6.5338 | 1760 | 8.7666 | - |
|
827 |
+
| 6.5709 | 1770 | 8.6105 | - |
|
828 |
+
| 6.6080 | 1780 | 8.664 | - |
|
829 |
+
| 6.6450 | 1790 | 8.5294 | - |
|
830 |
+
| 6.6821 | 1800 | 9.1857 | 2.4974 |
|
831 |
+
| 6.7192 | 1810 | 8.7053 | - |
|
832 |
+
| 6.7563 | 1820 | 8.1428 | - |
|
833 |
+
| 6.7933 | 1830 | 8.4988 | - |
|
834 |
+
| 6.8304 | 1840 | 8.4147 | - |
|
835 |
+
| 6.8675 | 1850 | 9.069 | - |
|
836 |
+
| 6.9045 | 1860 | 8.4405 | - |
|
837 |
+
| 6.9416 | 1870 | 9.2157 | - |
|
838 |
+
| 6.9787 | 1880 | 9.5492 | - |
|
839 |
+
| 7.0148 | 1890 | 8.1325 | - |
|
840 |
+
| 7.0519 | 1900 | 8.324 | - |
|
841 |
+
| 7.0890 | 1910 | 7.7097 | - |
|
842 |
+
| 7.1260 | 1920 | 8.0982 | - |
|
843 |
+
| 7.1631 | 1930 | 7.7669 | - |
|
844 |
+
| 7.2002 | 1940 | 7.809 | - |
|
845 |
+
| 7.2373 | 1950 | 7.9729 | 2.6108 |
|
846 |
+
| 7.2743 | 1960 | 8.2125 | - |
|
847 |
+
| 7.3114 | 1970 | 7.7403 | - |
|
848 |
+
| 7.3485 | 1980 | 7.5494 | - |
|
849 |
+
| 7.3855 | 1990 | 8.2821 | - |
|
850 |
+
| 7.4226 | 2000 | 8.1644 | - |
|
851 |
+
| 7.4597 | 2010 | 8.1664 | - |
|
852 |
+
| 7.4968 | 2020 | 8.5876 | - |
|
853 |
+
| 7.5338 | 2030 | 8.2753 | - |
|
854 |
+
| 7.5709 | 2040 | 9.2057 | - |
|
855 |
+
| 7.6080 | 2050 | 8.0052 | - |
|
856 |
+
| 7.6450 | 2060 | 8.4954 | - |
|
857 |
+
| 7.6821 | 2070 | 8.0325 | - |
|
858 |
+
| 7.7192 | 2080 | 8.2934 | - |
|
859 |
+
| 7.7563 | 2090 | 9.4019 | - |
|
860 |
+
| 7.7933 | 2100 | 8.874 | 2.4529 |
|
861 |
+
|
862 |
+
</details>
|
863 |
+
|
864 |
+
### Framework Versions
|
865 |
+
- Python: 3.11.0
|
866 |
+
- Sentence Transformers: 3.4.0
|
867 |
+
- Transformers: 4.48.1
|
868 |
+
- PyTorch: 2.5.1+cu124
|
869 |
+
- Accelerate: 1.3.0
|
870 |
+
- Datasets: 3.2.0
|
871 |
+
- Tokenizers: 0.21.0
|
872 |
+
|
873 |
+
## Citation
|
874 |
+
|
875 |
+
### BibTeX
|
876 |
+
|
877 |
+
#### Sentence Transformers
|
878 |
+
```bibtex
|
879 |
+
@inproceedings{reimers-2019-sentence-bert,
|
880 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
881 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
882 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
883 |
+
month = "11",
|
884 |
+
year = "2019",
|
885 |
+
publisher = "Association for Computational Linguistics",
|
886 |
+
url = "https://arxiv.org/abs/1908.10084",
|
887 |
+
}
|
888 |
+
```
|
889 |
+
|
890 |
+
#### CoSENTLoss
|
891 |
+
```bibtex
|
892 |
+
@online{kexuefm-8847,
|
893 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
894 |
+
author={Su Jianlin},
|
895 |
+
year={2022},
|
896 |
+
month={Jan},
|
897 |
+
url={https://kexue.fm/archives/8847},
|
898 |
+
}
|
899 |
+
```
|
900 |
+
|
901 |
+
<!--
|
902 |
+
## Glossary
|
903 |
+
|
904 |
+
*Clearly define terms in order to be accessible across audiences.*
|
905 |
+
-->
|
906 |
+
|
907 |
+
<!--
|
908 |
+
## Model Card Authors
|
909 |
+
|
910 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
911 |
+
-->
|
912 |
+
|
913 |
+
<!--
|
914 |
+
## Model Card Contact
|
915 |
+
|
916 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
917 |
+
-->
|
checkpoints/checkpoint-2100/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-large-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoints/checkpoint-2100/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
checkpoints/checkpoint-2100/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8602514070d3dd21837d5d40a0db98aa622c556d704c2c01dbc72636a9c18a89
|
3 |
+
size 135
|
checkpoints/checkpoint-2100/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoints/checkpoint-2100/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c0e001101f04b00849f443e6a8f84aa6e169a0630316083b8434c3897f64883
|
3 |
+
size 135
|
checkpoints/checkpoint-2100/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33ef5862ed8465e96d8c41b46650dbc6e040946aa88a75b032ee8c16e7409f6e
|
3 |
+
size 130
|
checkpoints/checkpoint-2100/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c567c047902bab18141a686265e6f42049218b4f237cd4c627747c29067edf91
|
3 |
+
size 129
|
checkpoints/checkpoint-2100/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoints/checkpoint-2100/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoints/checkpoint-2100/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de6f09c3f9b891e5b98dd3af9463dcab5a97d5265e288271395324a0577e6c05
|
3 |
+
size 133
|
checkpoints/checkpoint-2100/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
55 |
+
"unk_token": "<unk>"
|
56 |
+
}
|
checkpoints/checkpoint-2100/trainer_state.json
ADDED
@@ -0,0 +1,1615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 7.793327154772938,
|
5 |
+
"eval_steps": 150,
|
6 |
+
"global_step": 2100,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03707136237256719,
|
13 |
+
"grad_norm": 53.36411666870117,
|
14 |
+
"learning_rate": 1.1152416356877324e-06,
|
15 |
+
"loss": 10.8165,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.07414272474513438,
|
20 |
+
"grad_norm": 61.33858871459961,
|
21 |
+
"learning_rate": 2.2304832713754648e-06,
|
22 |
+
"loss": 10.8463,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.11121408711770157,
|
27 |
+
"grad_norm": 67.16305541992188,
|
28 |
+
"learning_rate": 3.345724907063197e-06,
|
29 |
+
"loss": 10.821,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.14828544949026876,
|
34 |
+
"grad_norm": 62.08958053588867,
|
35 |
+
"learning_rate": 4.4609665427509296e-06,
|
36 |
+
"loss": 10.4704,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.18535681186283595,
|
41 |
+
"grad_norm": 53.839927673339844,
|
42 |
+
"learning_rate": 5.576208178438661e-06,
|
43 |
+
"loss": 10.8568,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.22242817423540315,
|
48 |
+
"grad_norm": 57.02272033691406,
|
49 |
+
"learning_rate": 6.691449814126394e-06,
|
50 |
+
"loss": 10.3005,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.2594995366079703,
|
55 |
+
"grad_norm": 88.16449737548828,
|
56 |
+
"learning_rate": 7.806691449814127e-06,
|
57 |
+
"loss": 9.6009,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.2965708989805375,
|
62 |
+
"grad_norm": 84.35252380371094,
|
63 |
+
"learning_rate": 8.921933085501859e-06,
|
64 |
+
"loss": 9.7448,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.3336422613531047,
|
69 |
+
"grad_norm": 77.93982696533203,
|
70 |
+
"learning_rate": 1.0037174721189593e-05,
|
71 |
+
"loss": 9.5922,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.3707136237256719,
|
76 |
+
"grad_norm": 56.669166564941406,
|
77 |
+
"learning_rate": 1.1152416356877323e-05,
|
78 |
+
"loss": 10.0919,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.4077849860982391,
|
83 |
+
"grad_norm": 56.652488708496094,
|
84 |
+
"learning_rate": 1.2267657992565056e-05,
|
85 |
+
"loss": 10.2733,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.4448563484708063,
|
90 |
+
"grad_norm": 63.472042083740234,
|
91 |
+
"learning_rate": 1.3382899628252788e-05,
|
92 |
+
"loss": 9.4547,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4819277108433735,
|
97 |
+
"grad_norm": 78.0159912109375,
|
98 |
+
"learning_rate": 1.4498141263940521e-05,
|
99 |
+
"loss": 9.1738,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.5189990732159406,
|
104 |
+
"grad_norm": 68.1931381225586,
|
105 |
+
"learning_rate": 1.5613382899628255e-05,
|
106 |
+
"loss": 10.0876,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.5560704355885079,
|
111 |
+
"grad_norm": 49.315216064453125,
|
112 |
+
"learning_rate": 1.6728624535315986e-05,
|
113 |
+
"loss": 10.3721,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.5560704355885079,
|
118 |
+
"eval_loss": 2.559400796890259,
|
119 |
+
"eval_runtime": 34.304,
|
120 |
+
"eval_samples_per_second": 47.166,
|
121 |
+
"eval_steps_per_second": 6.763,
|
122 |
+
"step": 150
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.593141797961075,
|
126 |
+
"grad_norm": 34.1899528503418,
|
127 |
+
"learning_rate": 1.7843866171003718e-05,
|
128 |
+
"loss": 10.4711,
|
129 |
+
"step": 160
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.6302131603336423,
|
133 |
+
"grad_norm": 37.074134826660156,
|
134 |
+
"learning_rate": 1.895910780669145e-05,
|
135 |
+
"loss": 9.9383,
|
136 |
+
"step": 170
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.6672845227062094,
|
140 |
+
"grad_norm": 49.323158264160156,
|
141 |
+
"learning_rate": 2.0074349442379185e-05,
|
142 |
+
"loss": 10.0448,
|
143 |
+
"step": 180
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.7043558850787767,
|
147 |
+
"grad_norm": 53.07639694213867,
|
148 |
+
"learning_rate": 2.1189591078066917e-05,
|
149 |
+
"loss": 9.8467,
|
150 |
+
"step": 190
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.7414272474513438,
|
154 |
+
"grad_norm": 38.345916748046875,
|
155 |
+
"learning_rate": 2.2304832713754645e-05,
|
156 |
+
"loss": 9.9434,
|
157 |
+
"step": 200
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.7784986098239111,
|
161 |
+
"grad_norm": 47.55274963378906,
|
162 |
+
"learning_rate": 2.3420074349442377e-05,
|
163 |
+
"loss": 9.7912,
|
164 |
+
"step": 210
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.8155699721964782,
|
168 |
+
"grad_norm": 59.17176055908203,
|
169 |
+
"learning_rate": 2.4535315985130112e-05,
|
170 |
+
"loss": 9.7905,
|
171 |
+
"step": 220
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.8526413345690455,
|
175 |
+
"grad_norm": 52.57457733154297,
|
176 |
+
"learning_rate": 2.5650557620817844e-05,
|
177 |
+
"loss": 9.9412,
|
178 |
+
"step": 230
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.8897126969416126,
|
182 |
+
"grad_norm": 42.251304626464844,
|
183 |
+
"learning_rate": 2.6765799256505576e-05,
|
184 |
+
"loss": 10.0084,
|
185 |
+
"step": 240
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.9267840593141798,
|
189 |
+
"grad_norm": 46.63966369628906,
|
190 |
+
"learning_rate": 2.788104089219331e-05,
|
191 |
+
"loss": 10.0139,
|
192 |
+
"step": 250
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.963855421686747,
|
196 |
+
"grad_norm": 27.772289276123047,
|
197 |
+
"learning_rate": 2.8996282527881043e-05,
|
198 |
+
"loss": 9.3794,
|
199 |
+
"step": 260
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 1.0,
|
203 |
+
"grad_norm": 46.3179931640625,
|
204 |
+
"learning_rate": 2.9987608426270136e-05,
|
205 |
+
"loss": 9.5747,
|
206 |
+
"step": 270
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 1.0370713623725671,
|
210 |
+
"grad_norm": 45.746551513671875,
|
211 |
+
"learning_rate": 2.98636926889715e-05,
|
212 |
+
"loss": 9.6763,
|
213 |
+
"step": 280
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 1.0741427247451343,
|
217 |
+
"grad_norm": 49.50416564941406,
|
218 |
+
"learning_rate": 2.9739776951672864e-05,
|
219 |
+
"loss": 10.4789,
|
220 |
+
"step": 290
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 1.1112140871177016,
|
224 |
+
"grad_norm": 43.72733688354492,
|
225 |
+
"learning_rate": 2.9615861214374226e-05,
|
226 |
+
"loss": 9.7244,
|
227 |
+
"step": 300
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.1112140871177016,
|
231 |
+
"eval_loss": 2.6879734992980957,
|
232 |
+
"eval_runtime": 34.2522,
|
233 |
+
"eval_samples_per_second": 47.238,
|
234 |
+
"eval_steps_per_second": 6.773,
|
235 |
+
"step": 300
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 1.1482854494902688,
|
239 |
+
"grad_norm": 48.68376541137695,
|
240 |
+
"learning_rate": 2.9491945477075588e-05,
|
241 |
+
"loss": 9.9421,
|
242 |
+
"step": 310
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.185356811862836,
|
246 |
+
"grad_norm": 44.014747619628906,
|
247 |
+
"learning_rate": 2.9368029739776953e-05,
|
248 |
+
"loss": 9.5022,
|
249 |
+
"step": 320
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.222428174235403,
|
253 |
+
"grad_norm": 49.858642578125,
|
254 |
+
"learning_rate": 2.9244114002478315e-05,
|
255 |
+
"loss": 9.6801,
|
256 |
+
"step": 330
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 1.2594995366079704,
|
260 |
+
"grad_norm": 49.97459411621094,
|
261 |
+
"learning_rate": 2.9120198265179677e-05,
|
262 |
+
"loss": 9.25,
|
263 |
+
"step": 340
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.2965708989805376,
|
267 |
+
"grad_norm": 40.38698196411133,
|
268 |
+
"learning_rate": 2.8996282527881043e-05,
|
269 |
+
"loss": 10.2879,
|
270 |
+
"step": 350
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 1.3336422613531047,
|
274 |
+
"grad_norm": 29.797264099121094,
|
275 |
+
"learning_rate": 2.8872366790582405e-05,
|
276 |
+
"loss": 9.97,
|
277 |
+
"step": 360
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 1.3707136237256718,
|
281 |
+
"grad_norm": 43.83412551879883,
|
282 |
+
"learning_rate": 2.874845105328377e-05,
|
283 |
+
"loss": 9.3751,
|
284 |
+
"step": 370
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.407784986098239,
|
288 |
+
"grad_norm": 42.754154205322266,
|
289 |
+
"learning_rate": 2.8624535315985132e-05,
|
290 |
+
"loss": 9.8947,
|
291 |
+
"step": 380
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.4448563484708064,
|
295 |
+
"grad_norm": 50.08184051513672,
|
296 |
+
"learning_rate": 2.8500619578686494e-05,
|
297 |
+
"loss": 9.4987,
|
298 |
+
"step": 390
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 1.4819277108433735,
|
302 |
+
"grad_norm": 41.81029510498047,
|
303 |
+
"learning_rate": 2.8376703841387856e-05,
|
304 |
+
"loss": 10.1515,
|
305 |
+
"step": 400
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 1.5189990732159406,
|
309 |
+
"grad_norm": 44.03816223144531,
|
310 |
+
"learning_rate": 2.8252788104089218e-05,
|
311 |
+
"loss": 10.0098,
|
312 |
+
"step": 410
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 1.556070435588508,
|
316 |
+
"grad_norm": 42.871856689453125,
|
317 |
+
"learning_rate": 2.8128872366790583e-05,
|
318 |
+
"loss": 9.5566,
|
319 |
+
"step": 420
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 1.5931417979610751,
|
323 |
+
"grad_norm": 44.18041229248047,
|
324 |
+
"learning_rate": 2.8004956629491945e-05,
|
325 |
+
"loss": 10.1925,
|
326 |
+
"step": 430
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.6302131603336423,
|
330 |
+
"grad_norm": 30.012725830078125,
|
331 |
+
"learning_rate": 2.788104089219331e-05,
|
332 |
+
"loss": 9.7408,
|
333 |
+
"step": 440
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.6672845227062094,
|
337 |
+
"grad_norm": 38.104827880859375,
|
338 |
+
"learning_rate": 2.7757125154894673e-05,
|
339 |
+
"loss": 9.6873,
|
340 |
+
"step": 450
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 1.6672845227062094,
|
344 |
+
"eval_loss": 2.5061004161834717,
|
345 |
+
"eval_runtime": 34.2772,
|
346 |
+
"eval_samples_per_second": 47.203,
|
347 |
+
"eval_steps_per_second": 6.768,
|
348 |
+
"step": 450
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 1.7043558850787766,
|
352 |
+
"grad_norm": 42.93535232543945,
|
353 |
+
"learning_rate": 2.7633209417596035e-05,
|
354 |
+
"loss": 9.1932,
|
355 |
+
"step": 460
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 1.7414272474513437,
|
359 |
+
"grad_norm": 63.935279846191406,
|
360 |
+
"learning_rate": 2.75092936802974e-05,
|
361 |
+
"loss": 9.9204,
|
362 |
+
"step": 470
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 1.778498609823911,
|
366 |
+
"grad_norm": 30.906002044677734,
|
367 |
+
"learning_rate": 2.7385377942998762e-05,
|
368 |
+
"loss": 9.5151,
|
369 |
+
"step": 480
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 1.8155699721964782,
|
373 |
+
"grad_norm": 48.05679702758789,
|
374 |
+
"learning_rate": 2.7261462205700128e-05,
|
375 |
+
"loss": 9.8418,
|
376 |
+
"step": 490
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 1.8526413345690456,
|
380 |
+
"grad_norm": 56.36283874511719,
|
381 |
+
"learning_rate": 2.7137546468401486e-05,
|
382 |
+
"loss": 9.6943,
|
383 |
+
"step": 500
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 1.8897126969416127,
|
387 |
+
"grad_norm": 47.22933578491211,
|
388 |
+
"learning_rate": 2.7013630731102848e-05,
|
389 |
+
"loss": 9.6948,
|
390 |
+
"step": 510
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 1.9267840593141798,
|
394 |
+
"grad_norm": 36.110008239746094,
|
395 |
+
"learning_rate": 2.6889714993804214e-05,
|
396 |
+
"loss": 9.2274,
|
397 |
+
"step": 520
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 1.963855421686747,
|
401 |
+
"grad_norm": 37.13912582397461,
|
402 |
+
"learning_rate": 2.6765799256505576e-05,
|
403 |
+
"loss": 10.138,
|
404 |
+
"step": 530
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 2.0,
|
408 |
+
"grad_norm": 51.37559509277344,
|
409 |
+
"learning_rate": 2.664188351920694e-05,
|
410 |
+
"loss": 8.7934,
|
411 |
+
"step": 540
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 2.037071362372567,
|
415 |
+
"grad_norm": 42.32170104980469,
|
416 |
+
"learning_rate": 2.6517967781908303e-05,
|
417 |
+
"loss": 8.8304,
|
418 |
+
"step": 550
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 2.0741427247451343,
|
422 |
+
"grad_norm": 42.406219482421875,
|
423 |
+
"learning_rate": 2.6394052044609665e-05,
|
424 |
+
"loss": 8.9593,
|
425 |
+
"step": 560
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 2.1112140871177014,
|
429 |
+
"grad_norm": 52.097023010253906,
|
430 |
+
"learning_rate": 2.627013630731103e-05,
|
431 |
+
"loss": 9.0051,
|
432 |
+
"step": 570
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 2.1482854494902686,
|
436 |
+
"grad_norm": 83.86861419677734,
|
437 |
+
"learning_rate": 2.6146220570012392e-05,
|
438 |
+
"loss": 9.2829,
|
439 |
+
"step": 580
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 2.185356811862836,
|
443 |
+
"grad_norm": 38.229949951171875,
|
444 |
+
"learning_rate": 2.6022304832713758e-05,
|
445 |
+
"loss": 9.785,
|
446 |
+
"step": 590
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 2.2224281742354033,
|
450 |
+
"grad_norm": 50.322513580322266,
|
451 |
+
"learning_rate": 2.5898389095415116e-05,
|
452 |
+
"loss": 9.6401,
|
453 |
+
"step": 600
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.2224281742354033,
|
457 |
+
"eval_loss": 2.448084592819214,
|
458 |
+
"eval_runtime": 34.2525,
|
459 |
+
"eval_samples_per_second": 47.237,
|
460 |
+
"eval_steps_per_second": 6.773,
|
461 |
+
"step": 600
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 2.266913809082484,
|
465 |
+
"grad_norm": 39.366676330566406,
|
466 |
+
"learning_rate": 2.5774473358116482e-05,
|
467 |
+
"loss": 8.7059,
|
468 |
+
"step": 610
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 2.303985171455051,
|
472 |
+
"grad_norm": 41.00213623046875,
|
473 |
+
"learning_rate": 2.5650557620817844e-05,
|
474 |
+
"loss": 9.1285,
|
475 |
+
"step": 620
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 2.341056533827618,
|
479 |
+
"grad_norm": 63.442169189453125,
|
480 |
+
"learning_rate": 2.5526641883519206e-05,
|
481 |
+
"loss": 9.3277,
|
482 |
+
"step": 630
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 2.3781278962001853,
|
486 |
+
"grad_norm": 51.54194641113281,
|
487 |
+
"learning_rate": 2.540272614622057e-05,
|
488 |
+
"loss": 9.1577,
|
489 |
+
"step": 640
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 2.4151992585727524,
|
493 |
+
"grad_norm": 57.583885192871094,
|
494 |
+
"learning_rate": 2.5278810408921933e-05,
|
495 |
+
"loss": 9.6032,
|
496 |
+
"step": 650
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 2.4522706209453196,
|
500 |
+
"grad_norm": 60.13545227050781,
|
501 |
+
"learning_rate": 2.51548946716233e-05,
|
502 |
+
"loss": 8.5451,
|
503 |
+
"step": 660
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 2.489341983317887,
|
507 |
+
"grad_norm": 139.85794067382812,
|
508 |
+
"learning_rate": 2.503097893432466e-05,
|
509 |
+
"loss": 8.6601,
|
510 |
+
"step": 670
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 2.5264133456904543,
|
514 |
+
"grad_norm": 160.73171997070312,
|
515 |
+
"learning_rate": 2.4907063197026023e-05,
|
516 |
+
"loss": 9.522,
|
517 |
+
"step": 680
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 2.5634847080630214,
|
521 |
+
"grad_norm": 190.7194366455078,
|
522 |
+
"learning_rate": 2.4783147459727385e-05,
|
523 |
+
"loss": 10.0619,
|
524 |
+
"step": 690
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 2.6005560704355886,
|
528 |
+
"grad_norm": 172.5655517578125,
|
529 |
+
"learning_rate": 2.4659231722428747e-05,
|
530 |
+
"loss": 9.6444,
|
531 |
+
"step": 700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 2.6376274328081557,
|
535 |
+
"grad_norm": 280.9183044433594,
|
536 |
+
"learning_rate": 2.4535315985130112e-05,
|
537 |
+
"loss": 10.7593,
|
538 |
+
"step": 710
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 2.674698795180723,
|
542 |
+
"grad_norm": 118.03450775146484,
|
543 |
+
"learning_rate": 2.4411400247831474e-05,
|
544 |
+
"loss": 10.4432,
|
545 |
+
"step": 720
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 2.71177015755329,
|
549 |
+
"grad_norm": 332.662353515625,
|
550 |
+
"learning_rate": 2.428748451053284e-05,
|
551 |
+
"loss": 9.6033,
|
552 |
+
"step": 730
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 2.748841519925857,
|
556 |
+
"grad_norm": 129.18788146972656,
|
557 |
+
"learning_rate": 2.41635687732342e-05,
|
558 |
+
"loss": 9.108,
|
559 |
+
"step": 740
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 2.7859128822984243,
|
563 |
+
"grad_norm": 350.5856628417969,
|
564 |
+
"learning_rate": 2.4039653035935564e-05,
|
565 |
+
"loss": 9.884,
|
566 |
+
"step": 750
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 2.7859128822984243,
|
570 |
+
"eval_loss": 2.599517583847046,
|
571 |
+
"eval_runtime": 34.0592,
|
572 |
+
"eval_samples_per_second": 47.506,
|
573 |
+
"eval_steps_per_second": 6.812,
|
574 |
+
"step": 750
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"epoch": 2.822984244670992,
|
578 |
+
"grad_norm": 285.14862060546875,
|
579 |
+
"learning_rate": 2.391573729863693e-05,
|
580 |
+
"loss": 11.3952,
|
581 |
+
"step": 760
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 2.860055607043559,
|
585 |
+
"grad_norm": 185.5862579345703,
|
586 |
+
"learning_rate": 2.379182156133829e-05,
|
587 |
+
"loss": 10.6798,
|
588 |
+
"step": 770
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 2.897126969416126,
|
592 |
+
"grad_norm": 77.20765686035156,
|
593 |
+
"learning_rate": 2.3667905824039656e-05,
|
594 |
+
"loss": 9.9795,
|
595 |
+
"step": 780
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 2.9341983317886933,
|
599 |
+
"grad_norm": 88.75109100341797,
|
600 |
+
"learning_rate": 2.3543990086741015e-05,
|
601 |
+
"loss": 9.3694,
|
602 |
+
"step": 790
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 2.9712696941612604,
|
606 |
+
"grad_norm": 53.416690826416016,
|
607 |
+
"learning_rate": 2.3420074349442377e-05,
|
608 |
+
"loss": 8.4631,
|
609 |
+
"step": 800
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 3.0111214087117704,
|
613 |
+
"grad_norm": 72.12966918945312,
|
614 |
+
"learning_rate": 2.3296158612143742e-05,
|
615 |
+
"loss": 9.3903,
|
616 |
+
"step": 810
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 3.0481927710843375,
|
620 |
+
"grad_norm": 159.3909912109375,
|
621 |
+
"learning_rate": 2.3172242874845104e-05,
|
622 |
+
"loss": 8.9608,
|
623 |
+
"step": 820
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 3.0852641334569046,
|
627 |
+
"grad_norm": 161.03713989257812,
|
628 |
+
"learning_rate": 2.304832713754647e-05,
|
629 |
+
"loss": 9.623,
|
630 |
+
"step": 830
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 3.122335495829472,
|
634 |
+
"grad_norm": 136.50045776367188,
|
635 |
+
"learning_rate": 2.2924411400247832e-05,
|
636 |
+
"loss": 8.5958,
|
637 |
+
"step": 840
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 3.159406858202039,
|
641 |
+
"grad_norm": 60.785926818847656,
|
642 |
+
"learning_rate": 2.2800495662949197e-05,
|
643 |
+
"loss": 8.6278,
|
644 |
+
"step": 850
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 3.196478220574606,
|
648 |
+
"grad_norm": 115.2509536743164,
|
649 |
+
"learning_rate": 2.267657992565056e-05,
|
650 |
+
"loss": 8.661,
|
651 |
+
"step": 860
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 3.233549582947173,
|
655 |
+
"grad_norm": 144.38912963867188,
|
656 |
+
"learning_rate": 2.255266418835192e-05,
|
657 |
+
"loss": 9.5836,
|
658 |
+
"step": 870
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 3.2706209453197403,
|
662 |
+
"grad_norm": 239.74520874023438,
|
663 |
+
"learning_rate": 2.2428748451053287e-05,
|
664 |
+
"loss": 8.6221,
|
665 |
+
"step": 880
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 3.3076923076923075,
|
669 |
+
"grad_norm": 215.12789916992188,
|
670 |
+
"learning_rate": 2.2304832713754645e-05,
|
671 |
+
"loss": 9.1995,
|
672 |
+
"step": 890
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 3.344763670064875,
|
676 |
+
"grad_norm": 113.77183532714844,
|
677 |
+
"learning_rate": 2.218091697645601e-05,
|
678 |
+
"loss": 8.6909,
|
679 |
+
"step": 900
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 3.344763670064875,
|
683 |
+
"eval_loss": 2.4246325492858887,
|
684 |
+
"eval_runtime": 34.1351,
|
685 |
+
"eval_samples_per_second": 47.4,
|
686 |
+
"eval_steps_per_second": 6.797,
|
687 |
+
"step": 900
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 3.381835032437442,
|
691 |
+
"grad_norm": 175.02731323242188,
|
692 |
+
"learning_rate": 2.2057001239157373e-05,
|
693 |
+
"loss": 8.7632,
|
694 |
+
"step": 910
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 3.4189063948100094,
|
698 |
+
"grad_norm": 142.76580810546875,
|
699 |
+
"learning_rate": 2.1933085501858735e-05,
|
700 |
+
"loss": 8.5604,
|
701 |
+
"step": 920
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 3.4559777571825765,
|
705 |
+
"grad_norm": 163.0391387939453,
|
706 |
+
"learning_rate": 2.18091697645601e-05,
|
707 |
+
"loss": 9.3871,
|
708 |
+
"step": 930
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"epoch": 3.4930491195551436,
|
712 |
+
"grad_norm": 386.4294738769531,
|
713 |
+
"learning_rate": 2.1685254027261462e-05,
|
714 |
+
"loss": 9.6445,
|
715 |
+
"step": 940
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 3.5301204819277108,
|
719 |
+
"grad_norm": 86.92581939697266,
|
720 |
+
"learning_rate": 2.1561338289962827e-05,
|
721 |
+
"loss": 9.635,
|
722 |
+
"step": 950
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 3.567191844300278,
|
726 |
+
"grad_norm": 80.94845581054688,
|
727 |
+
"learning_rate": 2.143742255266419e-05,
|
728 |
+
"loss": 8.8689,
|
729 |
+
"step": 960
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 3.6042632066728455,
|
733 |
+
"grad_norm": 69.99708557128906,
|
734 |
+
"learning_rate": 2.1313506815365555e-05,
|
735 |
+
"loss": 9.1411,
|
736 |
+
"step": 970
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 3.641334569045412,
|
740 |
+
"grad_norm": 80.53229522705078,
|
741 |
+
"learning_rate": 2.1189591078066917e-05,
|
742 |
+
"loss": 8.7552,
|
743 |
+
"step": 980
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 3.67840593141798,
|
747 |
+
"grad_norm": 53.3475341796875,
|
748 |
+
"learning_rate": 2.1065675340768275e-05,
|
749 |
+
"loss": 8.5697,
|
750 |
+
"step": 990
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 3.715477293790547,
|
754 |
+
"grad_norm": 54.19875717163086,
|
755 |
+
"learning_rate": 2.094175960346964e-05,
|
756 |
+
"loss": 8.9008,
|
757 |
+
"step": 1000
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 3.752548656163114,
|
761 |
+
"grad_norm": 52.96628952026367,
|
762 |
+
"learning_rate": 2.0817843866171003e-05,
|
763 |
+
"loss": 8.9415,
|
764 |
+
"step": 1010
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 3.789620018535681,
|
768 |
+
"grad_norm": 64.08312225341797,
|
769 |
+
"learning_rate": 2.0693928128872368e-05,
|
770 |
+
"loss": 8.1303,
|
771 |
+
"step": 1020
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 3.8266913809082483,
|
775 |
+
"grad_norm": 68.22163391113281,
|
776 |
+
"learning_rate": 2.057001239157373e-05,
|
777 |
+
"loss": 8.241,
|
778 |
+
"step": 1030
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 3.8637627432808155,
|
782 |
+
"grad_norm": 66.70902252197266,
|
783 |
+
"learning_rate": 2.0446096654275092e-05,
|
784 |
+
"loss": 8.6969,
|
785 |
+
"step": 1040
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 3.9008341056533826,
|
789 |
+
"grad_norm": 49.94658279418945,
|
790 |
+
"learning_rate": 2.0322180916976458e-05,
|
791 |
+
"loss": 9.8392,
|
792 |
+
"step": 1050
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 3.9008341056533826,
|
796 |
+
"eval_loss": 2.533297300338745,
|
797 |
+
"eval_runtime": 34.1106,
|
798 |
+
"eval_samples_per_second": 47.434,
|
799 |
+
"eval_steps_per_second": 6.801,
|
800 |
+
"step": 1050
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 3.93790546802595,
|
804 |
+
"grad_norm": 73.9527816772461,
|
805 |
+
"learning_rate": 2.6765799256505576e-05,
|
806 |
+
"loss": 8.5934,
|
807 |
+
"step": 1060
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 3.974976830398517,
|
811 |
+
"grad_norm": 76.90135955810547,
|
812 |
+
"learning_rate": 2.6703841387856257e-05,
|
813 |
+
"loss": 8.006,
|
814 |
+
"step": 1070
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 4.014828544949027,
|
818 |
+
"grad_norm": 85.86236572265625,
|
819 |
+
"learning_rate": 2.664188351920694e-05,
|
820 |
+
"loss": 9.0081,
|
821 |
+
"step": 1080
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 4.051899907321594,
|
825 |
+
"grad_norm": 106.57842254638672,
|
826 |
+
"learning_rate": 2.6579925650557622e-05,
|
827 |
+
"loss": 8.6706,
|
828 |
+
"step": 1090
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 4.088971269694161,
|
832 |
+
"grad_norm": 68.10344696044922,
|
833 |
+
"learning_rate": 2.6517967781908303e-05,
|
834 |
+
"loss": 9.6146,
|
835 |
+
"step": 1100
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 4.126042632066729,
|
839 |
+
"grad_norm": 67.02091217041016,
|
840 |
+
"learning_rate": 2.6456009913258984e-05,
|
841 |
+
"loss": 9.225,
|
842 |
+
"step": 1110
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 4.163113994439295,
|
846 |
+
"grad_norm": 67.66644287109375,
|
847 |
+
"learning_rate": 2.6394052044609665e-05,
|
848 |
+
"loss": 8.7522,
|
849 |
+
"step": 1120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 4.200185356811863,
|
853 |
+
"grad_norm": 59.26814651489258,
|
854 |
+
"learning_rate": 2.633209417596035e-05,
|
855 |
+
"loss": 9.0221,
|
856 |
+
"step": 1130
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 4.23725671918443,
|
860 |
+
"grad_norm": 88.07310485839844,
|
861 |
+
"learning_rate": 2.627013630731103e-05,
|
862 |
+
"loss": 9.6458,
|
863 |
+
"step": 1140
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 4.274328081556997,
|
867 |
+
"grad_norm": 69.33895874023438,
|
868 |
+
"learning_rate": 2.620817843866171e-05,
|
869 |
+
"loss": 8.7692,
|
870 |
+
"step": 1150
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 4.311399443929565,
|
874 |
+
"grad_norm": 43.823951721191406,
|
875 |
+
"learning_rate": 2.6146220570012392e-05,
|
876 |
+
"loss": 9.2874,
|
877 |
+
"step": 1160
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 4.348470806302132,
|
881 |
+
"grad_norm": 63.590980529785156,
|
882 |
+
"learning_rate": 2.6084262701363077e-05,
|
883 |
+
"loss": 8.9276,
|
884 |
+
"step": 1170
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 4.385542168674699,
|
888 |
+
"grad_norm": 43.4519157409668,
|
889 |
+
"learning_rate": 2.6022304832713758e-05,
|
890 |
+
"loss": 8.7444,
|
891 |
+
"step": 1180
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 4.422613531047266,
|
895 |
+
"grad_norm": 72.1529312133789,
|
896 |
+
"learning_rate": 2.5960346964064435e-05,
|
897 |
+
"loss": 8.7265,
|
898 |
+
"step": 1190
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 4.459684893419833,
|
902 |
+
"grad_norm": 101.67008972167969,
|
903 |
+
"learning_rate": 2.5898389095415116e-05,
|
904 |
+
"loss": 8.7642,
|
905 |
+
"step": 1200
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 4.459684893419833,
|
909 |
+
"eval_loss": 2.6471314430236816,
|
910 |
+
"eval_runtime": 34.2723,
|
911 |
+
"eval_samples_per_second": 47.21,
|
912 |
+
"eval_steps_per_second": 6.769,
|
913 |
+
"step": 1200
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 4.4967562557924,
|
917 |
+
"grad_norm": 66.03606414794922,
|
918 |
+
"learning_rate": 2.5836431226765797e-05,
|
919 |
+
"loss": 8.8917,
|
920 |
+
"step": 1210
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 4.533827618164968,
|
924 |
+
"grad_norm": 60.01662826538086,
|
925 |
+
"learning_rate": 2.5774473358116482e-05,
|
926 |
+
"loss": 9.2155,
|
927 |
+
"step": 1220
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 4.570898980537534,
|
931 |
+
"grad_norm": 83.86510467529297,
|
932 |
+
"learning_rate": 2.5712515489467163e-05,
|
933 |
+
"loss": 8.6101,
|
934 |
+
"step": 1230
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 4.607970342910102,
|
938 |
+
"grad_norm": 64.35486602783203,
|
939 |
+
"learning_rate": 2.5650557620817844e-05,
|
940 |
+
"loss": 8.9904,
|
941 |
+
"step": 1240
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 4.645041705282669,
|
945 |
+
"grad_norm": 60.44017791748047,
|
946 |
+
"learning_rate": 2.5588599752168525e-05,
|
947 |
+
"loss": 9.3272,
|
948 |
+
"step": 1250
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 4.682113067655236,
|
952 |
+
"grad_norm": 56.501102447509766,
|
953 |
+
"learning_rate": 2.5526641883519206e-05,
|
954 |
+
"loss": 7.9367,
|
955 |
+
"step": 1260
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 4.719184430027804,
|
959 |
+
"grad_norm": 65.01017761230469,
|
960 |
+
"learning_rate": 2.546468401486989e-05,
|
961 |
+
"loss": 8.5891,
|
962 |
+
"step": 1270
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 4.7562557924003706,
|
966 |
+
"grad_norm": 63.42623519897461,
|
967 |
+
"learning_rate": 2.540272614622057e-05,
|
968 |
+
"loss": 8.6286,
|
969 |
+
"step": 1280
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 4.793327154772938,
|
973 |
+
"grad_norm": 58.96747589111328,
|
974 |
+
"learning_rate": 2.5340768277571252e-05,
|
975 |
+
"loss": 7.9982,
|
976 |
+
"step": 1290
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 4.830398517145505,
|
980 |
+
"grad_norm": 96.77368927001953,
|
981 |
+
"learning_rate": 2.5278810408921933e-05,
|
982 |
+
"loss": 7.5587,
|
983 |
+
"step": 1300
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 4.867469879518072,
|
987 |
+
"grad_norm": 85.92269897460938,
|
988 |
+
"learning_rate": 2.5216852540272614e-05,
|
989 |
+
"loss": 7.9405,
|
990 |
+
"step": 1310
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 4.904541241890639,
|
994 |
+
"grad_norm": 86.37085723876953,
|
995 |
+
"learning_rate": 2.51548946716233e-05,
|
996 |
+
"loss": 9.7092,
|
997 |
+
"step": 1320
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 4.941612604263207,
|
1001 |
+
"grad_norm": 65.88274383544922,
|
1002 |
+
"learning_rate": 2.509293680297398e-05,
|
1003 |
+
"loss": 8.1475,
|
1004 |
+
"step": 1330
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 4.978683966635774,
|
1008 |
+
"grad_norm": 53.252742767333984,
|
1009 |
+
"learning_rate": 2.503097893432466e-05,
|
1010 |
+
"loss": 9.3603,
|
1011 |
+
"step": 1340
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 5.014828544949027,
|
1015 |
+
"grad_norm": 182.35781860351562,
|
1016 |
+
"learning_rate": 2.4969021065675342e-05,
|
1017 |
+
"loss": 7.6621,
|
1018 |
+
"step": 1350
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 5.014828544949027,
|
1022 |
+
"eval_loss": 2.8308892250061035,
|
1023 |
+
"eval_runtime": 34.1063,
|
1024 |
+
"eval_samples_per_second": 47.44,
|
1025 |
+
"eval_steps_per_second": 6.802,
|
1026 |
+
"step": 1350
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 5.051899907321594,
|
1030 |
+
"grad_norm": 324.6659240722656,
|
1031 |
+
"learning_rate": 2.4907063197026023e-05,
|
1032 |
+
"loss": 9.2301,
|
1033 |
+
"step": 1360
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 5.088971269694161,
|
1037 |
+
"grad_norm": 4839.4453125,
|
1038 |
+
"learning_rate": 2.4845105328376707e-05,
|
1039 |
+
"loss": 9.7789,
|
1040 |
+
"step": 1370
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 5.126042632066729,
|
1044 |
+
"grad_norm": 408588.40625,
|
1045 |
+
"learning_rate": 2.4783147459727385e-05,
|
1046 |
+
"loss": 9.5359,
|
1047 |
+
"step": 1380
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 5.163113994439295,
|
1051 |
+
"grad_norm": 932.5144653320312,
|
1052 |
+
"learning_rate": 2.4721189591078066e-05,
|
1053 |
+
"loss": 10.8065,
|
1054 |
+
"step": 1390
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 5.200185356811863,
|
1058 |
+
"grad_norm": 148.0634765625,
|
1059 |
+
"learning_rate": 2.4659231722428747e-05,
|
1060 |
+
"loss": 10.0149,
|
1061 |
+
"step": 1400
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 5.23725671918443,
|
1065 |
+
"grad_norm": 1214.7279052734375,
|
1066 |
+
"learning_rate": 2.459727385377943e-05,
|
1067 |
+
"loss": 10.2582,
|
1068 |
+
"step": 1410
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 5.274328081556997,
|
1072 |
+
"grad_norm": 188.14292907714844,
|
1073 |
+
"learning_rate": 2.4535315985130112e-05,
|
1074 |
+
"loss": 10.16,
|
1075 |
+
"step": 1420
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 5.311399443929565,
|
1079 |
+
"grad_norm": 388.7134094238281,
|
1080 |
+
"learning_rate": 2.4473358116480793e-05,
|
1081 |
+
"loss": 10.0763,
|
1082 |
+
"step": 1430
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 5.348470806302132,
|
1086 |
+
"grad_norm": 270.61279296875,
|
1087 |
+
"learning_rate": 2.4411400247831474e-05,
|
1088 |
+
"loss": 9.5737,
|
1089 |
+
"step": 1440
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 5.385542168674699,
|
1093 |
+
"grad_norm": 1637.854736328125,
|
1094 |
+
"learning_rate": 2.4349442379182155e-05,
|
1095 |
+
"loss": 10.4816,
|
1096 |
+
"step": 1450
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 5.422613531047266,
|
1100 |
+
"grad_norm": 1118.7012939453125,
|
1101 |
+
"learning_rate": 2.428748451053284e-05,
|
1102 |
+
"loss": 8.6687,
|
1103 |
+
"step": 1460
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 5.459684893419833,
|
1107 |
+
"grad_norm": 788.9707641601562,
|
1108 |
+
"learning_rate": 2.422552664188352e-05,
|
1109 |
+
"loss": 8.4066,
|
1110 |
+
"step": 1470
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 5.4967562557924,
|
1114 |
+
"grad_norm": 185.22950744628906,
|
1115 |
+
"learning_rate": 2.41635687732342e-05,
|
1116 |
+
"loss": 9.386,
|
1117 |
+
"step": 1480
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 5.533827618164968,
|
1121 |
+
"grad_norm": 257.726806640625,
|
1122 |
+
"learning_rate": 2.4101610904584883e-05,
|
1123 |
+
"loss": 8.3911,
|
1124 |
+
"step": 1490
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 5.570898980537534,
|
1128 |
+
"grad_norm": 867.30908203125,
|
1129 |
+
"learning_rate": 2.4039653035935564e-05,
|
1130 |
+
"loss": 8.8025,
|
1131 |
+
"step": 1500
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 5.570898980537534,
|
1135 |
+
"eval_loss": 2.5407650470733643,
|
1136 |
+
"eval_runtime": 34.0934,
|
1137 |
+
"eval_samples_per_second": 47.458,
|
1138 |
+
"eval_steps_per_second": 6.805,
|
1139 |
+
"step": 1500
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 5.607970342910102,
|
1143 |
+
"grad_norm": 68.35711669921875,
|
1144 |
+
"learning_rate": 2.3977695167286248e-05,
|
1145 |
+
"loss": 8.7939,
|
1146 |
+
"step": 1510
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 5.645041705282669,
|
1150 |
+
"grad_norm": 1419.1650390625,
|
1151 |
+
"learning_rate": 2.391573729863693e-05,
|
1152 |
+
"loss": 9.0903,
|
1153 |
+
"step": 1520
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 5.682113067655236,
|
1157 |
+
"grad_norm": 60.88732147216797,
|
1158 |
+
"learning_rate": 2.385377942998761e-05,
|
1159 |
+
"loss": 8.9878,
|
1160 |
+
"step": 1530
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 5.719184430027804,
|
1164 |
+
"grad_norm": 61.50148010253906,
|
1165 |
+
"learning_rate": 2.379182156133829e-05,
|
1166 |
+
"loss": 8.8642,
|
1167 |
+
"step": 1540
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 5.7562557924003706,
|
1171 |
+
"grad_norm": 73.9307861328125,
|
1172 |
+
"learning_rate": 2.3729863692688972e-05,
|
1173 |
+
"loss": 8.8625,
|
1174 |
+
"step": 1550
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 5.793327154772938,
|
1178 |
+
"grad_norm": 82.28329467773438,
|
1179 |
+
"learning_rate": 2.3667905824039656e-05,
|
1180 |
+
"loss": 8.4105,
|
1181 |
+
"step": 1560
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 5.830398517145505,
|
1185 |
+
"grad_norm": 83.54141235351562,
|
1186 |
+
"learning_rate": 2.3605947955390337e-05,
|
1187 |
+
"loss": 9.0163,
|
1188 |
+
"step": 1570
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 5.867469879518072,
|
1192 |
+
"grad_norm": 66.59397888183594,
|
1193 |
+
"learning_rate": 2.3543990086741015e-05,
|
1194 |
+
"loss": 8.8947,
|
1195 |
+
"step": 1580
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 5.904541241890639,
|
1199 |
+
"grad_norm": 55.8841667175293,
|
1200 |
+
"learning_rate": 2.3482032218091696e-05,
|
1201 |
+
"loss": 8.5647,
|
1202 |
+
"step": 1590
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 5.941612604263207,
|
1206 |
+
"grad_norm": 74.56892395019531,
|
1207 |
+
"learning_rate": 2.3420074349442377e-05,
|
1208 |
+
"loss": 7.7047,
|
1209 |
+
"step": 1600
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 5.978683966635774,
|
1213 |
+
"grad_norm": 106.54405212402344,
|
1214 |
+
"learning_rate": 2.335811648079306e-05,
|
1215 |
+
"loss": 8.1484,
|
1216 |
+
"step": 1610
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 6.014828544949027,
|
1220 |
+
"grad_norm": 107.8216781616211,
|
1221 |
+
"learning_rate": 2.3296158612143742e-05,
|
1222 |
+
"loss": 8.4079,
|
1223 |
+
"step": 1620
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 6.051899907321594,
|
1227 |
+
"grad_norm": 100.98133087158203,
|
1228 |
+
"learning_rate": 2.3234200743494423e-05,
|
1229 |
+
"loss": 8.5027,
|
1230 |
+
"step": 1630
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 6.088971269694161,
|
1234 |
+
"grad_norm": 67.31327819824219,
|
1235 |
+
"learning_rate": 2.3172242874845104e-05,
|
1236 |
+
"loss": 8.1805,
|
1237 |
+
"step": 1640
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 6.126042632066729,
|
1241 |
+
"grad_norm": 61.10900115966797,
|
1242 |
+
"learning_rate": 2.311028500619579e-05,
|
1243 |
+
"loss": 8.4519,
|
1244 |
+
"step": 1650
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 6.126042632066729,
|
1248 |
+
"eval_loss": 2.590090036392212,
|
1249 |
+
"eval_runtime": 34.1392,
|
1250 |
+
"eval_samples_per_second": 47.394,
|
1251 |
+
"eval_steps_per_second": 6.796,
|
1252 |
+
"step": 1650
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 6.163113994439295,
|
1256 |
+
"grad_norm": 60.91183090209961,
|
1257 |
+
"learning_rate": 2.304832713754647e-05,
|
1258 |
+
"loss": 9.062,
|
1259 |
+
"step": 1660
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 6.200185356811863,
|
1263 |
+
"grad_norm": 76.2873306274414,
|
1264 |
+
"learning_rate": 2.298636926889715e-05,
|
1265 |
+
"loss": 8.8499,
|
1266 |
+
"step": 1670
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 6.23725671918443,
|
1270 |
+
"grad_norm": 74.2361068725586,
|
1271 |
+
"learning_rate": 2.2924411400247832e-05,
|
1272 |
+
"loss": 8.6576,
|
1273 |
+
"step": 1680
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 6.274328081556997,
|
1277 |
+
"grad_norm": 84.99951934814453,
|
1278 |
+
"learning_rate": 2.2862453531598513e-05,
|
1279 |
+
"loss": 8.4652,
|
1280 |
+
"step": 1690
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 6.311399443929565,
|
1284 |
+
"grad_norm": 86.40947723388672,
|
1285 |
+
"learning_rate": 2.2800495662949197e-05,
|
1286 |
+
"loss": 9.0782,
|
1287 |
+
"step": 1700
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 6.348470806302132,
|
1291 |
+
"grad_norm": 75.45568084716797,
|
1292 |
+
"learning_rate": 2.2738537794299878e-05,
|
1293 |
+
"loss": 8.1532,
|
1294 |
+
"step": 1710
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 6.385542168674699,
|
1298 |
+
"grad_norm": 86.65908813476562,
|
1299 |
+
"learning_rate": 2.267657992565056e-05,
|
1300 |
+
"loss": 8.5185,
|
1301 |
+
"step": 1720
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 6.422613531047266,
|
1305 |
+
"grad_norm": 62.620758056640625,
|
1306 |
+
"learning_rate": 2.261462205700124e-05,
|
1307 |
+
"loss": 9.5908,
|
1308 |
+
"step": 1730
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 6.459684893419833,
|
1312 |
+
"grad_norm": 73.63095092773438,
|
1313 |
+
"learning_rate": 2.255266418835192e-05,
|
1314 |
+
"loss": 8.4188,
|
1315 |
+
"step": 1740
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"epoch": 6.4967562557924,
|
1319 |
+
"grad_norm": 55.175045013427734,
|
1320 |
+
"learning_rate": 2.2490706319702606e-05,
|
1321 |
+
"loss": 8.1885,
|
1322 |
+
"step": 1750
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 6.533827618164968,
|
1326 |
+
"grad_norm": 47.647621154785156,
|
1327 |
+
"learning_rate": 2.2428748451053287e-05,
|
1328 |
+
"loss": 8.7666,
|
1329 |
+
"step": 1760
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 6.570898980537534,
|
1333 |
+
"grad_norm": 191.0419158935547,
|
1334 |
+
"learning_rate": 2.2366790582403964e-05,
|
1335 |
+
"loss": 8.6105,
|
1336 |
+
"step": 1770
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 6.607970342910102,
|
1340 |
+
"grad_norm": 57.81939697265625,
|
1341 |
+
"learning_rate": 2.2304832713754645e-05,
|
1342 |
+
"loss": 8.664,
|
1343 |
+
"step": 1780
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 6.645041705282669,
|
1347 |
+
"grad_norm": 85.04927825927734,
|
1348 |
+
"learning_rate": 2.2242874845105326e-05,
|
1349 |
+
"loss": 8.5294,
|
1350 |
+
"step": 1790
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 6.682113067655236,
|
1354 |
+
"grad_norm": 55.604122161865234,
|
1355 |
+
"learning_rate": 2.218091697645601e-05,
|
1356 |
+
"loss": 9.1857,
|
1357 |
+
"step": 1800
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 6.682113067655236,
|
1361 |
+
"eval_loss": 2.497358560562134,
|
1362 |
+
"eval_runtime": 34.0441,
|
1363 |
+
"eval_samples_per_second": 47.527,
|
1364 |
+
"eval_steps_per_second": 6.815,
|
1365 |
+
"step": 1800
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 6.719184430027804,
|
1369 |
+
"grad_norm": 75.21812438964844,
|
1370 |
+
"learning_rate": 2.211895910780669e-05,
|
1371 |
+
"loss": 8.7053,
|
1372 |
+
"step": 1810
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 6.7562557924003706,
|
1376 |
+
"grad_norm": 85.76676940917969,
|
1377 |
+
"learning_rate": 2.2057001239157373e-05,
|
1378 |
+
"loss": 8.1428,
|
1379 |
+
"step": 1820
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 6.793327154772938,
|
1383 |
+
"grad_norm": 69.85575866699219,
|
1384 |
+
"learning_rate": 2.1995043370508054e-05,
|
1385 |
+
"loss": 8.4988,
|
1386 |
+
"step": 1830
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 6.830398517145505,
|
1390 |
+
"grad_norm": 66.85325622558594,
|
1391 |
+
"learning_rate": 2.1933085501858735e-05,
|
1392 |
+
"loss": 8.4147,
|
1393 |
+
"step": 1840
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 6.867469879518072,
|
1397 |
+
"grad_norm": 60.645294189453125,
|
1398 |
+
"learning_rate": 2.187112763320942e-05,
|
1399 |
+
"loss": 9.069,
|
1400 |
+
"step": 1850
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 6.904541241890639,
|
1404 |
+
"grad_norm": 77.59921264648438,
|
1405 |
+
"learning_rate": 2.18091697645601e-05,
|
1406 |
+
"loss": 8.4405,
|
1407 |
+
"step": 1860
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 6.941612604263207,
|
1411 |
+
"grad_norm": 56.27996826171875,
|
1412 |
+
"learning_rate": 2.174721189591078e-05,
|
1413 |
+
"loss": 9.2157,
|
1414 |
+
"step": 1870
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 6.978683966635774,
|
1418 |
+
"grad_norm": 64.18400573730469,
|
1419 |
+
"learning_rate": 2.1685254027261462e-05,
|
1420 |
+
"loss": 9.5492,
|
1421 |
+
"step": 1880
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 7.014828544949027,
|
1425 |
+
"grad_norm": 76.78484344482422,
|
1426 |
+
"learning_rate": 2.1623296158612143e-05,
|
1427 |
+
"loss": 8.1325,
|
1428 |
+
"step": 1890
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 7.051899907321594,
|
1432 |
+
"grad_norm": 77.69871520996094,
|
1433 |
+
"learning_rate": 2.1561338289962827e-05,
|
1434 |
+
"loss": 8.324,
|
1435 |
+
"step": 1900
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 7.088971269694161,
|
1439 |
+
"grad_norm": 102.43340301513672,
|
1440 |
+
"learning_rate": 2.149938042131351e-05,
|
1441 |
+
"loss": 7.7097,
|
1442 |
+
"step": 1910
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 7.126042632066729,
|
1446 |
+
"grad_norm": 114.0189208984375,
|
1447 |
+
"learning_rate": 2.143742255266419e-05,
|
1448 |
+
"loss": 8.0982,
|
1449 |
+
"step": 1920
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 7.163113994439295,
|
1453 |
+
"grad_norm": 66.60838317871094,
|
1454 |
+
"learning_rate": 2.137546468401487e-05,
|
1455 |
+
"loss": 7.7669,
|
1456 |
+
"step": 1930
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 7.200185356811863,
|
1460 |
+
"grad_norm": 252.72503662109375,
|
1461 |
+
"learning_rate": 2.1313506815365555e-05,
|
1462 |
+
"loss": 7.809,
|
1463 |
+
"step": 1940
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 7.23725671918443,
|
1467 |
+
"grad_norm": 91.0379409790039,
|
1468 |
+
"learning_rate": 2.1251548946716236e-05,
|
1469 |
+
"loss": 7.9729,
|
1470 |
+
"step": 1950
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 7.23725671918443,
|
1474 |
+
"eval_loss": 2.610764741897583,
|
1475 |
+
"eval_runtime": 34.0774,
|
1476 |
+
"eval_samples_per_second": 47.48,
|
1477 |
+
"eval_steps_per_second": 6.808,
|
1478 |
+
"step": 1950
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 7.274328081556997,
|
1482 |
+
"grad_norm": 96.09555053710938,
|
1483 |
+
"learning_rate": 2.1189591078066917e-05,
|
1484 |
+
"loss": 8.2125,
|
1485 |
+
"step": 1960
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 7.311399443929565,
|
1489 |
+
"grad_norm": 68.51132202148438,
|
1490 |
+
"learning_rate": 2.1127633209417594e-05,
|
1491 |
+
"loss": 7.7403,
|
1492 |
+
"step": 1970
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 7.348470806302132,
|
1496 |
+
"grad_norm": 94.45308685302734,
|
1497 |
+
"learning_rate": 2.1065675340768275e-05,
|
1498 |
+
"loss": 7.5494,
|
1499 |
+
"step": 1980
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 7.385542168674699,
|
1503 |
+
"grad_norm": 56.785587310791016,
|
1504 |
+
"learning_rate": 2.100371747211896e-05,
|
1505 |
+
"loss": 8.2821,
|
1506 |
+
"step": 1990
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 7.422613531047266,
|
1510 |
+
"grad_norm": 91.59173583984375,
|
1511 |
+
"learning_rate": 2.094175960346964e-05,
|
1512 |
+
"loss": 8.1644,
|
1513 |
+
"step": 2000
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 7.459684893419833,
|
1517 |
+
"grad_norm": 78.57572174072266,
|
1518 |
+
"learning_rate": 2.0879801734820322e-05,
|
1519 |
+
"loss": 8.1664,
|
1520 |
+
"step": 2010
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 7.4967562557924,
|
1524 |
+
"grad_norm": 71.83062744140625,
|
1525 |
+
"learning_rate": 2.0817843866171003e-05,
|
1526 |
+
"loss": 8.5876,
|
1527 |
+
"step": 2020
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 7.533827618164968,
|
1531 |
+
"grad_norm": 74.75129699707031,
|
1532 |
+
"learning_rate": 2.0755885997521684e-05,
|
1533 |
+
"loss": 8.2753,
|
1534 |
+
"step": 2030
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 7.570898980537534,
|
1538 |
+
"grad_norm": 96.26950073242188,
|
1539 |
+
"learning_rate": 2.0693928128872368e-05,
|
1540 |
+
"loss": 9.2057,
|
1541 |
+
"step": 2040
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 7.607970342910102,
|
1545 |
+
"grad_norm": 96.87144470214844,
|
1546 |
+
"learning_rate": 2.063197026022305e-05,
|
1547 |
+
"loss": 8.0052,
|
1548 |
+
"step": 2050
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 7.645041705282669,
|
1552 |
+
"grad_norm": 83.44422912597656,
|
1553 |
+
"learning_rate": 2.057001239157373e-05,
|
1554 |
+
"loss": 8.4954,
|
1555 |
+
"step": 2060
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 7.682113067655236,
|
1559 |
+
"grad_norm": 86.1534194946289,
|
1560 |
+
"learning_rate": 2.050805452292441e-05,
|
1561 |
+
"loss": 8.0325,
|
1562 |
+
"step": 2070
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 7.719184430027804,
|
1566 |
+
"grad_norm": 89.11744689941406,
|
1567 |
+
"learning_rate": 2.0446096654275092e-05,
|
1568 |
+
"loss": 8.2934,
|
1569 |
+
"step": 2080
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 7.7562557924003706,
|
1573 |
+
"grad_norm": 60.81666946411133,
|
1574 |
+
"learning_rate": 2.0384138785625777e-05,
|
1575 |
+
"loss": 9.4019,
|
1576 |
+
"step": 2090
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 7.793327154772938,
|
1580 |
+
"grad_norm": 82.93228912353516,
|
1581 |
+
"learning_rate": 2.0322180916976458e-05,
|
1582 |
+
"loss": 8.874,
|
1583 |
+
"step": 2100
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 7.793327154772938,
|
1587 |
+
"eval_loss": 2.452894926071167,
|
1588 |
+
"eval_runtime": 34.0684,
|
1589 |
+
"eval_samples_per_second": 47.493,
|
1590 |
+
"eval_steps_per_second": 6.81,
|
1591 |
+
"step": 2100
|
1592 |
+
}
|
1593 |
+
],
|
1594 |
+
"logging_steps": 10,
|
1595 |
+
"max_steps": 5380,
|
1596 |
+
"num_input_tokens_seen": 0,
|
1597 |
+
"num_train_epochs": 20,
|
1598 |
+
"save_steps": 150,
|
1599 |
+
"stateful_callbacks": {
|
1600 |
+
"TrainerControl": {
|
1601 |
+
"args": {
|
1602 |
+
"should_epoch_stop": false,
|
1603 |
+
"should_evaluate": false,
|
1604 |
+
"should_log": false,
|
1605 |
+
"should_save": true,
|
1606 |
+
"should_training_stop": false
|
1607 |
+
},
|
1608 |
+
"attributes": {}
|
1609 |
+
}
|
1610 |
+
},
|
1611 |
+
"total_flos": 0.0,
|
1612 |
+
"train_batch_size": 7,
|
1613 |
+
"trial_name": null,
|
1614 |
+
"trial_params": null
|
1615 |
+
}
|
checkpoints/checkpoint-2100/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fda94467724e48ac975735648aa63a75558d48b6c993506e918a3476acf80697
|
3 |
+
size 129
|
checkpoints/checkpoint-2550/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoints/checkpoint-2550/README.md
ADDED
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:7552
|
8 |
+
- loss:CoSENTLoss
|
9 |
+
base_model: intfloat/multilingual-e5-large-instruct
|
10 |
+
widget:
|
11 |
+
- source_sentence: How are calibration points linked to equipment?
|
12 |
+
sentences:
|
13 |
+
- 'How are flow computers and measurement systems related?
|
14 |
+
|
15 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
16 |
+
system can only be assigned to one flow computer.
|
17 |
+
|
18 |
+
|
19 |
+
Database terminology:
|
20 |
+
|
21 |
+
In the database, this relationship is referred to as:
|
22 |
+
|
23 |
+
- Meter streams
|
24 |
+
|
25 |
+
- Meter runs
|
26 |
+
|
27 |
+
- Sections
|
28 |
+
|
29 |
+
|
30 |
+
Storage of the relationship:
|
31 |
+
|
32 |
+
The relationship between a flow computer and its assigned measurement system is
|
33 |
+
stored in a special table.
|
34 |
+
|
35 |
+
|
36 |
+
User context:
|
37 |
+
|
38 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
39 |
+
for a measurement system assigned to a specific flow computer.'
|
40 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
41 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
42 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
43 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
44 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
45 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
46 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
47 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
48 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
49 |
+
\ each value in the reports, making it easier to interpret the data."
|
50 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
51 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
52 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
53 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
54 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
55 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
56 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
57 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
58 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
59 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
60 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
61 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
62 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
63 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
64 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
65 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
66 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
67 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
68 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
69 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
70 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
71 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
72 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
73 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
74 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
75 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
76 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
77 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
78 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
79 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
80 |
+
\ systems table + uncertainty of magnitudes table)."
|
81 |
+
- source_sentence: What is the primary key of the flow computer table?
|
82 |
+
sentences:
|
83 |
+
- 'What is equipment calibration?
|
84 |
+
|
85 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
86 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
87 |
+
by the company or a regulatory body.
|
88 |
+
|
89 |
+
|
90 |
+
Purpose of calibration:
|
91 |
+
|
92 |
+
The calibration process corrects any deviations in how the equipment measures
|
93 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
94 |
+
and reliable data.
|
95 |
+
|
96 |
+
|
97 |
+
Calibration cycles:
|
98 |
+
|
99 |
+
There are two main calibration cycles:
|
100 |
+
|
101 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
102 |
+
are made. This cycle is almost always implemented.
|
103 |
+
|
104 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
105 |
+
are made. This cycle is used depending on regulatory requirements.
|
106 |
+
|
107 |
+
|
108 |
+
Calibration uncertainty:
|
109 |
+
|
110 |
+
- Uncertainty is included in the results of a calibration.
|
111 |
+
|
112 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
113 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
114 |
+
- 'What is equipment calibration?
|
115 |
+
|
116 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
117 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
118 |
+
by the company or a regulatory body.
|
119 |
+
|
120 |
+
|
121 |
+
Purpose of calibration:
|
122 |
+
|
123 |
+
The calibration process corrects any deviations in how the equipment measures
|
124 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
125 |
+
and reliable data.
|
126 |
+
|
127 |
+
|
128 |
+
Calibration cycles:
|
129 |
+
|
130 |
+
There are two main calibration cycles:
|
131 |
+
|
132 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
133 |
+
are made. This cycle is almost always implemented.
|
134 |
+
|
135 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
136 |
+
are made. This cycle is used depending on regulatory requirements.
|
137 |
+
|
138 |
+
|
139 |
+
Calibration uncertainty:
|
140 |
+
|
141 |
+
- Uncertainty is included in the results of a calibration.
|
142 |
+
|
143 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
144 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
145 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
146 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
147 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
148 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
149 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
150 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
151 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
152 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
153 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
154 |
+
\ each value in the reports, making it easier to interpret the data."
|
155 |
+
- source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
|
156 |
+
result for the specified tag and date?
|
157 |
+
sentences:
|
158 |
+
- 'What is equipment calibration?
|
159 |
+
|
160 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
161 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
162 |
+
by the company or a regulatory body.
|
163 |
+
|
164 |
+
|
165 |
+
Purpose of calibration:
|
166 |
+
|
167 |
+
The calibration process corrects any deviations in how the equipment measures
|
168 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
169 |
+
and reliable data.
|
170 |
+
|
171 |
+
|
172 |
+
Calibration cycles:
|
173 |
+
|
174 |
+
There are two main calibration cycles:
|
175 |
+
|
176 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
177 |
+
are made. This cycle is almost always implemented.
|
178 |
+
|
179 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
180 |
+
are made. This cycle is used depending on regulatory requirements.
|
181 |
+
|
182 |
+
|
183 |
+
Calibration uncertainty:
|
184 |
+
|
185 |
+
- Uncertainty is included in the results of a calibration.
|
186 |
+
|
187 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
188 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
189 |
+
- 'What kind of data store an equipment?
|
190 |
+
|
191 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
192 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
193 |
+
|
194 |
+
|
195 |
+
Data storage:
|
196 |
+
|
197 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
198 |
+
This table contains the values of the variables captured by the equipments.
|
199 |
+
|
200 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
201 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
202 |
+
uncertainty.
|
203 |
+
|
204 |
+
- The values stored in the variable values table are **different** from variable
|
205 |
+
uncertainty values, which are calculated separately and represent the margin of
|
206 |
+
error.
|
207 |
+
|
208 |
+
|
209 |
+
Accessing the data:
|
210 |
+
|
211 |
+
- Users typically access the data by referring to the readings from the measurement
|
212 |
+
system, not directly from the individual equipments.
|
213 |
+
|
214 |
+
- The readings are stored in a "variable values" table within the database.
|
215 |
+
|
216 |
+
|
217 |
+
Linking variable names:
|
218 |
+
|
219 |
+
If the user needs to know the name of a variable, they must link the data to another
|
220 |
+
table that stores information about the types of variables.'
|
221 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
222 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
223 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
224 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
225 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
226 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
227 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
228 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
229 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
230 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
231 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
232 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
233 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
234 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
235 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
236 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
237 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
238 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
239 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
240 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
241 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
242 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
243 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
244 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
245 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
246 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
247 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
248 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
249 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
250 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
251 |
+
\ systems table + uncertainty of magnitudes table)."
|
252 |
+
- source_sentence: How are the secondary equipment and measurement system related?
|
253 |
+
sentences:
|
254 |
+
- 'What kind of data store an equipment?
|
255 |
+
|
256 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
257 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
258 |
+
|
259 |
+
|
260 |
+
Data storage:
|
261 |
+
|
262 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
263 |
+
This table contains the values of the variables captured by the equipments.
|
264 |
+
|
265 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
266 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
267 |
+
uncertainty.
|
268 |
+
|
269 |
+
- The values stored in the variable values table are **different** from variable
|
270 |
+
uncertainty values, which are calculated separately and represent the margin of
|
271 |
+
error.
|
272 |
+
|
273 |
+
|
274 |
+
Accessing the data:
|
275 |
+
|
276 |
+
- Users typically access the data by referring to the readings from the measurement
|
277 |
+
system, not directly from the individual equipments.
|
278 |
+
|
279 |
+
- The readings are stored in a "variable values" table within the database.
|
280 |
+
|
281 |
+
|
282 |
+
Linking variable names:
|
283 |
+
|
284 |
+
If the user needs to know the name of a variable, they must link the data to another
|
285 |
+
table that stores information about the types of variables.'
|
286 |
+
- 'What do measurement equipment measure?
|
287 |
+
|
288 |
+
Each equipment measures a physical magnitude, also known as a variable. Based
|
289 |
+
on the type of variable they measure, devices are classified into different categories.
|
290 |
+
|
291 |
+
|
292 |
+
Equipment classification:
|
293 |
+
|
294 |
+
- Primary meter: Assigned by default to equipments like orifice plates.
|
295 |
+
|
296 |
+
- Secondary meter: Assigned by default to equipments like transmitters.
|
297 |
+
|
298 |
+
- Tertiary meter: Used for other types of equipments.
|
299 |
+
|
300 |
+
|
301 |
+
Equipment types in the database:
|
302 |
+
|
303 |
+
The database includes a table listing all equipment types. Examples of equipment
|
304 |
+
types are:
|
305 |
+
|
306 |
+
- Differential pressure transmitters
|
307 |
+
|
308 |
+
- RTDs (Resistance Temperature Detectors)
|
309 |
+
|
310 |
+
- Orifice plates
|
311 |
+
|
312 |
+
- Multivariable transmitters
|
313 |
+
|
314 |
+
- Ultrasonic meters
|
315 |
+
|
316 |
+
|
317 |
+
Meteorological checks for equipments:
|
318 |
+
|
319 |
+
Each equipment type is assigned a meteorological check, which can be either:
|
320 |
+
|
321 |
+
- Calibration: To ensure measurement accuracy.
|
322 |
+
|
323 |
+
- Inspection: To verify proper functioning.
|
324 |
+
|
325 |
+
|
326 |
+
Data storage in tables:
|
327 |
+
|
328 |
+
The database also includes a separate table for equipment classifications, which
|
329 |
+
are:
|
330 |
+
|
331 |
+
- Primary meter
|
332 |
+
|
333 |
+
- Secondary meter
|
334 |
+
|
335 |
+
- Tertiary meter
|
336 |
+
|
337 |
+
So, an equipment has equipment types and this types has classifications.'
|
338 |
+
- 'What kind of data store an equipment?
|
339 |
+
|
340 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
341 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
342 |
+
|
343 |
+
|
344 |
+
Data storage:
|
345 |
+
|
346 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
347 |
+
This table contains the values of the variables captured by the equipments.
|
348 |
+
|
349 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
350 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
351 |
+
uncertainty.
|
352 |
+
|
353 |
+
- The values stored in the variable values table are **different** from variable
|
354 |
+
uncertainty values, which are calculated separately and represent the margin of
|
355 |
+
error.
|
356 |
+
|
357 |
+
|
358 |
+
Accessing the data:
|
359 |
+
|
360 |
+
- Users typically access the data by referring to the readings from the measurement
|
361 |
+
system, not directly from the individual equipments.
|
362 |
+
|
363 |
+
- The readings are stored in a "variable values" table within the database.
|
364 |
+
|
365 |
+
|
366 |
+
Linking variable names:
|
367 |
+
|
368 |
+
If the user needs to know the name of a variable, they must link the data to another
|
369 |
+
table that stores information about the types of variables.'
|
370 |
+
- source_sentence: What is the table structure for secondary equipment?
|
371 |
+
sentences:
|
372 |
+
- 'What kind of data store an equipment?
|
373 |
+
|
374 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
375 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
376 |
+
|
377 |
+
|
378 |
+
Data storage:
|
379 |
+
|
380 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
381 |
+
This table contains the values of the variables captured by the equipments.
|
382 |
+
|
383 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
384 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
385 |
+
uncertainty.
|
386 |
+
|
387 |
+
- The values stored in the variable values table are **different** from variable
|
388 |
+
uncertainty values, which are calculated separately and represent the margin of
|
389 |
+
error.
|
390 |
+
|
391 |
+
|
392 |
+
Accessing the data:
|
393 |
+
|
394 |
+
- Users typically access the data by referring to the readings from the measurement
|
395 |
+
system, not directly from the individual equipments.
|
396 |
+
|
397 |
+
- The readings are stored in a "variable values" table within the database.
|
398 |
+
|
399 |
+
|
400 |
+
Linking variable names:
|
401 |
+
|
402 |
+
If the user needs to know the name of a variable, they must link the data to another
|
403 |
+
table that stores information about the types of variables.'
|
404 |
+
- 'How are flow computers and measurement systems related?
|
405 |
+
|
406 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
407 |
+
system can only be assigned to one flow computer.
|
408 |
+
|
409 |
+
|
410 |
+
Database terminology:
|
411 |
+
|
412 |
+
In the database, this relationship is referred to as:
|
413 |
+
|
414 |
+
- Meter streams
|
415 |
+
|
416 |
+
- Meter runs
|
417 |
+
|
418 |
+
- Sections
|
419 |
+
|
420 |
+
|
421 |
+
Storage of the relationship:
|
422 |
+
|
423 |
+
The relationship between a flow computer and its assigned measurement system is
|
424 |
+
stored in a special table.
|
425 |
+
|
426 |
+
|
427 |
+
User context:
|
428 |
+
|
429 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
430 |
+
for a measurement system assigned to a specific flow computer.'
|
431 |
+
- 'How are flow computers and measurement systems related?
|
432 |
+
|
433 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
434 |
+
system can only be assigned to one flow computer.
|
435 |
+
|
436 |
+
|
437 |
+
Database terminology:
|
438 |
+
|
439 |
+
In the database, this relationship is referred to as:
|
440 |
+
|
441 |
+
- Meter streams
|
442 |
+
|
443 |
+
- Meter runs
|
444 |
+
|
445 |
+
- Sections
|
446 |
+
|
447 |
+
|
448 |
+
Storage of the relationship:
|
449 |
+
|
450 |
+
The relationship between a flow computer and its assigned measurement system is
|
451 |
+
stored in a special table.
|
452 |
+
|
453 |
+
|
454 |
+
User context:
|
455 |
+
|
456 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
457 |
+
for a measurement system assigned to a specific flow computer.'
|
458 |
+
datasets:
|
459 |
+
- Lauther/measuring-embeddings-v3
|
460 |
+
pipeline_tag: sentence-similarity
|
461 |
+
library_name: sentence-transformers
|
462 |
+
---
|
463 |
+
|
464 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large-instruct
|
465 |
+
|
466 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
467 |
+
|
468 |
+
## Model Details
|
469 |
+
|
470 |
+
### Model Description
|
471 |
+
- **Model Type:** Sentence Transformer
|
472 |
+
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
|
473 |
+
- **Maximum Sequence Length:** 512 tokens
|
474 |
+
- **Output Dimensionality:** 1024 dimensions
|
475 |
+
- **Similarity Function:** Cosine Similarity
|
476 |
+
- **Training Dataset:**
|
477 |
+
- [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
|
478 |
+
<!-- - **Language:** Unknown -->
|
479 |
+
<!-- - **License:** Unknown -->
|
480 |
+
|
481 |
+
### Model Sources
|
482 |
+
|
483 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
484 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
485 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
486 |
+
|
487 |
+
### Full Model Architecture
|
488 |
+
|
489 |
+
```
|
490 |
+
SentenceTransformer(
|
491 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
492 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
493 |
+
(2): Normalize()
|
494 |
+
)
|
495 |
+
```
|
496 |
+
|
497 |
+
## Usage
|
498 |
+
|
499 |
+
### Direct Usage (Sentence Transformers)
|
500 |
+
|
501 |
+
First install the Sentence Transformers library:
|
502 |
+
|
503 |
+
```bash
|
504 |
+
pip install -U sentence-transformers
|
505 |
+
```
|
506 |
+
|
507 |
+
Then you can load this model and run inference.
|
508 |
+
```python
|
509 |
+
from sentence_transformers import SentenceTransformer
|
510 |
+
|
511 |
+
# Download from the 🤗 Hub
|
512 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
513 |
+
# Run inference
|
514 |
+
sentences = [
|
515 |
+
'What is the table structure for secondary equipment?',
|
516 |
+
'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
|
517 |
+
'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
|
518 |
+
]
|
519 |
+
embeddings = model.encode(sentences)
|
520 |
+
print(embeddings.shape)
|
521 |
+
# [3, 1024]
|
522 |
+
|
523 |
+
# Get the similarity scores for the embeddings
|
524 |
+
similarities = model.similarity(embeddings, embeddings)
|
525 |
+
print(similarities.shape)
|
526 |
+
# [3, 3]
|
527 |
+
```
|
528 |
+
|
529 |
+
<!--
|
530 |
+
### Direct Usage (Transformers)
|
531 |
+
|
532 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
533 |
+
|
534 |
+
</details>
|
535 |
+
-->
|
536 |
+
|
537 |
+
<!--
|
538 |
+
### Downstream Usage (Sentence Transformers)
|
539 |
+
|
540 |
+
You can finetune this model on your own dataset.
|
541 |
+
|
542 |
+
<details><summary>Click to expand</summary>
|
543 |
+
|
544 |
+
</details>
|
545 |
+
-->
|
546 |
+
|
547 |
+
<!--
|
548 |
+
### Out-of-Scope Use
|
549 |
+
|
550 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
551 |
+
-->
|
552 |
+
|
553 |
+
<!--
|
554 |
+
## Bias, Risks and Limitations
|
555 |
+
|
556 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
557 |
+
-->
|
558 |
+
|
559 |
+
<!--
|
560 |
+
### Recommendations
|
561 |
+
|
562 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
563 |
+
-->
|
564 |
+
|
565 |
+
## Training Details
|
566 |
+
|
567 |
+
### Training Dataset
|
568 |
+
|
569 |
+
#### measuring-embeddings-v3
|
570 |
+
|
571 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
572 |
+
* Size: 7,552 training samples
|
573 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
574 |
+
* Approximate statistics based on the first 1000 samples:
|
575 |
+
| | sentence1 | sentence2 | score |
|
576 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
577 |
+
| type | string | string | float |
|
578 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
|
579 |
+
* Samples:
|
580 |
+
| sentence1 | sentence2 | score |
|
581 |
+
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
582 |
+
| <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
|
583 |
+
| <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
|
584 |
+
| <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
|
585 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
586 |
+
```json
|
587 |
+
{
|
588 |
+
"scale": 20.0,
|
589 |
+
"similarity_fct": "pairwise_cos_sim"
|
590 |
+
}
|
591 |
+
```
|
592 |
+
|
593 |
+
### Evaluation Dataset
|
594 |
+
|
595 |
+
#### measuring-embeddings-v3
|
596 |
+
|
597 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
598 |
+
* Size: 1,618 evaluation samples
|
599 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
600 |
+
* Approximate statistics based on the first 1000 samples:
|
601 |
+
| | sentence1 | sentence2 | score |
|
602 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
603 |
+
| type | string | string | float |
|
604 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
|
605 |
+
* Samples:
|
606 |
+
| sentence1 | sentence2 | score |
|
607 |
+
|:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
608 |
+
| <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
|
609 |
+
| <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
|
610 |
+
| <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
|
611 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
612 |
+
```json
|
613 |
+
{
|
614 |
+
"scale": 20.0,
|
615 |
+
"similarity_fct": "pairwise_cos_sim"
|
616 |
+
}
|
617 |
+
```
|
618 |
+
|
619 |
+
### Training Hyperparameters
|
620 |
+
#### Non-Default Hyperparameters
|
621 |
+
|
622 |
+
- `eval_strategy`: steps
|
623 |
+
- `per_device_train_batch_size`: 7
|
624 |
+
- `per_device_eval_batch_size`: 7
|
625 |
+
- `gradient_accumulation_steps`: 4
|
626 |
+
- `learning_rate`: 3e-05
|
627 |
+
- `num_train_epochs`: 20
|
628 |
+
- `warmup_ratio`: 0.1
|
629 |
+
|
630 |
+
#### All Hyperparameters
|
631 |
+
<details><summary>Click to expand</summary>
|
632 |
+
|
633 |
+
- `overwrite_output_dir`: False
|
634 |
+
- `do_predict`: False
|
635 |
+
- `eval_strategy`: steps
|
636 |
+
- `prediction_loss_only`: True
|
637 |
+
- `per_device_train_batch_size`: 7
|
638 |
+
- `per_device_eval_batch_size`: 7
|
639 |
+
- `per_gpu_train_batch_size`: None
|
640 |
+
- `per_gpu_eval_batch_size`: None
|
641 |
+
- `gradient_accumulation_steps`: 4
|
642 |
+
- `eval_accumulation_steps`: None
|
643 |
+
- `torch_empty_cache_steps`: None
|
644 |
+
- `learning_rate`: 3e-05
|
645 |
+
- `weight_decay`: 0.0
|
646 |
+
- `adam_beta1`: 0.9
|
647 |
+
- `adam_beta2`: 0.999
|
648 |
+
- `adam_epsilon`: 1e-08
|
649 |
+
- `max_grad_norm`: 1.0
|
650 |
+
- `num_train_epochs`: 20
|
651 |
+
- `max_steps`: -1
|
652 |
+
- `lr_scheduler_type`: linear
|
653 |
+
- `lr_scheduler_kwargs`: {}
|
654 |
+
- `warmup_ratio`: 0.1
|
655 |
+
- `warmup_steps`: 0
|
656 |
+
- `log_level`: passive
|
657 |
+
- `log_level_replica`: warning
|
658 |
+
- `log_on_each_node`: True
|
659 |
+
- `logging_nan_inf_filter`: True
|
660 |
+
- `save_safetensors`: True
|
661 |
+
- `save_on_each_node`: False
|
662 |
+
- `save_only_model`: False
|
663 |
+
- `restore_callback_states_from_checkpoint`: False
|
664 |
+
- `no_cuda`: False
|
665 |
+
- `use_cpu`: False
|
666 |
+
- `use_mps_device`: False
|
667 |
+
- `seed`: 42
|
668 |
+
- `data_seed`: None
|
669 |
+
- `jit_mode_eval`: False
|
670 |
+
- `use_ipex`: False
|
671 |
+
- `bf16`: False
|
672 |
+
- `fp16`: False
|
673 |
+
- `fp16_opt_level`: O1
|
674 |
+
- `half_precision_backend`: auto
|
675 |
+
- `bf16_full_eval`: False
|
676 |
+
- `fp16_full_eval`: False
|
677 |
+
- `tf32`: None
|
678 |
+
- `local_rank`: 0
|
679 |
+
- `ddp_backend`: None
|
680 |
+
- `tpu_num_cores`: None
|
681 |
+
- `tpu_metrics_debug`: False
|
682 |
+
- `debug`: []
|
683 |
+
- `dataloader_drop_last`: False
|
684 |
+
- `dataloader_num_workers`: 0
|
685 |
+
- `dataloader_prefetch_factor`: None
|
686 |
+
- `past_index`: -1
|
687 |
+
- `disable_tqdm`: False
|
688 |
+
- `remove_unused_columns`: True
|
689 |
+
- `label_names`: None
|
690 |
+
- `load_best_model_at_end`: False
|
691 |
+
- `ignore_data_skip`: False
|
692 |
+
- `fsdp`: []
|
693 |
+
- `fsdp_min_num_params`: 0
|
694 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
695 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
696 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
697 |
+
- `deepspeed`: None
|
698 |
+
- `label_smoothing_factor`: 0.0
|
699 |
+
- `optim`: adamw_torch
|
700 |
+
- `optim_args`: None
|
701 |
+
- `adafactor`: False
|
702 |
+
- `group_by_length`: False
|
703 |
+
- `length_column_name`: length
|
704 |
+
- `ddp_find_unused_parameters`: None
|
705 |
+
- `ddp_bucket_cap_mb`: None
|
706 |
+
- `ddp_broadcast_buffers`: False
|
707 |
+
- `dataloader_pin_memory`: True
|
708 |
+
- `dataloader_persistent_workers`: False
|
709 |
+
- `skip_memory_metrics`: True
|
710 |
+
- `use_legacy_prediction_loop`: False
|
711 |
+
- `push_to_hub`: False
|
712 |
+
- `resume_from_checkpoint`: None
|
713 |
+
- `hub_model_id`: None
|
714 |
+
- `hub_strategy`: every_save
|
715 |
+
- `hub_private_repo`: None
|
716 |
+
- `hub_always_push`: False
|
717 |
+
- `gradient_checkpointing`: False
|
718 |
+
- `gradient_checkpointing_kwargs`: None
|
719 |
+
- `include_inputs_for_metrics`: False
|
720 |
+
- `include_for_metrics`: []
|
721 |
+
- `eval_do_concat_batches`: True
|
722 |
+
- `fp16_backend`: auto
|
723 |
+
- `push_to_hub_model_id`: None
|
724 |
+
- `push_to_hub_organization`: None
|
725 |
+
- `mp_parameters`:
|
726 |
+
- `auto_find_batch_size`: False
|
727 |
+
- `full_determinism`: False
|
728 |
+
- `torchdynamo`: None
|
729 |
+
- `ray_scope`: last
|
730 |
+
- `ddp_timeout`: 1800
|
731 |
+
- `torch_compile`: False
|
732 |
+
- `torch_compile_backend`: None
|
733 |
+
- `torch_compile_mode`: None
|
734 |
+
- `dispatch_batches`: None
|
735 |
+
- `split_batches`: None
|
736 |
+
- `include_tokens_per_second`: False
|
737 |
+
- `include_num_input_tokens_seen`: False
|
738 |
+
- `neftune_noise_alpha`: None
|
739 |
+
- `optim_target_modules`: None
|
740 |
+
- `batch_eval_metrics`: False
|
741 |
+
- `eval_on_start`: False
|
742 |
+
- `use_liger_kernel`: False
|
743 |
+
- `eval_use_gather_object`: False
|
744 |
+
- `average_tokens_across_devices`: False
|
745 |
+
- `prompts`: None
|
746 |
+
- `batch_sampler`: batch_sampler
|
747 |
+
- `multi_dataset_batch_sampler`: proportional
|
748 |
+
|
749 |
+
</details>
|
750 |
+
|
751 |
+
### Training Logs
|
752 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
753 |
+
|:------:|:----:|:-------------:|:---------------:|
|
754 |
+
| 8.4004 | 2260 | 8.9083 | - |
|
755 |
+
| 8.4374 | 2270 | 6.9349 | - |
|
756 |
+
| 8.4745 | 2280 | 7.5041 | - |
|
757 |
+
| 8.5116 | 2290 | 7.3744 | - |
|
758 |
+
| 8.5487 | 2300 | 8.6541 | - |
|
759 |
+
| 8.5857 | 2310 | 8.6305 | - |
|
760 |
+
| 8.6228 | 2320 | 8.2577 | - |
|
761 |
+
| 8.6599 | 2330 | 7.6382 | - |
|
762 |
+
| 8.6969 | 2340 | 8.114 | - |
|
763 |
+
| 8.7340 | 2350 | 7.8875 | - |
|
764 |
+
| 8.7711 | 2360 | 7.0444 | - |
|
765 |
+
| 8.8082 | 2370 | 7.7393 | - |
|
766 |
+
| 8.8452 | 2380 | 8.8284 | - |
|
767 |
+
| 8.8823 | 2390 | 7.997 | - |
|
768 |
+
| 8.9194 | 2400 | 7.786 | 2.6791 |
|
769 |
+
| 8.9564 | 2410 | 7.6257 | - |
|
770 |
+
| 8.9935 | 2420 | 7.099 | - |
|
771 |
+
| 9.0334 | 2430 | 8.041 | - |
|
772 |
+
| 9.0704 | 2440 | 7.8606 | - |
|
773 |
+
| 9.1075 | 2450 | 7.8551 | - |
|
774 |
+
| 9.1446 | 2460 | 7.3977 | - |
|
775 |
+
| 9.1816 | 2470 | 7.8721 | - |
|
776 |
+
| 9.2187 | 2480 | 7.5839 | - |
|
777 |
+
| 9.2558 | 2490 | 7.1823 | - |
|
778 |
+
| 9.2929 | 2500 | 7.5513 | - |
|
779 |
+
| 9.3299 | 2510 | 8.0879 | - |
|
780 |
+
| 9.3670 | 2520 | 7.5694 | - |
|
781 |
+
| 9.4041 | 2530 | 7.3436 | - |
|
782 |
+
| 9.4411 | 2540 | 6.9425 | - |
|
783 |
+
| 9.4782 | 2550 | 7.9461 | 2.6609 |
|
784 |
+
|
785 |
+
|
786 |
+
### Framework Versions
|
787 |
+
- Python: 3.11.0
|
788 |
+
- Sentence Transformers: 3.4.0
|
789 |
+
- Transformers: 4.48.1
|
790 |
+
- PyTorch: 2.5.1+cu124
|
791 |
+
- Accelerate: 1.3.0
|
792 |
+
- Datasets: 3.2.0
|
793 |
+
- Tokenizers: 0.21.0
|
794 |
+
|
795 |
+
## Citation
|
796 |
+
|
797 |
+
### BibTeX
|
798 |
+
|
799 |
+
#### Sentence Transformers
|
800 |
+
```bibtex
|
801 |
+
@inproceedings{reimers-2019-sentence-bert,
|
802 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
803 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
804 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
805 |
+
month = "11",
|
806 |
+
year = "2019",
|
807 |
+
publisher = "Association for Computational Linguistics",
|
808 |
+
url = "https://arxiv.org/abs/1908.10084",
|
809 |
+
}
|
810 |
+
```
|
811 |
+
|
812 |
+
#### CoSENTLoss
|
813 |
+
```bibtex
|
814 |
+
@online{kexuefm-8847,
|
815 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
816 |
+
author={Su Jianlin},
|
817 |
+
year={2022},
|
818 |
+
month={Jan},
|
819 |
+
url={https://kexue.fm/archives/8847},
|
820 |
+
}
|
821 |
+
```
|
822 |
+
|
823 |
+
<!--
|
824 |
+
## Glossary
|
825 |
+
|
826 |
+
*Clearly define terms in order to be accessible across audiences.*
|
827 |
+
-->
|
828 |
+
|
829 |
+
<!--
|
830 |
+
## Model Card Authors
|
831 |
+
|
832 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
833 |
+
-->
|
834 |
+
|
835 |
+
<!--
|
836 |
+
## Model Card Contact
|
837 |
+
|
838 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
839 |
+
-->
|
checkpoints/checkpoint-2550/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-large-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoints/checkpoint-2550/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
checkpoints/checkpoint-2550/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1eeb987ae1fe4e003c1ed193ae85886259826a8245cc3b4c7f68b95a3e62f4a
|
3 |
+
size 135
|
checkpoints/checkpoint-2550/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoints/checkpoint-2550/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e60d803e7ed6d5b6dcb9fdd28dcac8799caa489d45a4d580380eb424efc1f6d1
|
3 |
+
size 135
|
checkpoints/checkpoint-2550/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:052a33df3ff67f767c8bc37d9aea19901e1530ce3194ccb24810b5f02b64c596
|
3 |
+
size 130
|
checkpoints/checkpoint-2550/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4229c3d8882ac67ab0b2f25fec200e2b96ffede873c599106e1de1e9caa32b3c
|
3 |
+
size 129
|
checkpoints/checkpoint-2550/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoints/checkpoint-2550/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoints/checkpoint-2550/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de6f09c3f9b891e5b98dd3af9463dcab5a97d5265e288271395324a0577e6c05
|
3 |
+
size 133
|
checkpoints/checkpoint-2550/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
55 |
+
"unk_token": "<unk>"
|
56 |
+
}
|
checkpoints/checkpoint-2550/trainer_state.json
ADDED
@@ -0,0 +1,1954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 9.478220574606116,
|
5 |
+
"eval_steps": 150,
|
6 |
+
"global_step": 2550,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03707136237256719,
|
13 |
+
"grad_norm": 53.36411666870117,
|
14 |
+
"learning_rate": 1.1152416356877324e-06,
|
15 |
+
"loss": 10.8165,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.07414272474513438,
|
20 |
+
"grad_norm": 61.33858871459961,
|
21 |
+
"learning_rate": 2.2304832713754648e-06,
|
22 |
+
"loss": 10.8463,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.11121408711770157,
|
27 |
+
"grad_norm": 67.16305541992188,
|
28 |
+
"learning_rate": 3.345724907063197e-06,
|
29 |
+
"loss": 10.821,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.14828544949026876,
|
34 |
+
"grad_norm": 62.08958053588867,
|
35 |
+
"learning_rate": 4.4609665427509296e-06,
|
36 |
+
"loss": 10.4704,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.18535681186283595,
|
41 |
+
"grad_norm": 53.839927673339844,
|
42 |
+
"learning_rate": 5.576208178438661e-06,
|
43 |
+
"loss": 10.8568,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.22242817423540315,
|
48 |
+
"grad_norm": 57.02272033691406,
|
49 |
+
"learning_rate": 6.691449814126394e-06,
|
50 |
+
"loss": 10.3005,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.2594995366079703,
|
55 |
+
"grad_norm": 88.16449737548828,
|
56 |
+
"learning_rate": 7.806691449814127e-06,
|
57 |
+
"loss": 9.6009,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.2965708989805375,
|
62 |
+
"grad_norm": 84.35252380371094,
|
63 |
+
"learning_rate": 8.921933085501859e-06,
|
64 |
+
"loss": 9.7448,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.3336422613531047,
|
69 |
+
"grad_norm": 77.93982696533203,
|
70 |
+
"learning_rate": 1.0037174721189593e-05,
|
71 |
+
"loss": 9.5922,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.3707136237256719,
|
76 |
+
"grad_norm": 56.669166564941406,
|
77 |
+
"learning_rate": 1.1152416356877323e-05,
|
78 |
+
"loss": 10.0919,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.4077849860982391,
|
83 |
+
"grad_norm": 56.652488708496094,
|
84 |
+
"learning_rate": 1.2267657992565056e-05,
|
85 |
+
"loss": 10.2733,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.4448563484708063,
|
90 |
+
"grad_norm": 63.472042083740234,
|
91 |
+
"learning_rate": 1.3382899628252788e-05,
|
92 |
+
"loss": 9.4547,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4819277108433735,
|
97 |
+
"grad_norm": 78.0159912109375,
|
98 |
+
"learning_rate": 1.4498141263940521e-05,
|
99 |
+
"loss": 9.1738,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.5189990732159406,
|
104 |
+
"grad_norm": 68.1931381225586,
|
105 |
+
"learning_rate": 1.5613382899628255e-05,
|
106 |
+
"loss": 10.0876,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.5560704355885079,
|
111 |
+
"grad_norm": 49.315216064453125,
|
112 |
+
"learning_rate": 1.6728624535315986e-05,
|
113 |
+
"loss": 10.3721,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.5560704355885079,
|
118 |
+
"eval_loss": 2.559400796890259,
|
119 |
+
"eval_runtime": 34.304,
|
120 |
+
"eval_samples_per_second": 47.166,
|
121 |
+
"eval_steps_per_second": 6.763,
|
122 |
+
"step": 150
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.593141797961075,
|
126 |
+
"grad_norm": 34.1899528503418,
|
127 |
+
"learning_rate": 1.7843866171003718e-05,
|
128 |
+
"loss": 10.4711,
|
129 |
+
"step": 160
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.6302131603336423,
|
133 |
+
"grad_norm": 37.074134826660156,
|
134 |
+
"learning_rate": 1.895910780669145e-05,
|
135 |
+
"loss": 9.9383,
|
136 |
+
"step": 170
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.6672845227062094,
|
140 |
+
"grad_norm": 49.323158264160156,
|
141 |
+
"learning_rate": 2.0074349442379185e-05,
|
142 |
+
"loss": 10.0448,
|
143 |
+
"step": 180
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.7043558850787767,
|
147 |
+
"grad_norm": 53.07639694213867,
|
148 |
+
"learning_rate": 2.1189591078066917e-05,
|
149 |
+
"loss": 9.8467,
|
150 |
+
"step": 190
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.7414272474513438,
|
154 |
+
"grad_norm": 38.345916748046875,
|
155 |
+
"learning_rate": 2.2304832713754645e-05,
|
156 |
+
"loss": 9.9434,
|
157 |
+
"step": 200
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.7784986098239111,
|
161 |
+
"grad_norm": 47.55274963378906,
|
162 |
+
"learning_rate": 2.3420074349442377e-05,
|
163 |
+
"loss": 9.7912,
|
164 |
+
"step": 210
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.8155699721964782,
|
168 |
+
"grad_norm": 59.17176055908203,
|
169 |
+
"learning_rate": 2.4535315985130112e-05,
|
170 |
+
"loss": 9.7905,
|
171 |
+
"step": 220
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.8526413345690455,
|
175 |
+
"grad_norm": 52.57457733154297,
|
176 |
+
"learning_rate": 2.5650557620817844e-05,
|
177 |
+
"loss": 9.9412,
|
178 |
+
"step": 230
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.8897126969416126,
|
182 |
+
"grad_norm": 42.251304626464844,
|
183 |
+
"learning_rate": 2.6765799256505576e-05,
|
184 |
+
"loss": 10.0084,
|
185 |
+
"step": 240
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.9267840593141798,
|
189 |
+
"grad_norm": 46.63966369628906,
|
190 |
+
"learning_rate": 2.788104089219331e-05,
|
191 |
+
"loss": 10.0139,
|
192 |
+
"step": 250
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.963855421686747,
|
196 |
+
"grad_norm": 27.772289276123047,
|
197 |
+
"learning_rate": 2.8996282527881043e-05,
|
198 |
+
"loss": 9.3794,
|
199 |
+
"step": 260
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 1.0,
|
203 |
+
"grad_norm": 46.3179931640625,
|
204 |
+
"learning_rate": 2.9987608426270136e-05,
|
205 |
+
"loss": 9.5747,
|
206 |
+
"step": 270
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 1.0370713623725671,
|
210 |
+
"grad_norm": 45.746551513671875,
|
211 |
+
"learning_rate": 2.98636926889715e-05,
|
212 |
+
"loss": 9.6763,
|
213 |
+
"step": 280
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 1.0741427247451343,
|
217 |
+
"grad_norm": 49.50416564941406,
|
218 |
+
"learning_rate": 2.9739776951672864e-05,
|
219 |
+
"loss": 10.4789,
|
220 |
+
"step": 290
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 1.1112140871177016,
|
224 |
+
"grad_norm": 43.72733688354492,
|
225 |
+
"learning_rate": 2.9615861214374226e-05,
|
226 |
+
"loss": 9.7244,
|
227 |
+
"step": 300
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.1112140871177016,
|
231 |
+
"eval_loss": 2.6879734992980957,
|
232 |
+
"eval_runtime": 34.2522,
|
233 |
+
"eval_samples_per_second": 47.238,
|
234 |
+
"eval_steps_per_second": 6.773,
|
235 |
+
"step": 300
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 1.1482854494902688,
|
239 |
+
"grad_norm": 48.68376541137695,
|
240 |
+
"learning_rate": 2.9491945477075588e-05,
|
241 |
+
"loss": 9.9421,
|
242 |
+
"step": 310
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.185356811862836,
|
246 |
+
"grad_norm": 44.014747619628906,
|
247 |
+
"learning_rate": 2.9368029739776953e-05,
|
248 |
+
"loss": 9.5022,
|
249 |
+
"step": 320
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.222428174235403,
|
253 |
+
"grad_norm": 49.858642578125,
|
254 |
+
"learning_rate": 2.9244114002478315e-05,
|
255 |
+
"loss": 9.6801,
|
256 |
+
"step": 330
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 1.2594995366079704,
|
260 |
+
"grad_norm": 49.97459411621094,
|
261 |
+
"learning_rate": 2.9120198265179677e-05,
|
262 |
+
"loss": 9.25,
|
263 |
+
"step": 340
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.2965708989805376,
|
267 |
+
"grad_norm": 40.38698196411133,
|
268 |
+
"learning_rate": 2.8996282527881043e-05,
|
269 |
+
"loss": 10.2879,
|
270 |
+
"step": 350
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 1.3336422613531047,
|
274 |
+
"grad_norm": 29.797264099121094,
|
275 |
+
"learning_rate": 2.8872366790582405e-05,
|
276 |
+
"loss": 9.97,
|
277 |
+
"step": 360
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 1.3707136237256718,
|
281 |
+
"grad_norm": 43.83412551879883,
|
282 |
+
"learning_rate": 2.874845105328377e-05,
|
283 |
+
"loss": 9.3751,
|
284 |
+
"step": 370
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.407784986098239,
|
288 |
+
"grad_norm": 42.754154205322266,
|
289 |
+
"learning_rate": 2.8624535315985132e-05,
|
290 |
+
"loss": 9.8947,
|
291 |
+
"step": 380
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.4448563484708064,
|
295 |
+
"grad_norm": 50.08184051513672,
|
296 |
+
"learning_rate": 2.8500619578686494e-05,
|
297 |
+
"loss": 9.4987,
|
298 |
+
"step": 390
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 1.4819277108433735,
|
302 |
+
"grad_norm": 41.81029510498047,
|
303 |
+
"learning_rate": 2.8376703841387856e-05,
|
304 |
+
"loss": 10.1515,
|
305 |
+
"step": 400
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 1.5189990732159406,
|
309 |
+
"grad_norm": 44.03816223144531,
|
310 |
+
"learning_rate": 2.8252788104089218e-05,
|
311 |
+
"loss": 10.0098,
|
312 |
+
"step": 410
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 1.556070435588508,
|
316 |
+
"grad_norm": 42.871856689453125,
|
317 |
+
"learning_rate": 2.8128872366790583e-05,
|
318 |
+
"loss": 9.5566,
|
319 |
+
"step": 420
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 1.5931417979610751,
|
323 |
+
"grad_norm": 44.18041229248047,
|
324 |
+
"learning_rate": 2.8004956629491945e-05,
|
325 |
+
"loss": 10.1925,
|
326 |
+
"step": 430
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.6302131603336423,
|
330 |
+
"grad_norm": 30.012725830078125,
|
331 |
+
"learning_rate": 2.788104089219331e-05,
|
332 |
+
"loss": 9.7408,
|
333 |
+
"step": 440
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.6672845227062094,
|
337 |
+
"grad_norm": 38.104827880859375,
|
338 |
+
"learning_rate": 2.7757125154894673e-05,
|
339 |
+
"loss": 9.6873,
|
340 |
+
"step": 450
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 1.6672845227062094,
|
344 |
+
"eval_loss": 2.5061004161834717,
|
345 |
+
"eval_runtime": 34.2772,
|
346 |
+
"eval_samples_per_second": 47.203,
|
347 |
+
"eval_steps_per_second": 6.768,
|
348 |
+
"step": 450
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 1.7043558850787766,
|
352 |
+
"grad_norm": 42.93535232543945,
|
353 |
+
"learning_rate": 2.7633209417596035e-05,
|
354 |
+
"loss": 9.1932,
|
355 |
+
"step": 460
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 1.7414272474513437,
|
359 |
+
"grad_norm": 63.935279846191406,
|
360 |
+
"learning_rate": 2.75092936802974e-05,
|
361 |
+
"loss": 9.9204,
|
362 |
+
"step": 470
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 1.778498609823911,
|
366 |
+
"grad_norm": 30.906002044677734,
|
367 |
+
"learning_rate": 2.7385377942998762e-05,
|
368 |
+
"loss": 9.5151,
|
369 |
+
"step": 480
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 1.8155699721964782,
|
373 |
+
"grad_norm": 48.05679702758789,
|
374 |
+
"learning_rate": 2.7261462205700128e-05,
|
375 |
+
"loss": 9.8418,
|
376 |
+
"step": 490
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 1.8526413345690456,
|
380 |
+
"grad_norm": 56.36283874511719,
|
381 |
+
"learning_rate": 2.7137546468401486e-05,
|
382 |
+
"loss": 9.6943,
|
383 |
+
"step": 500
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 1.8897126969416127,
|
387 |
+
"grad_norm": 47.22933578491211,
|
388 |
+
"learning_rate": 2.7013630731102848e-05,
|
389 |
+
"loss": 9.6948,
|
390 |
+
"step": 510
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 1.9267840593141798,
|
394 |
+
"grad_norm": 36.110008239746094,
|
395 |
+
"learning_rate": 2.6889714993804214e-05,
|
396 |
+
"loss": 9.2274,
|
397 |
+
"step": 520
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 1.963855421686747,
|
401 |
+
"grad_norm": 37.13912582397461,
|
402 |
+
"learning_rate": 2.6765799256505576e-05,
|
403 |
+
"loss": 10.138,
|
404 |
+
"step": 530
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 2.0,
|
408 |
+
"grad_norm": 51.37559509277344,
|
409 |
+
"learning_rate": 2.664188351920694e-05,
|
410 |
+
"loss": 8.7934,
|
411 |
+
"step": 540
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 2.037071362372567,
|
415 |
+
"grad_norm": 42.32170104980469,
|
416 |
+
"learning_rate": 2.6517967781908303e-05,
|
417 |
+
"loss": 8.8304,
|
418 |
+
"step": 550
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 2.0741427247451343,
|
422 |
+
"grad_norm": 42.406219482421875,
|
423 |
+
"learning_rate": 2.6394052044609665e-05,
|
424 |
+
"loss": 8.9593,
|
425 |
+
"step": 560
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 2.1112140871177014,
|
429 |
+
"grad_norm": 52.097023010253906,
|
430 |
+
"learning_rate": 2.627013630731103e-05,
|
431 |
+
"loss": 9.0051,
|
432 |
+
"step": 570
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 2.1482854494902686,
|
436 |
+
"grad_norm": 83.86861419677734,
|
437 |
+
"learning_rate": 2.6146220570012392e-05,
|
438 |
+
"loss": 9.2829,
|
439 |
+
"step": 580
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 2.185356811862836,
|
443 |
+
"grad_norm": 38.229949951171875,
|
444 |
+
"learning_rate": 2.6022304832713758e-05,
|
445 |
+
"loss": 9.785,
|
446 |
+
"step": 590
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 2.2224281742354033,
|
450 |
+
"grad_norm": 50.322513580322266,
|
451 |
+
"learning_rate": 2.5898389095415116e-05,
|
452 |
+
"loss": 9.6401,
|
453 |
+
"step": 600
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.2224281742354033,
|
457 |
+
"eval_loss": 2.448084592819214,
|
458 |
+
"eval_runtime": 34.2525,
|
459 |
+
"eval_samples_per_second": 47.237,
|
460 |
+
"eval_steps_per_second": 6.773,
|
461 |
+
"step": 600
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 2.266913809082484,
|
465 |
+
"grad_norm": 39.366676330566406,
|
466 |
+
"learning_rate": 2.5774473358116482e-05,
|
467 |
+
"loss": 8.7059,
|
468 |
+
"step": 610
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 2.303985171455051,
|
472 |
+
"grad_norm": 41.00213623046875,
|
473 |
+
"learning_rate": 2.5650557620817844e-05,
|
474 |
+
"loss": 9.1285,
|
475 |
+
"step": 620
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 2.341056533827618,
|
479 |
+
"grad_norm": 63.442169189453125,
|
480 |
+
"learning_rate": 2.5526641883519206e-05,
|
481 |
+
"loss": 9.3277,
|
482 |
+
"step": 630
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 2.3781278962001853,
|
486 |
+
"grad_norm": 51.54194641113281,
|
487 |
+
"learning_rate": 2.540272614622057e-05,
|
488 |
+
"loss": 9.1577,
|
489 |
+
"step": 640
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 2.4151992585727524,
|
493 |
+
"grad_norm": 57.583885192871094,
|
494 |
+
"learning_rate": 2.5278810408921933e-05,
|
495 |
+
"loss": 9.6032,
|
496 |
+
"step": 650
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 2.4522706209453196,
|
500 |
+
"grad_norm": 60.13545227050781,
|
501 |
+
"learning_rate": 2.51548946716233e-05,
|
502 |
+
"loss": 8.5451,
|
503 |
+
"step": 660
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 2.489341983317887,
|
507 |
+
"grad_norm": 139.85794067382812,
|
508 |
+
"learning_rate": 2.503097893432466e-05,
|
509 |
+
"loss": 8.6601,
|
510 |
+
"step": 670
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 2.5264133456904543,
|
514 |
+
"grad_norm": 160.73171997070312,
|
515 |
+
"learning_rate": 2.4907063197026023e-05,
|
516 |
+
"loss": 9.522,
|
517 |
+
"step": 680
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 2.5634847080630214,
|
521 |
+
"grad_norm": 190.7194366455078,
|
522 |
+
"learning_rate": 2.4783147459727385e-05,
|
523 |
+
"loss": 10.0619,
|
524 |
+
"step": 690
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 2.6005560704355886,
|
528 |
+
"grad_norm": 172.5655517578125,
|
529 |
+
"learning_rate": 2.4659231722428747e-05,
|
530 |
+
"loss": 9.6444,
|
531 |
+
"step": 700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 2.6376274328081557,
|
535 |
+
"grad_norm": 280.9183044433594,
|
536 |
+
"learning_rate": 2.4535315985130112e-05,
|
537 |
+
"loss": 10.7593,
|
538 |
+
"step": 710
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 2.674698795180723,
|
542 |
+
"grad_norm": 118.03450775146484,
|
543 |
+
"learning_rate": 2.4411400247831474e-05,
|
544 |
+
"loss": 10.4432,
|
545 |
+
"step": 720
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 2.71177015755329,
|
549 |
+
"grad_norm": 332.662353515625,
|
550 |
+
"learning_rate": 2.428748451053284e-05,
|
551 |
+
"loss": 9.6033,
|
552 |
+
"step": 730
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 2.748841519925857,
|
556 |
+
"grad_norm": 129.18788146972656,
|
557 |
+
"learning_rate": 2.41635687732342e-05,
|
558 |
+
"loss": 9.108,
|
559 |
+
"step": 740
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 2.7859128822984243,
|
563 |
+
"grad_norm": 350.5856628417969,
|
564 |
+
"learning_rate": 2.4039653035935564e-05,
|
565 |
+
"loss": 9.884,
|
566 |
+
"step": 750
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 2.7859128822984243,
|
570 |
+
"eval_loss": 2.599517583847046,
|
571 |
+
"eval_runtime": 34.0592,
|
572 |
+
"eval_samples_per_second": 47.506,
|
573 |
+
"eval_steps_per_second": 6.812,
|
574 |
+
"step": 750
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"epoch": 2.822984244670992,
|
578 |
+
"grad_norm": 285.14862060546875,
|
579 |
+
"learning_rate": 2.391573729863693e-05,
|
580 |
+
"loss": 11.3952,
|
581 |
+
"step": 760
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 2.860055607043559,
|
585 |
+
"grad_norm": 185.5862579345703,
|
586 |
+
"learning_rate": 2.379182156133829e-05,
|
587 |
+
"loss": 10.6798,
|
588 |
+
"step": 770
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 2.897126969416126,
|
592 |
+
"grad_norm": 77.20765686035156,
|
593 |
+
"learning_rate": 2.3667905824039656e-05,
|
594 |
+
"loss": 9.9795,
|
595 |
+
"step": 780
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 2.9341983317886933,
|
599 |
+
"grad_norm": 88.75109100341797,
|
600 |
+
"learning_rate": 2.3543990086741015e-05,
|
601 |
+
"loss": 9.3694,
|
602 |
+
"step": 790
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 2.9712696941612604,
|
606 |
+
"grad_norm": 53.416690826416016,
|
607 |
+
"learning_rate": 2.3420074349442377e-05,
|
608 |
+
"loss": 8.4631,
|
609 |
+
"step": 800
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 3.0111214087117704,
|
613 |
+
"grad_norm": 72.12966918945312,
|
614 |
+
"learning_rate": 2.3296158612143742e-05,
|
615 |
+
"loss": 9.3903,
|
616 |
+
"step": 810
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 3.0481927710843375,
|
620 |
+
"grad_norm": 159.3909912109375,
|
621 |
+
"learning_rate": 2.3172242874845104e-05,
|
622 |
+
"loss": 8.9608,
|
623 |
+
"step": 820
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 3.0852641334569046,
|
627 |
+
"grad_norm": 161.03713989257812,
|
628 |
+
"learning_rate": 2.304832713754647e-05,
|
629 |
+
"loss": 9.623,
|
630 |
+
"step": 830
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 3.122335495829472,
|
634 |
+
"grad_norm": 136.50045776367188,
|
635 |
+
"learning_rate": 2.2924411400247832e-05,
|
636 |
+
"loss": 8.5958,
|
637 |
+
"step": 840
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 3.159406858202039,
|
641 |
+
"grad_norm": 60.785926818847656,
|
642 |
+
"learning_rate": 2.2800495662949197e-05,
|
643 |
+
"loss": 8.6278,
|
644 |
+
"step": 850
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 3.196478220574606,
|
648 |
+
"grad_norm": 115.2509536743164,
|
649 |
+
"learning_rate": 2.267657992565056e-05,
|
650 |
+
"loss": 8.661,
|
651 |
+
"step": 860
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 3.233549582947173,
|
655 |
+
"grad_norm": 144.38912963867188,
|
656 |
+
"learning_rate": 2.255266418835192e-05,
|
657 |
+
"loss": 9.5836,
|
658 |
+
"step": 870
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 3.2706209453197403,
|
662 |
+
"grad_norm": 239.74520874023438,
|
663 |
+
"learning_rate": 2.2428748451053287e-05,
|
664 |
+
"loss": 8.6221,
|
665 |
+
"step": 880
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 3.3076923076923075,
|
669 |
+
"grad_norm": 215.12789916992188,
|
670 |
+
"learning_rate": 2.2304832713754645e-05,
|
671 |
+
"loss": 9.1995,
|
672 |
+
"step": 890
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 3.344763670064875,
|
676 |
+
"grad_norm": 113.77183532714844,
|
677 |
+
"learning_rate": 2.218091697645601e-05,
|
678 |
+
"loss": 8.6909,
|
679 |
+
"step": 900
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 3.344763670064875,
|
683 |
+
"eval_loss": 2.4246325492858887,
|
684 |
+
"eval_runtime": 34.1351,
|
685 |
+
"eval_samples_per_second": 47.4,
|
686 |
+
"eval_steps_per_second": 6.797,
|
687 |
+
"step": 900
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 3.381835032437442,
|
691 |
+
"grad_norm": 175.02731323242188,
|
692 |
+
"learning_rate": 2.2057001239157373e-05,
|
693 |
+
"loss": 8.7632,
|
694 |
+
"step": 910
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 3.4189063948100094,
|
698 |
+
"grad_norm": 142.76580810546875,
|
699 |
+
"learning_rate": 2.1933085501858735e-05,
|
700 |
+
"loss": 8.5604,
|
701 |
+
"step": 920
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 3.4559777571825765,
|
705 |
+
"grad_norm": 163.0391387939453,
|
706 |
+
"learning_rate": 2.18091697645601e-05,
|
707 |
+
"loss": 9.3871,
|
708 |
+
"step": 930
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"epoch": 3.4930491195551436,
|
712 |
+
"grad_norm": 386.4294738769531,
|
713 |
+
"learning_rate": 2.1685254027261462e-05,
|
714 |
+
"loss": 9.6445,
|
715 |
+
"step": 940
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 3.5301204819277108,
|
719 |
+
"grad_norm": 86.92581939697266,
|
720 |
+
"learning_rate": 2.1561338289962827e-05,
|
721 |
+
"loss": 9.635,
|
722 |
+
"step": 950
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 3.567191844300278,
|
726 |
+
"grad_norm": 80.94845581054688,
|
727 |
+
"learning_rate": 2.143742255266419e-05,
|
728 |
+
"loss": 8.8689,
|
729 |
+
"step": 960
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 3.6042632066728455,
|
733 |
+
"grad_norm": 69.99708557128906,
|
734 |
+
"learning_rate": 2.1313506815365555e-05,
|
735 |
+
"loss": 9.1411,
|
736 |
+
"step": 970
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 3.641334569045412,
|
740 |
+
"grad_norm": 80.53229522705078,
|
741 |
+
"learning_rate": 2.1189591078066917e-05,
|
742 |
+
"loss": 8.7552,
|
743 |
+
"step": 980
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 3.67840593141798,
|
747 |
+
"grad_norm": 53.3475341796875,
|
748 |
+
"learning_rate": 2.1065675340768275e-05,
|
749 |
+
"loss": 8.5697,
|
750 |
+
"step": 990
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 3.715477293790547,
|
754 |
+
"grad_norm": 54.19875717163086,
|
755 |
+
"learning_rate": 2.094175960346964e-05,
|
756 |
+
"loss": 8.9008,
|
757 |
+
"step": 1000
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 3.752548656163114,
|
761 |
+
"grad_norm": 52.96628952026367,
|
762 |
+
"learning_rate": 2.0817843866171003e-05,
|
763 |
+
"loss": 8.9415,
|
764 |
+
"step": 1010
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 3.789620018535681,
|
768 |
+
"grad_norm": 64.08312225341797,
|
769 |
+
"learning_rate": 2.0693928128872368e-05,
|
770 |
+
"loss": 8.1303,
|
771 |
+
"step": 1020
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 3.8266913809082483,
|
775 |
+
"grad_norm": 68.22163391113281,
|
776 |
+
"learning_rate": 2.057001239157373e-05,
|
777 |
+
"loss": 8.241,
|
778 |
+
"step": 1030
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 3.8637627432808155,
|
782 |
+
"grad_norm": 66.70902252197266,
|
783 |
+
"learning_rate": 2.0446096654275092e-05,
|
784 |
+
"loss": 8.6969,
|
785 |
+
"step": 1040
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 3.9008341056533826,
|
789 |
+
"grad_norm": 49.94658279418945,
|
790 |
+
"learning_rate": 2.0322180916976458e-05,
|
791 |
+
"loss": 9.8392,
|
792 |
+
"step": 1050
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 3.9008341056533826,
|
796 |
+
"eval_loss": 2.533297300338745,
|
797 |
+
"eval_runtime": 34.1106,
|
798 |
+
"eval_samples_per_second": 47.434,
|
799 |
+
"eval_steps_per_second": 6.801,
|
800 |
+
"step": 1050
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 3.93790546802595,
|
804 |
+
"grad_norm": 73.9527816772461,
|
805 |
+
"learning_rate": 2.6765799256505576e-05,
|
806 |
+
"loss": 8.5934,
|
807 |
+
"step": 1060
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 3.974976830398517,
|
811 |
+
"grad_norm": 76.90135955810547,
|
812 |
+
"learning_rate": 2.6703841387856257e-05,
|
813 |
+
"loss": 8.006,
|
814 |
+
"step": 1070
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 4.014828544949027,
|
818 |
+
"grad_norm": 85.86236572265625,
|
819 |
+
"learning_rate": 2.664188351920694e-05,
|
820 |
+
"loss": 9.0081,
|
821 |
+
"step": 1080
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 4.051899907321594,
|
825 |
+
"grad_norm": 106.57842254638672,
|
826 |
+
"learning_rate": 2.6579925650557622e-05,
|
827 |
+
"loss": 8.6706,
|
828 |
+
"step": 1090
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 4.088971269694161,
|
832 |
+
"grad_norm": 68.10344696044922,
|
833 |
+
"learning_rate": 2.6517967781908303e-05,
|
834 |
+
"loss": 9.6146,
|
835 |
+
"step": 1100
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 4.126042632066729,
|
839 |
+
"grad_norm": 67.02091217041016,
|
840 |
+
"learning_rate": 2.6456009913258984e-05,
|
841 |
+
"loss": 9.225,
|
842 |
+
"step": 1110
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 4.163113994439295,
|
846 |
+
"grad_norm": 67.66644287109375,
|
847 |
+
"learning_rate": 2.6394052044609665e-05,
|
848 |
+
"loss": 8.7522,
|
849 |
+
"step": 1120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 4.200185356811863,
|
853 |
+
"grad_norm": 59.26814651489258,
|
854 |
+
"learning_rate": 2.633209417596035e-05,
|
855 |
+
"loss": 9.0221,
|
856 |
+
"step": 1130
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 4.23725671918443,
|
860 |
+
"grad_norm": 88.07310485839844,
|
861 |
+
"learning_rate": 2.627013630731103e-05,
|
862 |
+
"loss": 9.6458,
|
863 |
+
"step": 1140
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 4.274328081556997,
|
867 |
+
"grad_norm": 69.33895874023438,
|
868 |
+
"learning_rate": 2.620817843866171e-05,
|
869 |
+
"loss": 8.7692,
|
870 |
+
"step": 1150
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 4.311399443929565,
|
874 |
+
"grad_norm": 43.823951721191406,
|
875 |
+
"learning_rate": 2.6146220570012392e-05,
|
876 |
+
"loss": 9.2874,
|
877 |
+
"step": 1160
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 4.348470806302132,
|
881 |
+
"grad_norm": 63.590980529785156,
|
882 |
+
"learning_rate": 2.6084262701363077e-05,
|
883 |
+
"loss": 8.9276,
|
884 |
+
"step": 1170
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 4.385542168674699,
|
888 |
+
"grad_norm": 43.4519157409668,
|
889 |
+
"learning_rate": 2.6022304832713758e-05,
|
890 |
+
"loss": 8.7444,
|
891 |
+
"step": 1180
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 4.422613531047266,
|
895 |
+
"grad_norm": 72.1529312133789,
|
896 |
+
"learning_rate": 2.5960346964064435e-05,
|
897 |
+
"loss": 8.7265,
|
898 |
+
"step": 1190
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 4.459684893419833,
|
902 |
+
"grad_norm": 101.67008972167969,
|
903 |
+
"learning_rate": 2.5898389095415116e-05,
|
904 |
+
"loss": 8.7642,
|
905 |
+
"step": 1200
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 4.459684893419833,
|
909 |
+
"eval_loss": 2.6471314430236816,
|
910 |
+
"eval_runtime": 34.2723,
|
911 |
+
"eval_samples_per_second": 47.21,
|
912 |
+
"eval_steps_per_second": 6.769,
|
913 |
+
"step": 1200
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 4.4967562557924,
|
917 |
+
"grad_norm": 66.03606414794922,
|
918 |
+
"learning_rate": 2.5836431226765797e-05,
|
919 |
+
"loss": 8.8917,
|
920 |
+
"step": 1210
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 4.533827618164968,
|
924 |
+
"grad_norm": 60.01662826538086,
|
925 |
+
"learning_rate": 2.5774473358116482e-05,
|
926 |
+
"loss": 9.2155,
|
927 |
+
"step": 1220
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 4.570898980537534,
|
931 |
+
"grad_norm": 83.86510467529297,
|
932 |
+
"learning_rate": 2.5712515489467163e-05,
|
933 |
+
"loss": 8.6101,
|
934 |
+
"step": 1230
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 4.607970342910102,
|
938 |
+
"grad_norm": 64.35486602783203,
|
939 |
+
"learning_rate": 2.5650557620817844e-05,
|
940 |
+
"loss": 8.9904,
|
941 |
+
"step": 1240
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 4.645041705282669,
|
945 |
+
"grad_norm": 60.44017791748047,
|
946 |
+
"learning_rate": 2.5588599752168525e-05,
|
947 |
+
"loss": 9.3272,
|
948 |
+
"step": 1250
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 4.682113067655236,
|
952 |
+
"grad_norm": 56.501102447509766,
|
953 |
+
"learning_rate": 2.5526641883519206e-05,
|
954 |
+
"loss": 7.9367,
|
955 |
+
"step": 1260
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 4.719184430027804,
|
959 |
+
"grad_norm": 65.01017761230469,
|
960 |
+
"learning_rate": 2.546468401486989e-05,
|
961 |
+
"loss": 8.5891,
|
962 |
+
"step": 1270
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 4.7562557924003706,
|
966 |
+
"grad_norm": 63.42623519897461,
|
967 |
+
"learning_rate": 2.540272614622057e-05,
|
968 |
+
"loss": 8.6286,
|
969 |
+
"step": 1280
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 4.793327154772938,
|
973 |
+
"grad_norm": 58.96747589111328,
|
974 |
+
"learning_rate": 2.5340768277571252e-05,
|
975 |
+
"loss": 7.9982,
|
976 |
+
"step": 1290
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 4.830398517145505,
|
980 |
+
"grad_norm": 96.77368927001953,
|
981 |
+
"learning_rate": 2.5278810408921933e-05,
|
982 |
+
"loss": 7.5587,
|
983 |
+
"step": 1300
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 4.867469879518072,
|
987 |
+
"grad_norm": 85.92269897460938,
|
988 |
+
"learning_rate": 2.5216852540272614e-05,
|
989 |
+
"loss": 7.9405,
|
990 |
+
"step": 1310
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 4.904541241890639,
|
994 |
+
"grad_norm": 86.37085723876953,
|
995 |
+
"learning_rate": 2.51548946716233e-05,
|
996 |
+
"loss": 9.7092,
|
997 |
+
"step": 1320
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 4.941612604263207,
|
1001 |
+
"grad_norm": 65.88274383544922,
|
1002 |
+
"learning_rate": 2.509293680297398e-05,
|
1003 |
+
"loss": 8.1475,
|
1004 |
+
"step": 1330
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 4.978683966635774,
|
1008 |
+
"grad_norm": 53.252742767333984,
|
1009 |
+
"learning_rate": 2.503097893432466e-05,
|
1010 |
+
"loss": 9.3603,
|
1011 |
+
"step": 1340
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 5.014828544949027,
|
1015 |
+
"grad_norm": 182.35781860351562,
|
1016 |
+
"learning_rate": 2.4969021065675342e-05,
|
1017 |
+
"loss": 7.6621,
|
1018 |
+
"step": 1350
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 5.014828544949027,
|
1022 |
+
"eval_loss": 2.8308892250061035,
|
1023 |
+
"eval_runtime": 34.1063,
|
1024 |
+
"eval_samples_per_second": 47.44,
|
1025 |
+
"eval_steps_per_second": 6.802,
|
1026 |
+
"step": 1350
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 5.051899907321594,
|
1030 |
+
"grad_norm": 324.6659240722656,
|
1031 |
+
"learning_rate": 2.4907063197026023e-05,
|
1032 |
+
"loss": 9.2301,
|
1033 |
+
"step": 1360
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 5.088971269694161,
|
1037 |
+
"grad_norm": 4839.4453125,
|
1038 |
+
"learning_rate": 2.4845105328376707e-05,
|
1039 |
+
"loss": 9.7789,
|
1040 |
+
"step": 1370
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 5.126042632066729,
|
1044 |
+
"grad_norm": 408588.40625,
|
1045 |
+
"learning_rate": 2.4783147459727385e-05,
|
1046 |
+
"loss": 9.5359,
|
1047 |
+
"step": 1380
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 5.163113994439295,
|
1051 |
+
"grad_norm": 932.5144653320312,
|
1052 |
+
"learning_rate": 2.4721189591078066e-05,
|
1053 |
+
"loss": 10.8065,
|
1054 |
+
"step": 1390
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 5.200185356811863,
|
1058 |
+
"grad_norm": 148.0634765625,
|
1059 |
+
"learning_rate": 2.4659231722428747e-05,
|
1060 |
+
"loss": 10.0149,
|
1061 |
+
"step": 1400
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 5.23725671918443,
|
1065 |
+
"grad_norm": 1214.7279052734375,
|
1066 |
+
"learning_rate": 2.459727385377943e-05,
|
1067 |
+
"loss": 10.2582,
|
1068 |
+
"step": 1410
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 5.274328081556997,
|
1072 |
+
"grad_norm": 188.14292907714844,
|
1073 |
+
"learning_rate": 2.4535315985130112e-05,
|
1074 |
+
"loss": 10.16,
|
1075 |
+
"step": 1420
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 5.311399443929565,
|
1079 |
+
"grad_norm": 388.7134094238281,
|
1080 |
+
"learning_rate": 2.4473358116480793e-05,
|
1081 |
+
"loss": 10.0763,
|
1082 |
+
"step": 1430
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 5.348470806302132,
|
1086 |
+
"grad_norm": 270.61279296875,
|
1087 |
+
"learning_rate": 2.4411400247831474e-05,
|
1088 |
+
"loss": 9.5737,
|
1089 |
+
"step": 1440
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 5.385542168674699,
|
1093 |
+
"grad_norm": 1637.854736328125,
|
1094 |
+
"learning_rate": 2.4349442379182155e-05,
|
1095 |
+
"loss": 10.4816,
|
1096 |
+
"step": 1450
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 5.422613531047266,
|
1100 |
+
"grad_norm": 1118.7012939453125,
|
1101 |
+
"learning_rate": 2.428748451053284e-05,
|
1102 |
+
"loss": 8.6687,
|
1103 |
+
"step": 1460
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 5.459684893419833,
|
1107 |
+
"grad_norm": 788.9707641601562,
|
1108 |
+
"learning_rate": 2.422552664188352e-05,
|
1109 |
+
"loss": 8.4066,
|
1110 |
+
"step": 1470
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 5.4967562557924,
|
1114 |
+
"grad_norm": 185.22950744628906,
|
1115 |
+
"learning_rate": 2.41635687732342e-05,
|
1116 |
+
"loss": 9.386,
|
1117 |
+
"step": 1480
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 5.533827618164968,
|
1121 |
+
"grad_norm": 257.726806640625,
|
1122 |
+
"learning_rate": 2.4101610904584883e-05,
|
1123 |
+
"loss": 8.3911,
|
1124 |
+
"step": 1490
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 5.570898980537534,
|
1128 |
+
"grad_norm": 867.30908203125,
|
1129 |
+
"learning_rate": 2.4039653035935564e-05,
|
1130 |
+
"loss": 8.8025,
|
1131 |
+
"step": 1500
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 5.570898980537534,
|
1135 |
+
"eval_loss": 2.5407650470733643,
|
1136 |
+
"eval_runtime": 34.0934,
|
1137 |
+
"eval_samples_per_second": 47.458,
|
1138 |
+
"eval_steps_per_second": 6.805,
|
1139 |
+
"step": 1500
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 5.607970342910102,
|
1143 |
+
"grad_norm": 68.35711669921875,
|
1144 |
+
"learning_rate": 2.3977695167286248e-05,
|
1145 |
+
"loss": 8.7939,
|
1146 |
+
"step": 1510
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 5.645041705282669,
|
1150 |
+
"grad_norm": 1419.1650390625,
|
1151 |
+
"learning_rate": 2.391573729863693e-05,
|
1152 |
+
"loss": 9.0903,
|
1153 |
+
"step": 1520
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 5.682113067655236,
|
1157 |
+
"grad_norm": 60.88732147216797,
|
1158 |
+
"learning_rate": 2.385377942998761e-05,
|
1159 |
+
"loss": 8.9878,
|
1160 |
+
"step": 1530
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 5.719184430027804,
|
1164 |
+
"grad_norm": 61.50148010253906,
|
1165 |
+
"learning_rate": 2.379182156133829e-05,
|
1166 |
+
"loss": 8.8642,
|
1167 |
+
"step": 1540
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 5.7562557924003706,
|
1171 |
+
"grad_norm": 73.9307861328125,
|
1172 |
+
"learning_rate": 2.3729863692688972e-05,
|
1173 |
+
"loss": 8.8625,
|
1174 |
+
"step": 1550
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 5.793327154772938,
|
1178 |
+
"grad_norm": 82.28329467773438,
|
1179 |
+
"learning_rate": 2.3667905824039656e-05,
|
1180 |
+
"loss": 8.4105,
|
1181 |
+
"step": 1560
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 5.830398517145505,
|
1185 |
+
"grad_norm": 83.54141235351562,
|
1186 |
+
"learning_rate": 2.3605947955390337e-05,
|
1187 |
+
"loss": 9.0163,
|
1188 |
+
"step": 1570
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 5.867469879518072,
|
1192 |
+
"grad_norm": 66.59397888183594,
|
1193 |
+
"learning_rate": 2.3543990086741015e-05,
|
1194 |
+
"loss": 8.8947,
|
1195 |
+
"step": 1580
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 5.904541241890639,
|
1199 |
+
"grad_norm": 55.8841667175293,
|
1200 |
+
"learning_rate": 2.3482032218091696e-05,
|
1201 |
+
"loss": 8.5647,
|
1202 |
+
"step": 1590
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 5.941612604263207,
|
1206 |
+
"grad_norm": 74.56892395019531,
|
1207 |
+
"learning_rate": 2.3420074349442377e-05,
|
1208 |
+
"loss": 7.7047,
|
1209 |
+
"step": 1600
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 5.978683966635774,
|
1213 |
+
"grad_norm": 106.54405212402344,
|
1214 |
+
"learning_rate": 2.335811648079306e-05,
|
1215 |
+
"loss": 8.1484,
|
1216 |
+
"step": 1610
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 6.014828544949027,
|
1220 |
+
"grad_norm": 107.8216781616211,
|
1221 |
+
"learning_rate": 2.3296158612143742e-05,
|
1222 |
+
"loss": 8.4079,
|
1223 |
+
"step": 1620
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 6.051899907321594,
|
1227 |
+
"grad_norm": 100.98133087158203,
|
1228 |
+
"learning_rate": 2.3234200743494423e-05,
|
1229 |
+
"loss": 8.5027,
|
1230 |
+
"step": 1630
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 6.088971269694161,
|
1234 |
+
"grad_norm": 67.31327819824219,
|
1235 |
+
"learning_rate": 2.3172242874845104e-05,
|
1236 |
+
"loss": 8.1805,
|
1237 |
+
"step": 1640
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 6.126042632066729,
|
1241 |
+
"grad_norm": 61.10900115966797,
|
1242 |
+
"learning_rate": 2.311028500619579e-05,
|
1243 |
+
"loss": 8.4519,
|
1244 |
+
"step": 1650
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 6.126042632066729,
|
1248 |
+
"eval_loss": 2.590090036392212,
|
1249 |
+
"eval_runtime": 34.1392,
|
1250 |
+
"eval_samples_per_second": 47.394,
|
1251 |
+
"eval_steps_per_second": 6.796,
|
1252 |
+
"step": 1650
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 6.163113994439295,
|
1256 |
+
"grad_norm": 60.91183090209961,
|
1257 |
+
"learning_rate": 2.304832713754647e-05,
|
1258 |
+
"loss": 9.062,
|
1259 |
+
"step": 1660
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 6.200185356811863,
|
1263 |
+
"grad_norm": 76.2873306274414,
|
1264 |
+
"learning_rate": 2.298636926889715e-05,
|
1265 |
+
"loss": 8.8499,
|
1266 |
+
"step": 1670
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 6.23725671918443,
|
1270 |
+
"grad_norm": 74.2361068725586,
|
1271 |
+
"learning_rate": 2.2924411400247832e-05,
|
1272 |
+
"loss": 8.6576,
|
1273 |
+
"step": 1680
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 6.274328081556997,
|
1277 |
+
"grad_norm": 84.99951934814453,
|
1278 |
+
"learning_rate": 2.2862453531598513e-05,
|
1279 |
+
"loss": 8.4652,
|
1280 |
+
"step": 1690
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 6.311399443929565,
|
1284 |
+
"grad_norm": 86.40947723388672,
|
1285 |
+
"learning_rate": 2.2800495662949197e-05,
|
1286 |
+
"loss": 9.0782,
|
1287 |
+
"step": 1700
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 6.348470806302132,
|
1291 |
+
"grad_norm": 75.45568084716797,
|
1292 |
+
"learning_rate": 2.2738537794299878e-05,
|
1293 |
+
"loss": 8.1532,
|
1294 |
+
"step": 1710
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 6.385542168674699,
|
1298 |
+
"grad_norm": 86.65908813476562,
|
1299 |
+
"learning_rate": 2.267657992565056e-05,
|
1300 |
+
"loss": 8.5185,
|
1301 |
+
"step": 1720
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 6.422613531047266,
|
1305 |
+
"grad_norm": 62.620758056640625,
|
1306 |
+
"learning_rate": 2.261462205700124e-05,
|
1307 |
+
"loss": 9.5908,
|
1308 |
+
"step": 1730
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 6.459684893419833,
|
1312 |
+
"grad_norm": 73.63095092773438,
|
1313 |
+
"learning_rate": 2.255266418835192e-05,
|
1314 |
+
"loss": 8.4188,
|
1315 |
+
"step": 1740
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"epoch": 6.4967562557924,
|
1319 |
+
"grad_norm": 55.175045013427734,
|
1320 |
+
"learning_rate": 2.2490706319702606e-05,
|
1321 |
+
"loss": 8.1885,
|
1322 |
+
"step": 1750
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 6.533827618164968,
|
1326 |
+
"grad_norm": 47.647621154785156,
|
1327 |
+
"learning_rate": 2.2428748451053287e-05,
|
1328 |
+
"loss": 8.7666,
|
1329 |
+
"step": 1760
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 6.570898980537534,
|
1333 |
+
"grad_norm": 191.0419158935547,
|
1334 |
+
"learning_rate": 2.2366790582403964e-05,
|
1335 |
+
"loss": 8.6105,
|
1336 |
+
"step": 1770
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 6.607970342910102,
|
1340 |
+
"grad_norm": 57.81939697265625,
|
1341 |
+
"learning_rate": 2.2304832713754645e-05,
|
1342 |
+
"loss": 8.664,
|
1343 |
+
"step": 1780
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 6.645041705282669,
|
1347 |
+
"grad_norm": 85.04927825927734,
|
1348 |
+
"learning_rate": 2.2242874845105326e-05,
|
1349 |
+
"loss": 8.5294,
|
1350 |
+
"step": 1790
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 6.682113067655236,
|
1354 |
+
"grad_norm": 55.604122161865234,
|
1355 |
+
"learning_rate": 2.218091697645601e-05,
|
1356 |
+
"loss": 9.1857,
|
1357 |
+
"step": 1800
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 6.682113067655236,
|
1361 |
+
"eval_loss": 2.497358560562134,
|
1362 |
+
"eval_runtime": 34.0441,
|
1363 |
+
"eval_samples_per_second": 47.527,
|
1364 |
+
"eval_steps_per_second": 6.815,
|
1365 |
+
"step": 1800
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 6.719184430027804,
|
1369 |
+
"grad_norm": 75.21812438964844,
|
1370 |
+
"learning_rate": 2.211895910780669e-05,
|
1371 |
+
"loss": 8.7053,
|
1372 |
+
"step": 1810
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 6.7562557924003706,
|
1376 |
+
"grad_norm": 85.76676940917969,
|
1377 |
+
"learning_rate": 2.2057001239157373e-05,
|
1378 |
+
"loss": 8.1428,
|
1379 |
+
"step": 1820
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 6.793327154772938,
|
1383 |
+
"grad_norm": 69.85575866699219,
|
1384 |
+
"learning_rate": 2.1995043370508054e-05,
|
1385 |
+
"loss": 8.4988,
|
1386 |
+
"step": 1830
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 6.830398517145505,
|
1390 |
+
"grad_norm": 66.85325622558594,
|
1391 |
+
"learning_rate": 2.1933085501858735e-05,
|
1392 |
+
"loss": 8.4147,
|
1393 |
+
"step": 1840
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 6.867469879518072,
|
1397 |
+
"grad_norm": 60.645294189453125,
|
1398 |
+
"learning_rate": 2.187112763320942e-05,
|
1399 |
+
"loss": 9.069,
|
1400 |
+
"step": 1850
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 6.904541241890639,
|
1404 |
+
"grad_norm": 77.59921264648438,
|
1405 |
+
"learning_rate": 2.18091697645601e-05,
|
1406 |
+
"loss": 8.4405,
|
1407 |
+
"step": 1860
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 6.941612604263207,
|
1411 |
+
"grad_norm": 56.27996826171875,
|
1412 |
+
"learning_rate": 2.174721189591078e-05,
|
1413 |
+
"loss": 9.2157,
|
1414 |
+
"step": 1870
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 6.978683966635774,
|
1418 |
+
"grad_norm": 64.18400573730469,
|
1419 |
+
"learning_rate": 2.1685254027261462e-05,
|
1420 |
+
"loss": 9.5492,
|
1421 |
+
"step": 1880
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 7.014828544949027,
|
1425 |
+
"grad_norm": 76.78484344482422,
|
1426 |
+
"learning_rate": 2.1623296158612143e-05,
|
1427 |
+
"loss": 8.1325,
|
1428 |
+
"step": 1890
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 7.051899907321594,
|
1432 |
+
"grad_norm": 77.69871520996094,
|
1433 |
+
"learning_rate": 2.1561338289962827e-05,
|
1434 |
+
"loss": 8.324,
|
1435 |
+
"step": 1900
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 7.088971269694161,
|
1439 |
+
"grad_norm": 102.43340301513672,
|
1440 |
+
"learning_rate": 2.149938042131351e-05,
|
1441 |
+
"loss": 7.7097,
|
1442 |
+
"step": 1910
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 7.126042632066729,
|
1446 |
+
"grad_norm": 114.0189208984375,
|
1447 |
+
"learning_rate": 2.143742255266419e-05,
|
1448 |
+
"loss": 8.0982,
|
1449 |
+
"step": 1920
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 7.163113994439295,
|
1453 |
+
"grad_norm": 66.60838317871094,
|
1454 |
+
"learning_rate": 2.137546468401487e-05,
|
1455 |
+
"loss": 7.7669,
|
1456 |
+
"step": 1930
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 7.200185356811863,
|
1460 |
+
"grad_norm": 252.72503662109375,
|
1461 |
+
"learning_rate": 2.1313506815365555e-05,
|
1462 |
+
"loss": 7.809,
|
1463 |
+
"step": 1940
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 7.23725671918443,
|
1467 |
+
"grad_norm": 91.0379409790039,
|
1468 |
+
"learning_rate": 2.1251548946716236e-05,
|
1469 |
+
"loss": 7.9729,
|
1470 |
+
"step": 1950
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 7.23725671918443,
|
1474 |
+
"eval_loss": 2.610764741897583,
|
1475 |
+
"eval_runtime": 34.0774,
|
1476 |
+
"eval_samples_per_second": 47.48,
|
1477 |
+
"eval_steps_per_second": 6.808,
|
1478 |
+
"step": 1950
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 7.274328081556997,
|
1482 |
+
"grad_norm": 96.09555053710938,
|
1483 |
+
"learning_rate": 2.1189591078066917e-05,
|
1484 |
+
"loss": 8.2125,
|
1485 |
+
"step": 1960
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 7.311399443929565,
|
1489 |
+
"grad_norm": 68.51132202148438,
|
1490 |
+
"learning_rate": 2.1127633209417594e-05,
|
1491 |
+
"loss": 7.7403,
|
1492 |
+
"step": 1970
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 7.348470806302132,
|
1496 |
+
"grad_norm": 94.45308685302734,
|
1497 |
+
"learning_rate": 2.1065675340768275e-05,
|
1498 |
+
"loss": 7.5494,
|
1499 |
+
"step": 1980
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 7.385542168674699,
|
1503 |
+
"grad_norm": 56.785587310791016,
|
1504 |
+
"learning_rate": 2.100371747211896e-05,
|
1505 |
+
"loss": 8.2821,
|
1506 |
+
"step": 1990
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 7.422613531047266,
|
1510 |
+
"grad_norm": 91.59173583984375,
|
1511 |
+
"learning_rate": 2.094175960346964e-05,
|
1512 |
+
"loss": 8.1644,
|
1513 |
+
"step": 2000
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 7.459684893419833,
|
1517 |
+
"grad_norm": 78.57572174072266,
|
1518 |
+
"learning_rate": 2.0879801734820322e-05,
|
1519 |
+
"loss": 8.1664,
|
1520 |
+
"step": 2010
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 7.4967562557924,
|
1524 |
+
"grad_norm": 71.83062744140625,
|
1525 |
+
"learning_rate": 2.0817843866171003e-05,
|
1526 |
+
"loss": 8.5876,
|
1527 |
+
"step": 2020
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 7.533827618164968,
|
1531 |
+
"grad_norm": 74.75129699707031,
|
1532 |
+
"learning_rate": 2.0755885997521684e-05,
|
1533 |
+
"loss": 8.2753,
|
1534 |
+
"step": 2030
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 7.570898980537534,
|
1538 |
+
"grad_norm": 96.26950073242188,
|
1539 |
+
"learning_rate": 2.0693928128872368e-05,
|
1540 |
+
"loss": 9.2057,
|
1541 |
+
"step": 2040
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 7.607970342910102,
|
1545 |
+
"grad_norm": 96.87144470214844,
|
1546 |
+
"learning_rate": 2.063197026022305e-05,
|
1547 |
+
"loss": 8.0052,
|
1548 |
+
"step": 2050
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 7.645041705282669,
|
1552 |
+
"grad_norm": 83.44422912597656,
|
1553 |
+
"learning_rate": 2.057001239157373e-05,
|
1554 |
+
"loss": 8.4954,
|
1555 |
+
"step": 2060
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 7.682113067655236,
|
1559 |
+
"grad_norm": 86.1534194946289,
|
1560 |
+
"learning_rate": 2.050805452292441e-05,
|
1561 |
+
"loss": 8.0325,
|
1562 |
+
"step": 2070
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 7.719184430027804,
|
1566 |
+
"grad_norm": 89.11744689941406,
|
1567 |
+
"learning_rate": 2.0446096654275092e-05,
|
1568 |
+
"loss": 8.2934,
|
1569 |
+
"step": 2080
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 7.7562557924003706,
|
1573 |
+
"grad_norm": 60.81666946411133,
|
1574 |
+
"learning_rate": 2.0384138785625777e-05,
|
1575 |
+
"loss": 9.4019,
|
1576 |
+
"step": 2090
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 7.793327154772938,
|
1580 |
+
"grad_norm": 82.93228912353516,
|
1581 |
+
"learning_rate": 2.0322180916976458e-05,
|
1582 |
+
"loss": 8.874,
|
1583 |
+
"step": 2100
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 7.793327154772938,
|
1587 |
+
"eval_loss": 2.452894926071167,
|
1588 |
+
"eval_runtime": 34.0684,
|
1589 |
+
"eval_samples_per_second": 47.493,
|
1590 |
+
"eval_steps_per_second": 6.81,
|
1591 |
+
"step": 2100
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 7.830398517145505,
|
1595 |
+
"grad_norm": 62.004817962646484,
|
1596 |
+
"learning_rate": 2.026022304832714e-05,
|
1597 |
+
"loss": 8.0985,
|
1598 |
+
"step": 2110
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 7.867469879518072,
|
1602 |
+
"grad_norm": 72.79752349853516,
|
1603 |
+
"learning_rate": 2.019826517967782e-05,
|
1604 |
+
"loss": 8.9063,
|
1605 |
+
"step": 2120
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 7.904541241890639,
|
1609 |
+
"grad_norm": 1507.2855224609375,
|
1610 |
+
"learning_rate": 2.01363073110285e-05,
|
1611 |
+
"loss": 8.6332,
|
1612 |
+
"step": 2130
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 7.941612604263207,
|
1616 |
+
"grad_norm": 134.11378479003906,
|
1617 |
+
"learning_rate": 2.0074349442379185e-05,
|
1618 |
+
"loss": 9.4106,
|
1619 |
+
"step": 2140
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 7.978683966635774,
|
1623 |
+
"grad_norm": 72.19046783447266,
|
1624 |
+
"learning_rate": 2.0012391573729866e-05,
|
1625 |
+
"loss": 8.2304,
|
1626 |
+
"step": 2150
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 8.014828544949028,
|
1630 |
+
"grad_norm": 57.130165100097656,
|
1631 |
+
"learning_rate": 1.9950433705080544e-05,
|
1632 |
+
"loss": 7.9675,
|
1633 |
+
"step": 2160
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 8.051899907321594,
|
1637 |
+
"grad_norm": 72.58036041259766,
|
1638 |
+
"learning_rate": 1.9888475836431225e-05,
|
1639 |
+
"loss": 7.602,
|
1640 |
+
"step": 2170
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 8.088971269694161,
|
1644 |
+
"grad_norm": 91.77513885498047,
|
1645 |
+
"learning_rate": 1.982651796778191e-05,
|
1646 |
+
"loss": 7.9151,
|
1647 |
+
"step": 2180
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 8.126042632066728,
|
1651 |
+
"grad_norm": 111.52696228027344,
|
1652 |
+
"learning_rate": 1.976456009913259e-05,
|
1653 |
+
"loss": 7.5653,
|
1654 |
+
"step": 2190
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 8.163113994439296,
|
1658 |
+
"grad_norm": 74.9671401977539,
|
1659 |
+
"learning_rate": 1.970260223048327e-05,
|
1660 |
+
"loss": 7.1567,
|
1661 |
+
"step": 2200
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 8.200185356811863,
|
1665 |
+
"grad_norm": 124.09498596191406,
|
1666 |
+
"learning_rate": 1.9640644361833952e-05,
|
1667 |
+
"loss": 8.1708,
|
1668 |
+
"step": 2210
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 8.23725671918443,
|
1672 |
+
"grad_norm": 95.21754455566406,
|
1673 |
+
"learning_rate": 1.9578686493184633e-05,
|
1674 |
+
"loss": 7.0013,
|
1675 |
+
"step": 2220
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 8.274328081556996,
|
1679 |
+
"grad_norm": 135.3839569091797,
|
1680 |
+
"learning_rate": 1.9516728624535318e-05,
|
1681 |
+
"loss": 7.5999,
|
1682 |
+
"step": 2230
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 8.311399443929565,
|
1686 |
+
"grad_norm": 89.70751190185547,
|
1687 |
+
"learning_rate": 1.9454770755886e-05,
|
1688 |
+
"loss": 7.2028,
|
1689 |
+
"step": 2240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 8.348470806302132,
|
1693 |
+
"grad_norm": 70.08137512207031,
|
1694 |
+
"learning_rate": 1.939281288723668e-05,
|
1695 |
+
"loss": 8.3759,
|
1696 |
+
"step": 2250
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 8.348470806302132,
|
1700 |
+
"eval_loss": 2.746619939804077,
|
1701 |
+
"eval_runtime": 34.0831,
|
1702 |
+
"eval_samples_per_second": 47.472,
|
1703 |
+
"eval_steps_per_second": 6.807,
|
1704 |
+
"step": 2250
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 8.400370713623726,
|
1708 |
+
"grad_norm": 69.07305145263672,
|
1709 |
+
"learning_rate": 1.933085501858736e-05,
|
1710 |
+
"loss": 8.9083,
|
1711 |
+
"step": 2260
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 8.437442075996293,
|
1715 |
+
"grad_norm": 66.43407440185547,
|
1716 |
+
"learning_rate": 1.926889714993804e-05,
|
1717 |
+
"loss": 6.9349,
|
1718 |
+
"step": 2270
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 8.47451343836886,
|
1722 |
+
"grad_norm": 167.85784912109375,
|
1723 |
+
"learning_rate": 1.9206939281288726e-05,
|
1724 |
+
"loss": 7.5041,
|
1725 |
+
"step": 2280
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 8.511584800741428,
|
1729 |
+
"grad_norm": 173.38304138183594,
|
1730 |
+
"learning_rate": 1.9144981412639407e-05,
|
1731 |
+
"loss": 7.3744,
|
1732 |
+
"step": 2290
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 8.548656163113995,
|
1736 |
+
"grad_norm": 80.71511840820312,
|
1737 |
+
"learning_rate": 1.9083023543990088e-05,
|
1738 |
+
"loss": 8.6541,
|
1739 |
+
"step": 2300
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 8.585727525486561,
|
1743 |
+
"grad_norm": 82.77088928222656,
|
1744 |
+
"learning_rate": 1.902106567534077e-05,
|
1745 |
+
"loss": 8.6305,
|
1746 |
+
"step": 2310
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 8.62279888785913,
|
1750 |
+
"grad_norm": 55.3135871887207,
|
1751 |
+
"learning_rate": 1.895910780669145e-05,
|
1752 |
+
"loss": 8.2577,
|
1753 |
+
"step": 2320
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 8.659870250231696,
|
1757 |
+
"grad_norm": 64.61204528808594,
|
1758 |
+
"learning_rate": 1.8897149938042134e-05,
|
1759 |
+
"loss": 7.6382,
|
1760 |
+
"step": 2330
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 8.696941612604263,
|
1764 |
+
"grad_norm": 77.9918212890625,
|
1765 |
+
"learning_rate": 1.8835192069392815e-05,
|
1766 |
+
"loss": 8.114,
|
1767 |
+
"step": 2340
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 8.73401297497683,
|
1771 |
+
"grad_norm": 50.139678955078125,
|
1772 |
+
"learning_rate": 1.8773234200743496e-05,
|
1773 |
+
"loss": 7.8875,
|
1774 |
+
"step": 2350
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 8.771084337349398,
|
1778 |
+
"grad_norm": 241.43588256835938,
|
1779 |
+
"learning_rate": 1.8711276332094174e-05,
|
1780 |
+
"loss": 7.0444,
|
1781 |
+
"step": 2360
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 8.808155699721965,
|
1785 |
+
"grad_norm": 133.25645446777344,
|
1786 |
+
"learning_rate": 1.8649318463444855e-05,
|
1787 |
+
"loss": 7.7393,
|
1788 |
+
"step": 2370
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 8.845227062094532,
|
1792 |
+
"grad_norm": 94.1192855834961,
|
1793 |
+
"learning_rate": 1.858736059479554e-05,
|
1794 |
+
"loss": 8.8284,
|
1795 |
+
"step": 2380
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 8.882298424467098,
|
1799 |
+
"grad_norm": 83.68805694580078,
|
1800 |
+
"learning_rate": 1.852540272614622e-05,
|
1801 |
+
"loss": 7.997,
|
1802 |
+
"step": 2390
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 8.919369786839667,
|
1806 |
+
"grad_norm": 67.01426696777344,
|
1807 |
+
"learning_rate": 1.84634448574969e-05,
|
1808 |
+
"loss": 7.786,
|
1809 |
+
"step": 2400
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 8.919369786839667,
|
1813 |
+
"eval_loss": 2.6791422367095947,
|
1814 |
+
"eval_runtime": 34.2417,
|
1815 |
+
"eval_samples_per_second": 47.252,
|
1816 |
+
"eval_steps_per_second": 6.775,
|
1817 |
+
"step": 2400
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 8.956441149212234,
|
1821 |
+
"grad_norm": 72.36073303222656,
|
1822 |
+
"learning_rate": 1.8401486988847582e-05,
|
1823 |
+
"loss": 7.6257,
|
1824 |
+
"step": 2410
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 8.9935125115848,
|
1828 |
+
"grad_norm": 70.3509521484375,
|
1829 |
+
"learning_rate": 1.8339529120198267e-05,
|
1830 |
+
"loss": 7.099,
|
1831 |
+
"step": 2420
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 9.03336422613531,
|
1835 |
+
"grad_norm": 136.34727478027344,
|
1836 |
+
"learning_rate": 1.8277571251548948e-05,
|
1837 |
+
"loss": 8.041,
|
1838 |
+
"step": 2430
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 9.070435588507877,
|
1842 |
+
"grad_norm": 81.48332214355469,
|
1843 |
+
"learning_rate": 1.821561338289963e-05,
|
1844 |
+
"loss": 7.8606,
|
1845 |
+
"step": 2440
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 9.107506950880445,
|
1849 |
+
"grad_norm": 93.1724853515625,
|
1850 |
+
"learning_rate": 1.815365551425031e-05,
|
1851 |
+
"loss": 7.8551,
|
1852 |
+
"step": 2450
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 9.144578313253012,
|
1856 |
+
"grad_norm": 132.82778930664062,
|
1857 |
+
"learning_rate": 1.809169764560099e-05,
|
1858 |
+
"loss": 7.3977,
|
1859 |
+
"step": 2460
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 9.181649675625579,
|
1863 |
+
"grad_norm": 102.73971557617188,
|
1864 |
+
"learning_rate": 1.8029739776951675e-05,
|
1865 |
+
"loss": 7.8721,
|
1866 |
+
"step": 2470
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 9.218721037998147,
|
1870 |
+
"grad_norm": 106.7470932006836,
|
1871 |
+
"learning_rate": 1.7967781908302356e-05,
|
1872 |
+
"loss": 7.5839,
|
1873 |
+
"step": 2480
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 9.255792400370714,
|
1877 |
+
"grad_norm": 84.64981842041016,
|
1878 |
+
"learning_rate": 1.7905824039653037e-05,
|
1879 |
+
"loss": 7.1823,
|
1880 |
+
"step": 2490
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 9.29286376274328,
|
1884 |
+
"grad_norm": 85.59486389160156,
|
1885 |
+
"learning_rate": 1.7843866171003718e-05,
|
1886 |
+
"loss": 7.5513,
|
1887 |
+
"step": 2500
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 9.329935125115847,
|
1891 |
+
"grad_norm": 89.53803253173828,
|
1892 |
+
"learning_rate": 1.77819083023544e-05,
|
1893 |
+
"loss": 8.0879,
|
1894 |
+
"step": 2510
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 9.367006487488416,
|
1898 |
+
"grad_norm": 43.886898040771484,
|
1899 |
+
"learning_rate": 1.7719950433705084e-05,
|
1900 |
+
"loss": 7.5694,
|
1901 |
+
"step": 2520
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 9.404077849860982,
|
1905 |
+
"grad_norm": 73.4898910522461,
|
1906 |
+
"learning_rate": 1.7657992565055765e-05,
|
1907 |
+
"loss": 7.3436,
|
1908 |
+
"step": 2530
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 9.44114921223355,
|
1912 |
+
"grad_norm": 100.42314147949219,
|
1913 |
+
"learning_rate": 1.7596034696406446e-05,
|
1914 |
+
"loss": 6.9425,
|
1915 |
+
"step": 2540
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 9.478220574606116,
|
1919 |
+
"grad_norm": 121.53675079345703,
|
1920 |
+
"learning_rate": 1.7534076827757123e-05,
|
1921 |
+
"loss": 7.9461,
|
1922 |
+
"step": 2550
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 9.478220574606116,
|
1926 |
+
"eval_loss": 2.6608545780181885,
|
1927 |
+
"eval_runtime": 34.2437,
|
1928 |
+
"eval_samples_per_second": 47.25,
|
1929 |
+
"eval_steps_per_second": 6.775,
|
1930 |
+
"step": 2550
|
1931 |
+
}
|
1932 |
+
],
|
1933 |
+
"logging_steps": 10,
|
1934 |
+
"max_steps": 5380,
|
1935 |
+
"num_input_tokens_seen": 0,
|
1936 |
+
"num_train_epochs": 20,
|
1937 |
+
"save_steps": 150,
|
1938 |
+
"stateful_callbacks": {
|
1939 |
+
"TrainerControl": {
|
1940 |
+
"args": {
|
1941 |
+
"should_epoch_stop": false,
|
1942 |
+
"should_evaluate": false,
|
1943 |
+
"should_log": false,
|
1944 |
+
"should_save": true,
|
1945 |
+
"should_training_stop": false
|
1946 |
+
},
|
1947 |
+
"attributes": {}
|
1948 |
+
}
|
1949 |
+
},
|
1950 |
+
"total_flos": 0.0,
|
1951 |
+
"train_batch_size": 7,
|
1952 |
+
"trial_name": null,
|
1953 |
+
"trial_params": null
|
1954 |
+
}
|
checkpoints/checkpoint-2550/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fda94467724e48ac975735648aa63a75558d48b6c993506e918a3476acf80697
|
3 |
+
size 129
|
checkpoints/checkpoint-3000/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoints/checkpoint-3000/README.md
ADDED
@@ -0,0 +1,854 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:7552
|
8 |
+
- loss:CoSENTLoss
|
9 |
+
base_model: intfloat/multilingual-e5-large-instruct
|
10 |
+
widget:
|
11 |
+
- source_sentence: How are calibration points linked to equipment?
|
12 |
+
sentences:
|
13 |
+
- 'How are flow computers and measurement systems related?
|
14 |
+
|
15 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
16 |
+
system can only be assigned to one flow computer.
|
17 |
+
|
18 |
+
|
19 |
+
Database terminology:
|
20 |
+
|
21 |
+
In the database, this relationship is referred to as:
|
22 |
+
|
23 |
+
- Meter streams
|
24 |
+
|
25 |
+
- Meter runs
|
26 |
+
|
27 |
+
- Sections
|
28 |
+
|
29 |
+
|
30 |
+
Storage of the relationship:
|
31 |
+
|
32 |
+
The relationship between a flow computer and its assigned measurement system is
|
33 |
+
stored in a special table.
|
34 |
+
|
35 |
+
|
36 |
+
User context:
|
37 |
+
|
38 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
39 |
+
for a measurement system assigned to a specific flow computer.'
|
40 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
41 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
42 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
43 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
44 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
45 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
46 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
47 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
48 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
49 |
+
\ each value in the reports, making it easier to interpret the data."
|
50 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
51 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
52 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
53 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
54 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
55 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
56 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
57 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
58 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
59 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
60 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
61 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
62 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
63 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
64 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
65 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
66 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
67 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
68 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
69 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
70 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
71 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
72 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
73 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
74 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
75 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
76 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
77 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
78 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
79 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
80 |
+
\ systems table + uncertainty of magnitudes table)."
|
81 |
+
- source_sentence: What is the primary key of the flow computer table?
|
82 |
+
sentences:
|
83 |
+
- 'What is equipment calibration?
|
84 |
+
|
85 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
86 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
87 |
+
by the company or a regulatory body.
|
88 |
+
|
89 |
+
|
90 |
+
Purpose of calibration:
|
91 |
+
|
92 |
+
The calibration process corrects any deviations in how the equipment measures
|
93 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
94 |
+
and reliable data.
|
95 |
+
|
96 |
+
|
97 |
+
Calibration cycles:
|
98 |
+
|
99 |
+
There are two main calibration cycles:
|
100 |
+
|
101 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
102 |
+
are made. This cycle is almost always implemented.
|
103 |
+
|
104 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
105 |
+
are made. This cycle is used depending on regulatory requirements.
|
106 |
+
|
107 |
+
|
108 |
+
Calibration uncertainty:
|
109 |
+
|
110 |
+
- Uncertainty is included in the results of a calibration.
|
111 |
+
|
112 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
113 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
114 |
+
- 'What is equipment calibration?
|
115 |
+
|
116 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
117 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
118 |
+
by the company or a regulatory body.
|
119 |
+
|
120 |
+
|
121 |
+
Purpose of calibration:
|
122 |
+
|
123 |
+
The calibration process corrects any deviations in how the equipment measures
|
124 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
125 |
+
and reliable data.
|
126 |
+
|
127 |
+
|
128 |
+
Calibration cycles:
|
129 |
+
|
130 |
+
There are two main calibration cycles:
|
131 |
+
|
132 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
133 |
+
are made. This cycle is almost always implemented.
|
134 |
+
|
135 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
136 |
+
are made. This cycle is used depending on regulatory requirements.
|
137 |
+
|
138 |
+
|
139 |
+
Calibration uncertainty:
|
140 |
+
|
141 |
+
- Uncertainty is included in the results of a calibration.
|
142 |
+
|
143 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
144 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
145 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
146 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
147 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
148 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
149 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
150 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
151 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
152 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
153 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
154 |
+
\ each value in the reports, making it easier to interpret the data."
|
155 |
+
- source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
|
156 |
+
result for the specified tag and date?
|
157 |
+
sentences:
|
158 |
+
- 'What is equipment calibration?
|
159 |
+
|
160 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
161 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
162 |
+
by the company or a regulatory body.
|
163 |
+
|
164 |
+
|
165 |
+
Purpose of calibration:
|
166 |
+
|
167 |
+
The calibration process corrects any deviations in how the equipment measures
|
168 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
169 |
+
and reliable data.
|
170 |
+
|
171 |
+
|
172 |
+
Calibration cycles:
|
173 |
+
|
174 |
+
There are two main calibration cycles:
|
175 |
+
|
176 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
177 |
+
are made. This cycle is almost always implemented.
|
178 |
+
|
179 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
180 |
+
are made. This cycle is used depending on regulatory requirements.
|
181 |
+
|
182 |
+
|
183 |
+
Calibration uncertainty:
|
184 |
+
|
185 |
+
- Uncertainty is included in the results of a calibration.
|
186 |
+
|
187 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
188 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
189 |
+
- 'What kind of data store an equipment?
|
190 |
+
|
191 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
192 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
193 |
+
|
194 |
+
|
195 |
+
Data storage:
|
196 |
+
|
197 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
198 |
+
This table contains the values of the variables captured by the equipments.
|
199 |
+
|
200 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
201 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
202 |
+
uncertainty.
|
203 |
+
|
204 |
+
- The values stored in the variable values table are **different** from variable
|
205 |
+
uncertainty values, which are calculated separately and represent the margin of
|
206 |
+
error.
|
207 |
+
|
208 |
+
|
209 |
+
Accessing the data:
|
210 |
+
|
211 |
+
- Users typically access the data by referring to the readings from the measurement
|
212 |
+
system, not directly from the individual equipments.
|
213 |
+
|
214 |
+
- The readings are stored in a "variable values" table within the database.
|
215 |
+
|
216 |
+
|
217 |
+
Linking variable names:
|
218 |
+
|
219 |
+
If the user needs to know the name of a variable, they must link the data to another
|
220 |
+
table that stores information about the types of variables.'
|
221 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
222 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
223 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
224 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
225 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
226 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
227 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
228 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
229 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
230 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
231 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
232 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
233 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
234 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
235 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
236 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
237 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
238 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
239 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
240 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
241 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
242 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
243 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
244 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
245 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
246 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
247 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
248 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
249 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
250 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
251 |
+
\ systems table + uncertainty of magnitudes table)."
|
252 |
+
- source_sentence: How are the secondary equipment and measurement system related?
|
253 |
+
sentences:
|
254 |
+
- 'What kind of data store an equipment?
|
255 |
+
|
256 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
257 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
258 |
+
|
259 |
+
|
260 |
+
Data storage:
|
261 |
+
|
262 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
263 |
+
This table contains the values of the variables captured by the equipments.
|
264 |
+
|
265 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
266 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
267 |
+
uncertainty.
|
268 |
+
|
269 |
+
- The values stored in the variable values table are **different** from variable
|
270 |
+
uncertainty values, which are calculated separately and represent the margin of
|
271 |
+
error.
|
272 |
+
|
273 |
+
|
274 |
+
Accessing the data:
|
275 |
+
|
276 |
+
- Users typically access the data by referring to the readings from the measurement
|
277 |
+
system, not directly from the individual equipments.
|
278 |
+
|
279 |
+
- The readings are stored in a "variable values" table within the database.
|
280 |
+
|
281 |
+
|
282 |
+
Linking variable names:
|
283 |
+
|
284 |
+
If the user needs to know the name of a variable, they must link the data to another
|
285 |
+
table that stores information about the types of variables.'
|
286 |
+
- 'What do measurement equipment measure?
|
287 |
+
|
288 |
+
Each equipment measures a physical magnitude, also known as a variable. Based
|
289 |
+
on the type of variable they measure, devices are classified into different categories.
|
290 |
+
|
291 |
+
|
292 |
+
Equipment classification:
|
293 |
+
|
294 |
+
- Primary meter: Assigned by default to equipments like orifice plates.
|
295 |
+
|
296 |
+
- Secondary meter: Assigned by default to equipments like transmitters.
|
297 |
+
|
298 |
+
- Tertiary meter: Used for other types of equipments.
|
299 |
+
|
300 |
+
|
301 |
+
Equipment types in the database:
|
302 |
+
|
303 |
+
The database includes a table listing all equipment types. Examples of equipment
|
304 |
+
types are:
|
305 |
+
|
306 |
+
- Differential pressure transmitters
|
307 |
+
|
308 |
+
- RTDs (Resistance Temperature Detectors)
|
309 |
+
|
310 |
+
- Orifice plates
|
311 |
+
|
312 |
+
- Multivariable transmitters
|
313 |
+
|
314 |
+
- Ultrasonic meters
|
315 |
+
|
316 |
+
|
317 |
+
Meteorological checks for equipments:
|
318 |
+
|
319 |
+
Each equipment type is assigned a meteorological check, which can be either:
|
320 |
+
|
321 |
+
- Calibration: To ensure measurement accuracy.
|
322 |
+
|
323 |
+
- Inspection: To verify proper functioning.
|
324 |
+
|
325 |
+
|
326 |
+
Data storage in tables:
|
327 |
+
|
328 |
+
The database also includes a separate table for equipment classifications, which
|
329 |
+
are:
|
330 |
+
|
331 |
+
- Primary meter
|
332 |
+
|
333 |
+
- Secondary meter
|
334 |
+
|
335 |
+
- Tertiary meter
|
336 |
+
|
337 |
+
So, an equipment has equipment types and this types has classifications.'
|
338 |
+
- 'What kind of data store an equipment?
|
339 |
+
|
340 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
341 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
342 |
+
|
343 |
+
|
344 |
+
Data storage:
|
345 |
+
|
346 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
347 |
+
This table contains the values of the variables captured by the equipments.
|
348 |
+
|
349 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
350 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
351 |
+
uncertainty.
|
352 |
+
|
353 |
+
- The values stored in the variable values table are **different** from variable
|
354 |
+
uncertainty values, which are calculated separately and represent the margin of
|
355 |
+
error.
|
356 |
+
|
357 |
+
|
358 |
+
Accessing the data:
|
359 |
+
|
360 |
+
- Users typically access the data by referring to the readings from the measurement
|
361 |
+
system, not directly from the individual equipments.
|
362 |
+
|
363 |
+
- The readings are stored in a "variable values" table within the database.
|
364 |
+
|
365 |
+
|
366 |
+
Linking variable names:
|
367 |
+
|
368 |
+
If the user needs to know the name of a variable, they must link the data to another
|
369 |
+
table that stores information about the types of variables.'
|
370 |
+
- source_sentence: What is the table structure for secondary equipment?
|
371 |
+
sentences:
|
372 |
+
- 'What kind of data store an equipment?
|
373 |
+
|
374 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
375 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
376 |
+
|
377 |
+
|
378 |
+
Data storage:
|
379 |
+
|
380 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
381 |
+
This table contains the values of the variables captured by the equipments.
|
382 |
+
|
383 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
384 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
385 |
+
uncertainty.
|
386 |
+
|
387 |
+
- The values stored in the variable values table are **different** from variable
|
388 |
+
uncertainty values, which are calculated separately and represent the margin of
|
389 |
+
error.
|
390 |
+
|
391 |
+
|
392 |
+
Accessing the data:
|
393 |
+
|
394 |
+
- Users typically access the data by referring to the readings from the measurement
|
395 |
+
system, not directly from the individual equipments.
|
396 |
+
|
397 |
+
- The readings are stored in a "variable values" table within the database.
|
398 |
+
|
399 |
+
|
400 |
+
Linking variable names:
|
401 |
+
|
402 |
+
If the user needs to know the name of a variable, they must link the data to another
|
403 |
+
table that stores information about the types of variables.'
|
404 |
+
- 'How are flow computers and measurement systems related?
|
405 |
+
|
406 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
407 |
+
system can only be assigned to one flow computer.
|
408 |
+
|
409 |
+
|
410 |
+
Database terminology:
|
411 |
+
|
412 |
+
In the database, this relationship is referred to as:
|
413 |
+
|
414 |
+
- Meter streams
|
415 |
+
|
416 |
+
- Meter runs
|
417 |
+
|
418 |
+
- Sections
|
419 |
+
|
420 |
+
|
421 |
+
Storage of the relationship:
|
422 |
+
|
423 |
+
The relationship between a flow computer and its assigned measurement system is
|
424 |
+
stored in a special table.
|
425 |
+
|
426 |
+
|
427 |
+
User context:
|
428 |
+
|
429 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
430 |
+
for a measurement system assigned to a specific flow computer.'
|
431 |
+
- 'How are flow computers and measurement systems related?
|
432 |
+
|
433 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
434 |
+
system can only be assigned to one flow computer.
|
435 |
+
|
436 |
+
|
437 |
+
Database terminology:
|
438 |
+
|
439 |
+
In the database, this relationship is referred to as:
|
440 |
+
|
441 |
+
- Meter streams
|
442 |
+
|
443 |
+
- Meter runs
|
444 |
+
|
445 |
+
- Sections
|
446 |
+
|
447 |
+
|
448 |
+
Storage of the relationship:
|
449 |
+
|
450 |
+
The relationship between a flow computer and its assigned measurement system is
|
451 |
+
stored in a special table.
|
452 |
+
|
453 |
+
|
454 |
+
User context:
|
455 |
+
|
456 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
457 |
+
for a measurement system assigned to a specific flow computer.'
|
458 |
+
datasets:
|
459 |
+
- Lauther/measuring-embeddings-v3
|
460 |
+
pipeline_tag: sentence-similarity
|
461 |
+
library_name: sentence-transformers
|
462 |
+
---
|
463 |
+
|
464 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large-instruct
|
465 |
+
|
466 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
467 |
+
|
468 |
+
## Model Details
|
469 |
+
|
470 |
+
### Model Description
|
471 |
+
- **Model Type:** Sentence Transformer
|
472 |
+
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
|
473 |
+
- **Maximum Sequence Length:** 512 tokens
|
474 |
+
- **Output Dimensionality:** 1024 dimensions
|
475 |
+
- **Similarity Function:** Cosine Similarity
|
476 |
+
- **Training Dataset:**
|
477 |
+
- [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
|
478 |
+
<!-- - **Language:** Unknown -->
|
479 |
+
<!-- - **License:** Unknown -->
|
480 |
+
|
481 |
+
### Model Sources
|
482 |
+
|
483 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
484 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
485 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
486 |
+
|
487 |
+
### Full Model Architecture
|
488 |
+
|
489 |
+
```
|
490 |
+
SentenceTransformer(
|
491 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
492 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
493 |
+
(2): Normalize()
|
494 |
+
)
|
495 |
+
```
|
496 |
+
|
497 |
+
## Usage
|
498 |
+
|
499 |
+
### Direct Usage (Sentence Transformers)
|
500 |
+
|
501 |
+
First install the Sentence Transformers library:
|
502 |
+
|
503 |
+
```bash
|
504 |
+
pip install -U sentence-transformers
|
505 |
+
```
|
506 |
+
|
507 |
+
Then you can load this model and run inference.
|
508 |
+
```python
|
509 |
+
from sentence_transformers import SentenceTransformer
|
510 |
+
|
511 |
+
# Download from the 🤗 Hub
|
512 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
513 |
+
# Run inference
|
514 |
+
sentences = [
|
515 |
+
'What is the table structure for secondary equipment?',
|
516 |
+
'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
|
517 |
+
'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
|
518 |
+
]
|
519 |
+
embeddings = model.encode(sentences)
|
520 |
+
print(embeddings.shape)
|
521 |
+
# [3, 1024]
|
522 |
+
|
523 |
+
# Get the similarity scores for the embeddings
|
524 |
+
similarities = model.similarity(embeddings, embeddings)
|
525 |
+
print(similarities.shape)
|
526 |
+
# [3, 3]
|
527 |
+
```
|
528 |
+
|
529 |
+
<!--
|
530 |
+
### Direct Usage (Transformers)
|
531 |
+
|
532 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
533 |
+
|
534 |
+
</details>
|
535 |
+
-->
|
536 |
+
|
537 |
+
<!--
|
538 |
+
### Downstream Usage (Sentence Transformers)
|
539 |
+
|
540 |
+
You can finetune this model on your own dataset.
|
541 |
+
|
542 |
+
<details><summary>Click to expand</summary>
|
543 |
+
|
544 |
+
</details>
|
545 |
+
-->
|
546 |
+
|
547 |
+
<!--
|
548 |
+
### Out-of-Scope Use
|
549 |
+
|
550 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
551 |
+
-->
|
552 |
+
|
553 |
+
<!--
|
554 |
+
## Bias, Risks and Limitations
|
555 |
+
|
556 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
557 |
+
-->
|
558 |
+
|
559 |
+
<!--
|
560 |
+
### Recommendations
|
561 |
+
|
562 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
563 |
+
-->
|
564 |
+
|
565 |
+
## Training Details
|
566 |
+
|
567 |
+
### Training Dataset
|
568 |
+
|
569 |
+
#### measuring-embeddings-v3
|
570 |
+
|
571 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
572 |
+
* Size: 7,552 training samples
|
573 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
574 |
+
* Approximate statistics based on the first 1000 samples:
|
575 |
+
| | sentence1 | sentence2 | score |
|
576 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
577 |
+
| type | string | string | float |
|
578 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
|
579 |
+
* Samples:
|
580 |
+
| sentence1 | sentence2 | score |
|
581 |
+
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
582 |
+
| <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
|
583 |
+
| <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
|
584 |
+
| <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
|
585 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
586 |
+
```json
|
587 |
+
{
|
588 |
+
"scale": 20.0,
|
589 |
+
"similarity_fct": "pairwise_cos_sim"
|
590 |
+
}
|
591 |
+
```
|
592 |
+
|
593 |
+
### Evaluation Dataset
|
594 |
+
|
595 |
+
#### measuring-embeddings-v3
|
596 |
+
|
597 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
598 |
+
* Size: 1,618 evaluation samples
|
599 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
600 |
+
* Approximate statistics based on the first 1000 samples:
|
601 |
+
| | sentence1 | sentence2 | score |
|
602 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
603 |
+
| type | string | string | float |
|
604 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
|
605 |
+
* Samples:
|
606 |
+
| sentence1 | sentence2 | score |
|
607 |
+
|:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
608 |
+
| <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
|
609 |
+
| <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
|
610 |
+
| <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
|
611 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
612 |
+
```json
|
613 |
+
{
|
614 |
+
"scale": 20.0,
|
615 |
+
"similarity_fct": "pairwise_cos_sim"
|
616 |
+
}
|
617 |
+
```
|
618 |
+
|
619 |
+
### Training Hyperparameters
|
620 |
+
#### Non-Default Hyperparameters
|
621 |
+
|
622 |
+
- `eval_strategy`: steps
|
623 |
+
- `per_device_train_batch_size`: 7
|
624 |
+
- `per_device_eval_batch_size`: 7
|
625 |
+
- `gradient_accumulation_steps`: 4
|
626 |
+
- `learning_rate`: 3e-05
|
627 |
+
- `num_train_epochs`: 20
|
628 |
+
- `warmup_ratio`: 0.1
|
629 |
+
|
630 |
+
#### All Hyperparameters
|
631 |
+
<details><summary>Click to expand</summary>
|
632 |
+
|
633 |
+
- `overwrite_output_dir`: False
|
634 |
+
- `do_predict`: False
|
635 |
+
- `eval_strategy`: steps
|
636 |
+
- `prediction_loss_only`: True
|
637 |
+
- `per_device_train_batch_size`: 7
|
638 |
+
- `per_device_eval_batch_size`: 7
|
639 |
+
- `per_gpu_train_batch_size`: None
|
640 |
+
- `per_gpu_eval_batch_size`: None
|
641 |
+
- `gradient_accumulation_steps`: 4
|
642 |
+
- `eval_accumulation_steps`: None
|
643 |
+
- `torch_empty_cache_steps`: None
|
644 |
+
- `learning_rate`: 3e-05
|
645 |
+
- `weight_decay`: 0.0
|
646 |
+
- `adam_beta1`: 0.9
|
647 |
+
- `adam_beta2`: 0.999
|
648 |
+
- `adam_epsilon`: 1e-08
|
649 |
+
- `max_grad_norm`: 1.0
|
650 |
+
- `num_train_epochs`: 20
|
651 |
+
- `max_steps`: -1
|
652 |
+
- `lr_scheduler_type`: linear
|
653 |
+
- `lr_scheduler_kwargs`: {}
|
654 |
+
- `warmup_ratio`: 0.1
|
655 |
+
- `warmup_steps`: 0
|
656 |
+
- `log_level`: passive
|
657 |
+
- `log_level_replica`: warning
|
658 |
+
- `log_on_each_node`: True
|
659 |
+
- `logging_nan_inf_filter`: True
|
660 |
+
- `save_safetensors`: True
|
661 |
+
- `save_on_each_node`: False
|
662 |
+
- `save_only_model`: False
|
663 |
+
- `restore_callback_states_from_checkpoint`: False
|
664 |
+
- `no_cuda`: False
|
665 |
+
- `use_cpu`: False
|
666 |
+
- `use_mps_device`: False
|
667 |
+
- `seed`: 42
|
668 |
+
- `data_seed`: None
|
669 |
+
- `jit_mode_eval`: False
|
670 |
+
- `use_ipex`: False
|
671 |
+
- `bf16`: False
|
672 |
+
- `fp16`: False
|
673 |
+
- `fp16_opt_level`: O1
|
674 |
+
- `half_precision_backend`: auto
|
675 |
+
- `bf16_full_eval`: False
|
676 |
+
- `fp16_full_eval`: False
|
677 |
+
- `tf32`: None
|
678 |
+
- `local_rank`: 0
|
679 |
+
- `ddp_backend`: None
|
680 |
+
- `tpu_num_cores`: None
|
681 |
+
- `tpu_metrics_debug`: False
|
682 |
+
- `debug`: []
|
683 |
+
- `dataloader_drop_last`: False
|
684 |
+
- `dataloader_num_workers`: 0
|
685 |
+
- `dataloader_prefetch_factor`: None
|
686 |
+
- `past_index`: -1
|
687 |
+
- `disable_tqdm`: False
|
688 |
+
- `remove_unused_columns`: True
|
689 |
+
- `label_names`: None
|
690 |
+
- `load_best_model_at_end`: False
|
691 |
+
- `ignore_data_skip`: False
|
692 |
+
- `fsdp`: []
|
693 |
+
- `fsdp_min_num_params`: 0
|
694 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
695 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
696 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
697 |
+
- `deepspeed`: None
|
698 |
+
- `label_smoothing_factor`: 0.0
|
699 |
+
- `optim`: adamw_torch
|
700 |
+
- `optim_args`: None
|
701 |
+
- `adafactor`: False
|
702 |
+
- `group_by_length`: False
|
703 |
+
- `length_column_name`: length
|
704 |
+
- `ddp_find_unused_parameters`: None
|
705 |
+
- `ddp_bucket_cap_mb`: None
|
706 |
+
- `ddp_broadcast_buffers`: False
|
707 |
+
- `dataloader_pin_memory`: True
|
708 |
+
- `dataloader_persistent_workers`: False
|
709 |
+
- `skip_memory_metrics`: True
|
710 |
+
- `use_legacy_prediction_loop`: False
|
711 |
+
- `push_to_hub`: False
|
712 |
+
- `resume_from_checkpoint`: None
|
713 |
+
- `hub_model_id`: None
|
714 |
+
- `hub_strategy`: every_save
|
715 |
+
- `hub_private_repo`: None
|
716 |
+
- `hub_always_push`: False
|
717 |
+
- `gradient_checkpointing`: False
|
718 |
+
- `gradient_checkpointing_kwargs`: None
|
719 |
+
- `include_inputs_for_metrics`: False
|
720 |
+
- `include_for_metrics`: []
|
721 |
+
- `eval_do_concat_batches`: True
|
722 |
+
- `fp16_backend`: auto
|
723 |
+
- `push_to_hub_model_id`: None
|
724 |
+
- `push_to_hub_organization`: None
|
725 |
+
- `mp_parameters`:
|
726 |
+
- `auto_find_batch_size`: False
|
727 |
+
- `full_determinism`: False
|
728 |
+
- `torchdynamo`: None
|
729 |
+
- `ray_scope`: last
|
730 |
+
- `ddp_timeout`: 1800
|
731 |
+
- `torch_compile`: False
|
732 |
+
- `torch_compile_backend`: None
|
733 |
+
- `torch_compile_mode`: None
|
734 |
+
- `dispatch_batches`: None
|
735 |
+
- `split_batches`: None
|
736 |
+
- `include_tokens_per_second`: False
|
737 |
+
- `include_num_input_tokens_seen`: False
|
738 |
+
- `neftune_noise_alpha`: None
|
739 |
+
- `optim_target_modules`: None
|
740 |
+
- `batch_eval_metrics`: False
|
741 |
+
- `eval_on_start`: False
|
742 |
+
- `use_liger_kernel`: False
|
743 |
+
- `eval_use_gather_object`: False
|
744 |
+
- `average_tokens_across_devices`: False
|
745 |
+
- `prompts`: None
|
746 |
+
- `batch_sampler`: batch_sampler
|
747 |
+
- `multi_dataset_batch_sampler`: proportional
|
748 |
+
|
749 |
+
</details>
|
750 |
+
|
751 |
+
### Training Logs
|
752 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
753 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
754 |
+
| 9.5153 | 2560 | 6.782 | - |
|
755 |
+
| 9.5524 | 2570 | 7.3027 | - |
|
756 |
+
| 9.5894 | 2580 | 7.3348 | - |
|
757 |
+
| 9.6265 | 2590 | 7.7864 | - |
|
758 |
+
| 9.6636 | 2600 | 6.3552 | - |
|
759 |
+
| 9.7006 | 2610 | 7.151 | - |
|
760 |
+
| 9.7377 | 2620 | 6.1664 | - |
|
761 |
+
| 9.7748 | 2630 | 6.0398 | - |
|
762 |
+
| 9.8119 | 2640 | 7.0452 | - |
|
763 |
+
| 9.8489 | 2650 | 7.2457 | - |
|
764 |
+
| 9.8860 | 2660 | 6.7531 | - |
|
765 |
+
| 9.9231 | 2670 | 6.7149 | - |
|
766 |
+
| 9.9601 | 2680 | 6.4635 | - |
|
767 |
+
| 9.9972 | 2690 | 6.2237 | - |
|
768 |
+
| 10.0371 | 2700 | 6.1798 | 2.9939 |
|
769 |
+
| 10.0741 | 2710 | 7.2224 | - |
|
770 |
+
| 10.1112 | 2720 | 6.5327 | - |
|
771 |
+
| 10.1483 | 2730 | 7.4686 | - |
|
772 |
+
| 10.1854 | 2740 | 6.1404 | - |
|
773 |
+
| 10.2224 | 2750 | 7.0005 | - |
|
774 |
+
| 10.2595 | 2760 | 5.7726 | - |
|
775 |
+
| 10.2966 | 2770 | 6.5327 | - |
|
776 |
+
| 10.3336 | 2780 | 7.5015 | - |
|
777 |
+
| 10.3707 | 2790 | 6.5526 | - |
|
778 |
+
| 10.4078 | 2800 | 6.2078 | - |
|
779 |
+
| 10.4449 | 2810 | 6.1 | - |
|
780 |
+
| 10.4819 | 2820 | 7.1027 | - |
|
781 |
+
| 10.5190 | 2830 | 8.639 | - |
|
782 |
+
| 10.5561 | 2840 | 6.9937 | - |
|
783 |
+
| 10.5931 | 2850 | 7.2734 | 2.8532 |
|
784 |
+
| 10.6302 | 2860 | 7.6321 | - |
|
785 |
+
| 10.6673 | 2870 | 7.5788 | - |
|
786 |
+
| 10.7044 | 2880 | 6.7864 | - |
|
787 |
+
| 10.7414 | 2890 | 7.4237 | - |
|
788 |
+
| 10.7785 | 2900 | 6.9813 | - |
|
789 |
+
| 10.8156 | 2910 | 6.6884 | - |
|
790 |
+
| 10.8526 | 2920 | 6.7464 | - |
|
791 |
+
| 10.8897 | 2930 | 7.7989 | - |
|
792 |
+
| 10.9268 | 2940 | 7.3568 | - |
|
793 |
+
| 10.9639 | 2950 | 8.6706 | - |
|
794 |
+
| 11.0 | 2960 | 6.5687 | - |
|
795 |
+
| 11.0371 | 2970 | 5.8992 | - |
|
796 |
+
| 11.0741 | 2980 | 6.4543 | - |
|
797 |
+
| 11.1112 | 2990 | 6.1386 | - |
|
798 |
+
| 11.1483 | 3000 | 6.9047 | 2.9147 |
|
799 |
+
|
800 |
+
|
801 |
+
### Framework Versions
|
802 |
+
- Python: 3.11.0
|
803 |
+
- Sentence Transformers: 3.4.0
|
804 |
+
- Transformers: 4.48.1
|
805 |
+
- PyTorch: 2.5.1+cu124
|
806 |
+
- Accelerate: 1.3.0
|
807 |
+
- Datasets: 3.2.0
|
808 |
+
- Tokenizers: 0.21.0
|
809 |
+
|
810 |
+
## Citation
|
811 |
+
|
812 |
+
### BibTeX
|
813 |
+
|
814 |
+
#### Sentence Transformers
|
815 |
+
```bibtex
|
816 |
+
@inproceedings{reimers-2019-sentence-bert,
|
817 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
818 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
819 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
820 |
+
month = "11",
|
821 |
+
year = "2019",
|
822 |
+
publisher = "Association for Computational Linguistics",
|
823 |
+
url = "https://arxiv.org/abs/1908.10084",
|
824 |
+
}
|
825 |
+
```
|
826 |
+
|
827 |
+
#### CoSENTLoss
|
828 |
+
```bibtex
|
829 |
+
@online{kexuefm-8847,
|
830 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
831 |
+
author={Su Jianlin},
|
832 |
+
year={2022},
|
833 |
+
month={Jan},
|
834 |
+
url={https://kexue.fm/archives/8847},
|
835 |
+
}
|
836 |
+
```
|
837 |
+
|
838 |
+
<!--
|
839 |
+
## Glossary
|
840 |
+
|
841 |
+
*Clearly define terms in order to be accessible across audiences.*
|
842 |
+
-->
|
843 |
+
|
844 |
+
<!--
|
845 |
+
## Model Card Authors
|
846 |
+
|
847 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
848 |
+
-->
|
849 |
+
|
850 |
+
<!--
|
851 |
+
## Model Card Contact
|
852 |
+
|
853 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
854 |
+
-->
|
checkpoints/checkpoint-3000/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-large-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoints/checkpoint-3000/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
checkpoints/checkpoint-3000/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a2c326925e5cc5dcdefcb8950ca93a1976805e8cb3c1561b3ae7129a1697fce
|
3 |
+
size 135
|
checkpoints/checkpoint-3000/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoints/checkpoint-3000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4562c87cb66f725fd95d3e278695e7586bddefba90259d4aa3ef413b201aeb29
|
3 |
+
size 135
|
checkpoints/checkpoint-3000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10ad6f9f0decf1db33a9be9f4ecea3f5ae938a1f83e6c903905c9586578b47ae
|
3 |
+
size 130
|
checkpoints/checkpoint-3000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:530667f8bb3b4eb2502733d678e9906b54c4e5fa4939048f31b477c1ce251b4b
|
3 |
+
size 129
|
checkpoints/checkpoint-3000/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoints/checkpoint-3000/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoints/checkpoint-3000/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de6f09c3f9b891e5b98dd3af9463dcab5a97d5265e288271395324a0577e6c05
|
3 |
+
size 133
|
checkpoints/checkpoint-3000/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"extra_special_tokens": {},
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"sep_token": "</s>",
|
54 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
55 |
+
"unk_token": "<unk>"
|
56 |
+
}
|
checkpoints/checkpoint-3000/trainer_state.json
ADDED
@@ -0,0 +1,2293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 11.148285449490269,
|
5 |
+
"eval_steps": 150,
|
6 |
+
"global_step": 3000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03707136237256719,
|
13 |
+
"grad_norm": 53.36411666870117,
|
14 |
+
"learning_rate": 1.1152416356877324e-06,
|
15 |
+
"loss": 10.8165,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.07414272474513438,
|
20 |
+
"grad_norm": 61.33858871459961,
|
21 |
+
"learning_rate": 2.2304832713754648e-06,
|
22 |
+
"loss": 10.8463,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.11121408711770157,
|
27 |
+
"grad_norm": 67.16305541992188,
|
28 |
+
"learning_rate": 3.345724907063197e-06,
|
29 |
+
"loss": 10.821,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.14828544949026876,
|
34 |
+
"grad_norm": 62.08958053588867,
|
35 |
+
"learning_rate": 4.4609665427509296e-06,
|
36 |
+
"loss": 10.4704,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.18535681186283595,
|
41 |
+
"grad_norm": 53.839927673339844,
|
42 |
+
"learning_rate": 5.576208178438661e-06,
|
43 |
+
"loss": 10.8568,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.22242817423540315,
|
48 |
+
"grad_norm": 57.02272033691406,
|
49 |
+
"learning_rate": 6.691449814126394e-06,
|
50 |
+
"loss": 10.3005,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.2594995366079703,
|
55 |
+
"grad_norm": 88.16449737548828,
|
56 |
+
"learning_rate": 7.806691449814127e-06,
|
57 |
+
"loss": 9.6009,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.2965708989805375,
|
62 |
+
"grad_norm": 84.35252380371094,
|
63 |
+
"learning_rate": 8.921933085501859e-06,
|
64 |
+
"loss": 9.7448,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.3336422613531047,
|
69 |
+
"grad_norm": 77.93982696533203,
|
70 |
+
"learning_rate": 1.0037174721189593e-05,
|
71 |
+
"loss": 9.5922,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.3707136237256719,
|
76 |
+
"grad_norm": 56.669166564941406,
|
77 |
+
"learning_rate": 1.1152416356877323e-05,
|
78 |
+
"loss": 10.0919,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.4077849860982391,
|
83 |
+
"grad_norm": 56.652488708496094,
|
84 |
+
"learning_rate": 1.2267657992565056e-05,
|
85 |
+
"loss": 10.2733,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.4448563484708063,
|
90 |
+
"grad_norm": 63.472042083740234,
|
91 |
+
"learning_rate": 1.3382899628252788e-05,
|
92 |
+
"loss": 9.4547,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4819277108433735,
|
97 |
+
"grad_norm": 78.0159912109375,
|
98 |
+
"learning_rate": 1.4498141263940521e-05,
|
99 |
+
"loss": 9.1738,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.5189990732159406,
|
104 |
+
"grad_norm": 68.1931381225586,
|
105 |
+
"learning_rate": 1.5613382899628255e-05,
|
106 |
+
"loss": 10.0876,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.5560704355885079,
|
111 |
+
"grad_norm": 49.315216064453125,
|
112 |
+
"learning_rate": 1.6728624535315986e-05,
|
113 |
+
"loss": 10.3721,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.5560704355885079,
|
118 |
+
"eval_loss": 2.559400796890259,
|
119 |
+
"eval_runtime": 34.304,
|
120 |
+
"eval_samples_per_second": 47.166,
|
121 |
+
"eval_steps_per_second": 6.763,
|
122 |
+
"step": 150
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.593141797961075,
|
126 |
+
"grad_norm": 34.1899528503418,
|
127 |
+
"learning_rate": 1.7843866171003718e-05,
|
128 |
+
"loss": 10.4711,
|
129 |
+
"step": 160
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.6302131603336423,
|
133 |
+
"grad_norm": 37.074134826660156,
|
134 |
+
"learning_rate": 1.895910780669145e-05,
|
135 |
+
"loss": 9.9383,
|
136 |
+
"step": 170
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.6672845227062094,
|
140 |
+
"grad_norm": 49.323158264160156,
|
141 |
+
"learning_rate": 2.0074349442379185e-05,
|
142 |
+
"loss": 10.0448,
|
143 |
+
"step": 180
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.7043558850787767,
|
147 |
+
"grad_norm": 53.07639694213867,
|
148 |
+
"learning_rate": 2.1189591078066917e-05,
|
149 |
+
"loss": 9.8467,
|
150 |
+
"step": 190
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.7414272474513438,
|
154 |
+
"grad_norm": 38.345916748046875,
|
155 |
+
"learning_rate": 2.2304832713754645e-05,
|
156 |
+
"loss": 9.9434,
|
157 |
+
"step": 200
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.7784986098239111,
|
161 |
+
"grad_norm": 47.55274963378906,
|
162 |
+
"learning_rate": 2.3420074349442377e-05,
|
163 |
+
"loss": 9.7912,
|
164 |
+
"step": 210
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.8155699721964782,
|
168 |
+
"grad_norm": 59.17176055908203,
|
169 |
+
"learning_rate": 2.4535315985130112e-05,
|
170 |
+
"loss": 9.7905,
|
171 |
+
"step": 220
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.8526413345690455,
|
175 |
+
"grad_norm": 52.57457733154297,
|
176 |
+
"learning_rate": 2.5650557620817844e-05,
|
177 |
+
"loss": 9.9412,
|
178 |
+
"step": 230
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.8897126969416126,
|
182 |
+
"grad_norm": 42.251304626464844,
|
183 |
+
"learning_rate": 2.6765799256505576e-05,
|
184 |
+
"loss": 10.0084,
|
185 |
+
"step": 240
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.9267840593141798,
|
189 |
+
"grad_norm": 46.63966369628906,
|
190 |
+
"learning_rate": 2.788104089219331e-05,
|
191 |
+
"loss": 10.0139,
|
192 |
+
"step": 250
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.963855421686747,
|
196 |
+
"grad_norm": 27.772289276123047,
|
197 |
+
"learning_rate": 2.8996282527881043e-05,
|
198 |
+
"loss": 9.3794,
|
199 |
+
"step": 260
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 1.0,
|
203 |
+
"grad_norm": 46.3179931640625,
|
204 |
+
"learning_rate": 2.9987608426270136e-05,
|
205 |
+
"loss": 9.5747,
|
206 |
+
"step": 270
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 1.0370713623725671,
|
210 |
+
"grad_norm": 45.746551513671875,
|
211 |
+
"learning_rate": 2.98636926889715e-05,
|
212 |
+
"loss": 9.6763,
|
213 |
+
"step": 280
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 1.0741427247451343,
|
217 |
+
"grad_norm": 49.50416564941406,
|
218 |
+
"learning_rate": 2.9739776951672864e-05,
|
219 |
+
"loss": 10.4789,
|
220 |
+
"step": 290
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 1.1112140871177016,
|
224 |
+
"grad_norm": 43.72733688354492,
|
225 |
+
"learning_rate": 2.9615861214374226e-05,
|
226 |
+
"loss": 9.7244,
|
227 |
+
"step": 300
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.1112140871177016,
|
231 |
+
"eval_loss": 2.6879734992980957,
|
232 |
+
"eval_runtime": 34.2522,
|
233 |
+
"eval_samples_per_second": 47.238,
|
234 |
+
"eval_steps_per_second": 6.773,
|
235 |
+
"step": 300
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 1.1482854494902688,
|
239 |
+
"grad_norm": 48.68376541137695,
|
240 |
+
"learning_rate": 2.9491945477075588e-05,
|
241 |
+
"loss": 9.9421,
|
242 |
+
"step": 310
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.185356811862836,
|
246 |
+
"grad_norm": 44.014747619628906,
|
247 |
+
"learning_rate": 2.9368029739776953e-05,
|
248 |
+
"loss": 9.5022,
|
249 |
+
"step": 320
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.222428174235403,
|
253 |
+
"grad_norm": 49.858642578125,
|
254 |
+
"learning_rate": 2.9244114002478315e-05,
|
255 |
+
"loss": 9.6801,
|
256 |
+
"step": 330
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 1.2594995366079704,
|
260 |
+
"grad_norm": 49.97459411621094,
|
261 |
+
"learning_rate": 2.9120198265179677e-05,
|
262 |
+
"loss": 9.25,
|
263 |
+
"step": 340
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.2965708989805376,
|
267 |
+
"grad_norm": 40.38698196411133,
|
268 |
+
"learning_rate": 2.8996282527881043e-05,
|
269 |
+
"loss": 10.2879,
|
270 |
+
"step": 350
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 1.3336422613531047,
|
274 |
+
"grad_norm": 29.797264099121094,
|
275 |
+
"learning_rate": 2.8872366790582405e-05,
|
276 |
+
"loss": 9.97,
|
277 |
+
"step": 360
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 1.3707136237256718,
|
281 |
+
"grad_norm": 43.83412551879883,
|
282 |
+
"learning_rate": 2.874845105328377e-05,
|
283 |
+
"loss": 9.3751,
|
284 |
+
"step": 370
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.407784986098239,
|
288 |
+
"grad_norm": 42.754154205322266,
|
289 |
+
"learning_rate": 2.8624535315985132e-05,
|
290 |
+
"loss": 9.8947,
|
291 |
+
"step": 380
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 1.4448563484708064,
|
295 |
+
"grad_norm": 50.08184051513672,
|
296 |
+
"learning_rate": 2.8500619578686494e-05,
|
297 |
+
"loss": 9.4987,
|
298 |
+
"step": 390
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 1.4819277108433735,
|
302 |
+
"grad_norm": 41.81029510498047,
|
303 |
+
"learning_rate": 2.8376703841387856e-05,
|
304 |
+
"loss": 10.1515,
|
305 |
+
"step": 400
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 1.5189990732159406,
|
309 |
+
"grad_norm": 44.03816223144531,
|
310 |
+
"learning_rate": 2.8252788104089218e-05,
|
311 |
+
"loss": 10.0098,
|
312 |
+
"step": 410
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 1.556070435588508,
|
316 |
+
"grad_norm": 42.871856689453125,
|
317 |
+
"learning_rate": 2.8128872366790583e-05,
|
318 |
+
"loss": 9.5566,
|
319 |
+
"step": 420
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 1.5931417979610751,
|
323 |
+
"grad_norm": 44.18041229248047,
|
324 |
+
"learning_rate": 2.8004956629491945e-05,
|
325 |
+
"loss": 10.1925,
|
326 |
+
"step": 430
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.6302131603336423,
|
330 |
+
"grad_norm": 30.012725830078125,
|
331 |
+
"learning_rate": 2.788104089219331e-05,
|
332 |
+
"loss": 9.7408,
|
333 |
+
"step": 440
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.6672845227062094,
|
337 |
+
"grad_norm": 38.104827880859375,
|
338 |
+
"learning_rate": 2.7757125154894673e-05,
|
339 |
+
"loss": 9.6873,
|
340 |
+
"step": 450
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 1.6672845227062094,
|
344 |
+
"eval_loss": 2.5061004161834717,
|
345 |
+
"eval_runtime": 34.2772,
|
346 |
+
"eval_samples_per_second": 47.203,
|
347 |
+
"eval_steps_per_second": 6.768,
|
348 |
+
"step": 450
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 1.7043558850787766,
|
352 |
+
"grad_norm": 42.93535232543945,
|
353 |
+
"learning_rate": 2.7633209417596035e-05,
|
354 |
+
"loss": 9.1932,
|
355 |
+
"step": 460
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 1.7414272474513437,
|
359 |
+
"grad_norm": 63.935279846191406,
|
360 |
+
"learning_rate": 2.75092936802974e-05,
|
361 |
+
"loss": 9.9204,
|
362 |
+
"step": 470
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 1.778498609823911,
|
366 |
+
"grad_norm": 30.906002044677734,
|
367 |
+
"learning_rate": 2.7385377942998762e-05,
|
368 |
+
"loss": 9.5151,
|
369 |
+
"step": 480
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 1.8155699721964782,
|
373 |
+
"grad_norm": 48.05679702758789,
|
374 |
+
"learning_rate": 2.7261462205700128e-05,
|
375 |
+
"loss": 9.8418,
|
376 |
+
"step": 490
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 1.8526413345690456,
|
380 |
+
"grad_norm": 56.36283874511719,
|
381 |
+
"learning_rate": 2.7137546468401486e-05,
|
382 |
+
"loss": 9.6943,
|
383 |
+
"step": 500
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 1.8897126969416127,
|
387 |
+
"grad_norm": 47.22933578491211,
|
388 |
+
"learning_rate": 2.7013630731102848e-05,
|
389 |
+
"loss": 9.6948,
|
390 |
+
"step": 510
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 1.9267840593141798,
|
394 |
+
"grad_norm": 36.110008239746094,
|
395 |
+
"learning_rate": 2.6889714993804214e-05,
|
396 |
+
"loss": 9.2274,
|
397 |
+
"step": 520
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 1.963855421686747,
|
401 |
+
"grad_norm": 37.13912582397461,
|
402 |
+
"learning_rate": 2.6765799256505576e-05,
|
403 |
+
"loss": 10.138,
|
404 |
+
"step": 530
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 2.0,
|
408 |
+
"grad_norm": 51.37559509277344,
|
409 |
+
"learning_rate": 2.664188351920694e-05,
|
410 |
+
"loss": 8.7934,
|
411 |
+
"step": 540
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 2.037071362372567,
|
415 |
+
"grad_norm": 42.32170104980469,
|
416 |
+
"learning_rate": 2.6517967781908303e-05,
|
417 |
+
"loss": 8.8304,
|
418 |
+
"step": 550
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 2.0741427247451343,
|
422 |
+
"grad_norm": 42.406219482421875,
|
423 |
+
"learning_rate": 2.6394052044609665e-05,
|
424 |
+
"loss": 8.9593,
|
425 |
+
"step": 560
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 2.1112140871177014,
|
429 |
+
"grad_norm": 52.097023010253906,
|
430 |
+
"learning_rate": 2.627013630731103e-05,
|
431 |
+
"loss": 9.0051,
|
432 |
+
"step": 570
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 2.1482854494902686,
|
436 |
+
"grad_norm": 83.86861419677734,
|
437 |
+
"learning_rate": 2.6146220570012392e-05,
|
438 |
+
"loss": 9.2829,
|
439 |
+
"step": 580
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 2.185356811862836,
|
443 |
+
"grad_norm": 38.229949951171875,
|
444 |
+
"learning_rate": 2.6022304832713758e-05,
|
445 |
+
"loss": 9.785,
|
446 |
+
"step": 590
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 2.2224281742354033,
|
450 |
+
"grad_norm": 50.322513580322266,
|
451 |
+
"learning_rate": 2.5898389095415116e-05,
|
452 |
+
"loss": 9.6401,
|
453 |
+
"step": 600
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.2224281742354033,
|
457 |
+
"eval_loss": 2.448084592819214,
|
458 |
+
"eval_runtime": 34.2525,
|
459 |
+
"eval_samples_per_second": 47.237,
|
460 |
+
"eval_steps_per_second": 6.773,
|
461 |
+
"step": 600
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 2.266913809082484,
|
465 |
+
"grad_norm": 39.366676330566406,
|
466 |
+
"learning_rate": 2.5774473358116482e-05,
|
467 |
+
"loss": 8.7059,
|
468 |
+
"step": 610
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 2.303985171455051,
|
472 |
+
"grad_norm": 41.00213623046875,
|
473 |
+
"learning_rate": 2.5650557620817844e-05,
|
474 |
+
"loss": 9.1285,
|
475 |
+
"step": 620
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 2.341056533827618,
|
479 |
+
"grad_norm": 63.442169189453125,
|
480 |
+
"learning_rate": 2.5526641883519206e-05,
|
481 |
+
"loss": 9.3277,
|
482 |
+
"step": 630
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 2.3781278962001853,
|
486 |
+
"grad_norm": 51.54194641113281,
|
487 |
+
"learning_rate": 2.540272614622057e-05,
|
488 |
+
"loss": 9.1577,
|
489 |
+
"step": 640
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 2.4151992585727524,
|
493 |
+
"grad_norm": 57.583885192871094,
|
494 |
+
"learning_rate": 2.5278810408921933e-05,
|
495 |
+
"loss": 9.6032,
|
496 |
+
"step": 650
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 2.4522706209453196,
|
500 |
+
"grad_norm": 60.13545227050781,
|
501 |
+
"learning_rate": 2.51548946716233e-05,
|
502 |
+
"loss": 8.5451,
|
503 |
+
"step": 660
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 2.489341983317887,
|
507 |
+
"grad_norm": 139.85794067382812,
|
508 |
+
"learning_rate": 2.503097893432466e-05,
|
509 |
+
"loss": 8.6601,
|
510 |
+
"step": 670
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 2.5264133456904543,
|
514 |
+
"grad_norm": 160.73171997070312,
|
515 |
+
"learning_rate": 2.4907063197026023e-05,
|
516 |
+
"loss": 9.522,
|
517 |
+
"step": 680
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 2.5634847080630214,
|
521 |
+
"grad_norm": 190.7194366455078,
|
522 |
+
"learning_rate": 2.4783147459727385e-05,
|
523 |
+
"loss": 10.0619,
|
524 |
+
"step": 690
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 2.6005560704355886,
|
528 |
+
"grad_norm": 172.5655517578125,
|
529 |
+
"learning_rate": 2.4659231722428747e-05,
|
530 |
+
"loss": 9.6444,
|
531 |
+
"step": 700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 2.6376274328081557,
|
535 |
+
"grad_norm": 280.9183044433594,
|
536 |
+
"learning_rate": 2.4535315985130112e-05,
|
537 |
+
"loss": 10.7593,
|
538 |
+
"step": 710
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 2.674698795180723,
|
542 |
+
"grad_norm": 118.03450775146484,
|
543 |
+
"learning_rate": 2.4411400247831474e-05,
|
544 |
+
"loss": 10.4432,
|
545 |
+
"step": 720
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 2.71177015755329,
|
549 |
+
"grad_norm": 332.662353515625,
|
550 |
+
"learning_rate": 2.428748451053284e-05,
|
551 |
+
"loss": 9.6033,
|
552 |
+
"step": 730
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 2.748841519925857,
|
556 |
+
"grad_norm": 129.18788146972656,
|
557 |
+
"learning_rate": 2.41635687732342e-05,
|
558 |
+
"loss": 9.108,
|
559 |
+
"step": 740
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 2.7859128822984243,
|
563 |
+
"grad_norm": 350.5856628417969,
|
564 |
+
"learning_rate": 2.4039653035935564e-05,
|
565 |
+
"loss": 9.884,
|
566 |
+
"step": 750
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 2.7859128822984243,
|
570 |
+
"eval_loss": 2.599517583847046,
|
571 |
+
"eval_runtime": 34.0592,
|
572 |
+
"eval_samples_per_second": 47.506,
|
573 |
+
"eval_steps_per_second": 6.812,
|
574 |
+
"step": 750
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"epoch": 2.822984244670992,
|
578 |
+
"grad_norm": 285.14862060546875,
|
579 |
+
"learning_rate": 2.391573729863693e-05,
|
580 |
+
"loss": 11.3952,
|
581 |
+
"step": 760
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 2.860055607043559,
|
585 |
+
"grad_norm": 185.5862579345703,
|
586 |
+
"learning_rate": 2.379182156133829e-05,
|
587 |
+
"loss": 10.6798,
|
588 |
+
"step": 770
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 2.897126969416126,
|
592 |
+
"grad_norm": 77.20765686035156,
|
593 |
+
"learning_rate": 2.3667905824039656e-05,
|
594 |
+
"loss": 9.9795,
|
595 |
+
"step": 780
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 2.9341983317886933,
|
599 |
+
"grad_norm": 88.75109100341797,
|
600 |
+
"learning_rate": 2.3543990086741015e-05,
|
601 |
+
"loss": 9.3694,
|
602 |
+
"step": 790
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 2.9712696941612604,
|
606 |
+
"grad_norm": 53.416690826416016,
|
607 |
+
"learning_rate": 2.3420074349442377e-05,
|
608 |
+
"loss": 8.4631,
|
609 |
+
"step": 800
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 3.0111214087117704,
|
613 |
+
"grad_norm": 72.12966918945312,
|
614 |
+
"learning_rate": 2.3296158612143742e-05,
|
615 |
+
"loss": 9.3903,
|
616 |
+
"step": 810
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 3.0481927710843375,
|
620 |
+
"grad_norm": 159.3909912109375,
|
621 |
+
"learning_rate": 2.3172242874845104e-05,
|
622 |
+
"loss": 8.9608,
|
623 |
+
"step": 820
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 3.0852641334569046,
|
627 |
+
"grad_norm": 161.03713989257812,
|
628 |
+
"learning_rate": 2.304832713754647e-05,
|
629 |
+
"loss": 9.623,
|
630 |
+
"step": 830
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 3.122335495829472,
|
634 |
+
"grad_norm": 136.50045776367188,
|
635 |
+
"learning_rate": 2.2924411400247832e-05,
|
636 |
+
"loss": 8.5958,
|
637 |
+
"step": 840
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 3.159406858202039,
|
641 |
+
"grad_norm": 60.785926818847656,
|
642 |
+
"learning_rate": 2.2800495662949197e-05,
|
643 |
+
"loss": 8.6278,
|
644 |
+
"step": 850
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 3.196478220574606,
|
648 |
+
"grad_norm": 115.2509536743164,
|
649 |
+
"learning_rate": 2.267657992565056e-05,
|
650 |
+
"loss": 8.661,
|
651 |
+
"step": 860
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 3.233549582947173,
|
655 |
+
"grad_norm": 144.38912963867188,
|
656 |
+
"learning_rate": 2.255266418835192e-05,
|
657 |
+
"loss": 9.5836,
|
658 |
+
"step": 870
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 3.2706209453197403,
|
662 |
+
"grad_norm": 239.74520874023438,
|
663 |
+
"learning_rate": 2.2428748451053287e-05,
|
664 |
+
"loss": 8.6221,
|
665 |
+
"step": 880
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 3.3076923076923075,
|
669 |
+
"grad_norm": 215.12789916992188,
|
670 |
+
"learning_rate": 2.2304832713754645e-05,
|
671 |
+
"loss": 9.1995,
|
672 |
+
"step": 890
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 3.344763670064875,
|
676 |
+
"grad_norm": 113.77183532714844,
|
677 |
+
"learning_rate": 2.218091697645601e-05,
|
678 |
+
"loss": 8.6909,
|
679 |
+
"step": 900
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 3.344763670064875,
|
683 |
+
"eval_loss": 2.4246325492858887,
|
684 |
+
"eval_runtime": 34.1351,
|
685 |
+
"eval_samples_per_second": 47.4,
|
686 |
+
"eval_steps_per_second": 6.797,
|
687 |
+
"step": 900
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 3.381835032437442,
|
691 |
+
"grad_norm": 175.02731323242188,
|
692 |
+
"learning_rate": 2.2057001239157373e-05,
|
693 |
+
"loss": 8.7632,
|
694 |
+
"step": 910
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 3.4189063948100094,
|
698 |
+
"grad_norm": 142.76580810546875,
|
699 |
+
"learning_rate": 2.1933085501858735e-05,
|
700 |
+
"loss": 8.5604,
|
701 |
+
"step": 920
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 3.4559777571825765,
|
705 |
+
"grad_norm": 163.0391387939453,
|
706 |
+
"learning_rate": 2.18091697645601e-05,
|
707 |
+
"loss": 9.3871,
|
708 |
+
"step": 930
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"epoch": 3.4930491195551436,
|
712 |
+
"grad_norm": 386.4294738769531,
|
713 |
+
"learning_rate": 2.1685254027261462e-05,
|
714 |
+
"loss": 9.6445,
|
715 |
+
"step": 940
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 3.5301204819277108,
|
719 |
+
"grad_norm": 86.92581939697266,
|
720 |
+
"learning_rate": 2.1561338289962827e-05,
|
721 |
+
"loss": 9.635,
|
722 |
+
"step": 950
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 3.567191844300278,
|
726 |
+
"grad_norm": 80.94845581054688,
|
727 |
+
"learning_rate": 2.143742255266419e-05,
|
728 |
+
"loss": 8.8689,
|
729 |
+
"step": 960
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 3.6042632066728455,
|
733 |
+
"grad_norm": 69.99708557128906,
|
734 |
+
"learning_rate": 2.1313506815365555e-05,
|
735 |
+
"loss": 9.1411,
|
736 |
+
"step": 970
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 3.641334569045412,
|
740 |
+
"grad_norm": 80.53229522705078,
|
741 |
+
"learning_rate": 2.1189591078066917e-05,
|
742 |
+
"loss": 8.7552,
|
743 |
+
"step": 980
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 3.67840593141798,
|
747 |
+
"grad_norm": 53.3475341796875,
|
748 |
+
"learning_rate": 2.1065675340768275e-05,
|
749 |
+
"loss": 8.5697,
|
750 |
+
"step": 990
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 3.715477293790547,
|
754 |
+
"grad_norm": 54.19875717163086,
|
755 |
+
"learning_rate": 2.094175960346964e-05,
|
756 |
+
"loss": 8.9008,
|
757 |
+
"step": 1000
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 3.752548656163114,
|
761 |
+
"grad_norm": 52.96628952026367,
|
762 |
+
"learning_rate": 2.0817843866171003e-05,
|
763 |
+
"loss": 8.9415,
|
764 |
+
"step": 1010
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 3.789620018535681,
|
768 |
+
"grad_norm": 64.08312225341797,
|
769 |
+
"learning_rate": 2.0693928128872368e-05,
|
770 |
+
"loss": 8.1303,
|
771 |
+
"step": 1020
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 3.8266913809082483,
|
775 |
+
"grad_norm": 68.22163391113281,
|
776 |
+
"learning_rate": 2.057001239157373e-05,
|
777 |
+
"loss": 8.241,
|
778 |
+
"step": 1030
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 3.8637627432808155,
|
782 |
+
"grad_norm": 66.70902252197266,
|
783 |
+
"learning_rate": 2.0446096654275092e-05,
|
784 |
+
"loss": 8.6969,
|
785 |
+
"step": 1040
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 3.9008341056533826,
|
789 |
+
"grad_norm": 49.94658279418945,
|
790 |
+
"learning_rate": 2.0322180916976458e-05,
|
791 |
+
"loss": 9.8392,
|
792 |
+
"step": 1050
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 3.9008341056533826,
|
796 |
+
"eval_loss": 2.533297300338745,
|
797 |
+
"eval_runtime": 34.1106,
|
798 |
+
"eval_samples_per_second": 47.434,
|
799 |
+
"eval_steps_per_second": 6.801,
|
800 |
+
"step": 1050
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 3.93790546802595,
|
804 |
+
"grad_norm": 73.9527816772461,
|
805 |
+
"learning_rate": 2.6765799256505576e-05,
|
806 |
+
"loss": 8.5934,
|
807 |
+
"step": 1060
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 3.974976830398517,
|
811 |
+
"grad_norm": 76.90135955810547,
|
812 |
+
"learning_rate": 2.6703841387856257e-05,
|
813 |
+
"loss": 8.006,
|
814 |
+
"step": 1070
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 4.014828544949027,
|
818 |
+
"grad_norm": 85.86236572265625,
|
819 |
+
"learning_rate": 2.664188351920694e-05,
|
820 |
+
"loss": 9.0081,
|
821 |
+
"step": 1080
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 4.051899907321594,
|
825 |
+
"grad_norm": 106.57842254638672,
|
826 |
+
"learning_rate": 2.6579925650557622e-05,
|
827 |
+
"loss": 8.6706,
|
828 |
+
"step": 1090
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 4.088971269694161,
|
832 |
+
"grad_norm": 68.10344696044922,
|
833 |
+
"learning_rate": 2.6517967781908303e-05,
|
834 |
+
"loss": 9.6146,
|
835 |
+
"step": 1100
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 4.126042632066729,
|
839 |
+
"grad_norm": 67.02091217041016,
|
840 |
+
"learning_rate": 2.6456009913258984e-05,
|
841 |
+
"loss": 9.225,
|
842 |
+
"step": 1110
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 4.163113994439295,
|
846 |
+
"grad_norm": 67.66644287109375,
|
847 |
+
"learning_rate": 2.6394052044609665e-05,
|
848 |
+
"loss": 8.7522,
|
849 |
+
"step": 1120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 4.200185356811863,
|
853 |
+
"grad_norm": 59.26814651489258,
|
854 |
+
"learning_rate": 2.633209417596035e-05,
|
855 |
+
"loss": 9.0221,
|
856 |
+
"step": 1130
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 4.23725671918443,
|
860 |
+
"grad_norm": 88.07310485839844,
|
861 |
+
"learning_rate": 2.627013630731103e-05,
|
862 |
+
"loss": 9.6458,
|
863 |
+
"step": 1140
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 4.274328081556997,
|
867 |
+
"grad_norm": 69.33895874023438,
|
868 |
+
"learning_rate": 2.620817843866171e-05,
|
869 |
+
"loss": 8.7692,
|
870 |
+
"step": 1150
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 4.311399443929565,
|
874 |
+
"grad_norm": 43.823951721191406,
|
875 |
+
"learning_rate": 2.6146220570012392e-05,
|
876 |
+
"loss": 9.2874,
|
877 |
+
"step": 1160
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 4.348470806302132,
|
881 |
+
"grad_norm": 63.590980529785156,
|
882 |
+
"learning_rate": 2.6084262701363077e-05,
|
883 |
+
"loss": 8.9276,
|
884 |
+
"step": 1170
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 4.385542168674699,
|
888 |
+
"grad_norm": 43.4519157409668,
|
889 |
+
"learning_rate": 2.6022304832713758e-05,
|
890 |
+
"loss": 8.7444,
|
891 |
+
"step": 1180
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 4.422613531047266,
|
895 |
+
"grad_norm": 72.1529312133789,
|
896 |
+
"learning_rate": 2.5960346964064435e-05,
|
897 |
+
"loss": 8.7265,
|
898 |
+
"step": 1190
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 4.459684893419833,
|
902 |
+
"grad_norm": 101.67008972167969,
|
903 |
+
"learning_rate": 2.5898389095415116e-05,
|
904 |
+
"loss": 8.7642,
|
905 |
+
"step": 1200
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 4.459684893419833,
|
909 |
+
"eval_loss": 2.6471314430236816,
|
910 |
+
"eval_runtime": 34.2723,
|
911 |
+
"eval_samples_per_second": 47.21,
|
912 |
+
"eval_steps_per_second": 6.769,
|
913 |
+
"step": 1200
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 4.4967562557924,
|
917 |
+
"grad_norm": 66.03606414794922,
|
918 |
+
"learning_rate": 2.5836431226765797e-05,
|
919 |
+
"loss": 8.8917,
|
920 |
+
"step": 1210
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 4.533827618164968,
|
924 |
+
"grad_norm": 60.01662826538086,
|
925 |
+
"learning_rate": 2.5774473358116482e-05,
|
926 |
+
"loss": 9.2155,
|
927 |
+
"step": 1220
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 4.570898980537534,
|
931 |
+
"grad_norm": 83.86510467529297,
|
932 |
+
"learning_rate": 2.5712515489467163e-05,
|
933 |
+
"loss": 8.6101,
|
934 |
+
"step": 1230
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 4.607970342910102,
|
938 |
+
"grad_norm": 64.35486602783203,
|
939 |
+
"learning_rate": 2.5650557620817844e-05,
|
940 |
+
"loss": 8.9904,
|
941 |
+
"step": 1240
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 4.645041705282669,
|
945 |
+
"grad_norm": 60.44017791748047,
|
946 |
+
"learning_rate": 2.5588599752168525e-05,
|
947 |
+
"loss": 9.3272,
|
948 |
+
"step": 1250
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 4.682113067655236,
|
952 |
+
"grad_norm": 56.501102447509766,
|
953 |
+
"learning_rate": 2.5526641883519206e-05,
|
954 |
+
"loss": 7.9367,
|
955 |
+
"step": 1260
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 4.719184430027804,
|
959 |
+
"grad_norm": 65.01017761230469,
|
960 |
+
"learning_rate": 2.546468401486989e-05,
|
961 |
+
"loss": 8.5891,
|
962 |
+
"step": 1270
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 4.7562557924003706,
|
966 |
+
"grad_norm": 63.42623519897461,
|
967 |
+
"learning_rate": 2.540272614622057e-05,
|
968 |
+
"loss": 8.6286,
|
969 |
+
"step": 1280
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 4.793327154772938,
|
973 |
+
"grad_norm": 58.96747589111328,
|
974 |
+
"learning_rate": 2.5340768277571252e-05,
|
975 |
+
"loss": 7.9982,
|
976 |
+
"step": 1290
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 4.830398517145505,
|
980 |
+
"grad_norm": 96.77368927001953,
|
981 |
+
"learning_rate": 2.5278810408921933e-05,
|
982 |
+
"loss": 7.5587,
|
983 |
+
"step": 1300
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 4.867469879518072,
|
987 |
+
"grad_norm": 85.92269897460938,
|
988 |
+
"learning_rate": 2.5216852540272614e-05,
|
989 |
+
"loss": 7.9405,
|
990 |
+
"step": 1310
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 4.904541241890639,
|
994 |
+
"grad_norm": 86.37085723876953,
|
995 |
+
"learning_rate": 2.51548946716233e-05,
|
996 |
+
"loss": 9.7092,
|
997 |
+
"step": 1320
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 4.941612604263207,
|
1001 |
+
"grad_norm": 65.88274383544922,
|
1002 |
+
"learning_rate": 2.509293680297398e-05,
|
1003 |
+
"loss": 8.1475,
|
1004 |
+
"step": 1330
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 4.978683966635774,
|
1008 |
+
"grad_norm": 53.252742767333984,
|
1009 |
+
"learning_rate": 2.503097893432466e-05,
|
1010 |
+
"loss": 9.3603,
|
1011 |
+
"step": 1340
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 5.014828544949027,
|
1015 |
+
"grad_norm": 182.35781860351562,
|
1016 |
+
"learning_rate": 2.4969021065675342e-05,
|
1017 |
+
"loss": 7.6621,
|
1018 |
+
"step": 1350
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 5.014828544949027,
|
1022 |
+
"eval_loss": 2.8308892250061035,
|
1023 |
+
"eval_runtime": 34.1063,
|
1024 |
+
"eval_samples_per_second": 47.44,
|
1025 |
+
"eval_steps_per_second": 6.802,
|
1026 |
+
"step": 1350
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 5.051899907321594,
|
1030 |
+
"grad_norm": 324.6659240722656,
|
1031 |
+
"learning_rate": 2.4907063197026023e-05,
|
1032 |
+
"loss": 9.2301,
|
1033 |
+
"step": 1360
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 5.088971269694161,
|
1037 |
+
"grad_norm": 4839.4453125,
|
1038 |
+
"learning_rate": 2.4845105328376707e-05,
|
1039 |
+
"loss": 9.7789,
|
1040 |
+
"step": 1370
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 5.126042632066729,
|
1044 |
+
"grad_norm": 408588.40625,
|
1045 |
+
"learning_rate": 2.4783147459727385e-05,
|
1046 |
+
"loss": 9.5359,
|
1047 |
+
"step": 1380
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 5.163113994439295,
|
1051 |
+
"grad_norm": 932.5144653320312,
|
1052 |
+
"learning_rate": 2.4721189591078066e-05,
|
1053 |
+
"loss": 10.8065,
|
1054 |
+
"step": 1390
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 5.200185356811863,
|
1058 |
+
"grad_norm": 148.0634765625,
|
1059 |
+
"learning_rate": 2.4659231722428747e-05,
|
1060 |
+
"loss": 10.0149,
|
1061 |
+
"step": 1400
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 5.23725671918443,
|
1065 |
+
"grad_norm": 1214.7279052734375,
|
1066 |
+
"learning_rate": 2.459727385377943e-05,
|
1067 |
+
"loss": 10.2582,
|
1068 |
+
"step": 1410
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 5.274328081556997,
|
1072 |
+
"grad_norm": 188.14292907714844,
|
1073 |
+
"learning_rate": 2.4535315985130112e-05,
|
1074 |
+
"loss": 10.16,
|
1075 |
+
"step": 1420
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 5.311399443929565,
|
1079 |
+
"grad_norm": 388.7134094238281,
|
1080 |
+
"learning_rate": 2.4473358116480793e-05,
|
1081 |
+
"loss": 10.0763,
|
1082 |
+
"step": 1430
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 5.348470806302132,
|
1086 |
+
"grad_norm": 270.61279296875,
|
1087 |
+
"learning_rate": 2.4411400247831474e-05,
|
1088 |
+
"loss": 9.5737,
|
1089 |
+
"step": 1440
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 5.385542168674699,
|
1093 |
+
"grad_norm": 1637.854736328125,
|
1094 |
+
"learning_rate": 2.4349442379182155e-05,
|
1095 |
+
"loss": 10.4816,
|
1096 |
+
"step": 1450
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 5.422613531047266,
|
1100 |
+
"grad_norm": 1118.7012939453125,
|
1101 |
+
"learning_rate": 2.428748451053284e-05,
|
1102 |
+
"loss": 8.6687,
|
1103 |
+
"step": 1460
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 5.459684893419833,
|
1107 |
+
"grad_norm": 788.9707641601562,
|
1108 |
+
"learning_rate": 2.422552664188352e-05,
|
1109 |
+
"loss": 8.4066,
|
1110 |
+
"step": 1470
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 5.4967562557924,
|
1114 |
+
"grad_norm": 185.22950744628906,
|
1115 |
+
"learning_rate": 2.41635687732342e-05,
|
1116 |
+
"loss": 9.386,
|
1117 |
+
"step": 1480
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 5.533827618164968,
|
1121 |
+
"grad_norm": 257.726806640625,
|
1122 |
+
"learning_rate": 2.4101610904584883e-05,
|
1123 |
+
"loss": 8.3911,
|
1124 |
+
"step": 1490
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 5.570898980537534,
|
1128 |
+
"grad_norm": 867.30908203125,
|
1129 |
+
"learning_rate": 2.4039653035935564e-05,
|
1130 |
+
"loss": 8.8025,
|
1131 |
+
"step": 1500
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 5.570898980537534,
|
1135 |
+
"eval_loss": 2.5407650470733643,
|
1136 |
+
"eval_runtime": 34.0934,
|
1137 |
+
"eval_samples_per_second": 47.458,
|
1138 |
+
"eval_steps_per_second": 6.805,
|
1139 |
+
"step": 1500
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 5.607970342910102,
|
1143 |
+
"grad_norm": 68.35711669921875,
|
1144 |
+
"learning_rate": 2.3977695167286248e-05,
|
1145 |
+
"loss": 8.7939,
|
1146 |
+
"step": 1510
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 5.645041705282669,
|
1150 |
+
"grad_norm": 1419.1650390625,
|
1151 |
+
"learning_rate": 2.391573729863693e-05,
|
1152 |
+
"loss": 9.0903,
|
1153 |
+
"step": 1520
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 5.682113067655236,
|
1157 |
+
"grad_norm": 60.88732147216797,
|
1158 |
+
"learning_rate": 2.385377942998761e-05,
|
1159 |
+
"loss": 8.9878,
|
1160 |
+
"step": 1530
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 5.719184430027804,
|
1164 |
+
"grad_norm": 61.50148010253906,
|
1165 |
+
"learning_rate": 2.379182156133829e-05,
|
1166 |
+
"loss": 8.8642,
|
1167 |
+
"step": 1540
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 5.7562557924003706,
|
1171 |
+
"grad_norm": 73.9307861328125,
|
1172 |
+
"learning_rate": 2.3729863692688972e-05,
|
1173 |
+
"loss": 8.8625,
|
1174 |
+
"step": 1550
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 5.793327154772938,
|
1178 |
+
"grad_norm": 82.28329467773438,
|
1179 |
+
"learning_rate": 2.3667905824039656e-05,
|
1180 |
+
"loss": 8.4105,
|
1181 |
+
"step": 1560
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 5.830398517145505,
|
1185 |
+
"grad_norm": 83.54141235351562,
|
1186 |
+
"learning_rate": 2.3605947955390337e-05,
|
1187 |
+
"loss": 9.0163,
|
1188 |
+
"step": 1570
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 5.867469879518072,
|
1192 |
+
"grad_norm": 66.59397888183594,
|
1193 |
+
"learning_rate": 2.3543990086741015e-05,
|
1194 |
+
"loss": 8.8947,
|
1195 |
+
"step": 1580
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 5.904541241890639,
|
1199 |
+
"grad_norm": 55.8841667175293,
|
1200 |
+
"learning_rate": 2.3482032218091696e-05,
|
1201 |
+
"loss": 8.5647,
|
1202 |
+
"step": 1590
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 5.941612604263207,
|
1206 |
+
"grad_norm": 74.56892395019531,
|
1207 |
+
"learning_rate": 2.3420074349442377e-05,
|
1208 |
+
"loss": 7.7047,
|
1209 |
+
"step": 1600
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 5.978683966635774,
|
1213 |
+
"grad_norm": 106.54405212402344,
|
1214 |
+
"learning_rate": 2.335811648079306e-05,
|
1215 |
+
"loss": 8.1484,
|
1216 |
+
"step": 1610
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 6.014828544949027,
|
1220 |
+
"grad_norm": 107.8216781616211,
|
1221 |
+
"learning_rate": 2.3296158612143742e-05,
|
1222 |
+
"loss": 8.4079,
|
1223 |
+
"step": 1620
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 6.051899907321594,
|
1227 |
+
"grad_norm": 100.98133087158203,
|
1228 |
+
"learning_rate": 2.3234200743494423e-05,
|
1229 |
+
"loss": 8.5027,
|
1230 |
+
"step": 1630
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 6.088971269694161,
|
1234 |
+
"grad_norm": 67.31327819824219,
|
1235 |
+
"learning_rate": 2.3172242874845104e-05,
|
1236 |
+
"loss": 8.1805,
|
1237 |
+
"step": 1640
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 6.126042632066729,
|
1241 |
+
"grad_norm": 61.10900115966797,
|
1242 |
+
"learning_rate": 2.311028500619579e-05,
|
1243 |
+
"loss": 8.4519,
|
1244 |
+
"step": 1650
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 6.126042632066729,
|
1248 |
+
"eval_loss": 2.590090036392212,
|
1249 |
+
"eval_runtime": 34.1392,
|
1250 |
+
"eval_samples_per_second": 47.394,
|
1251 |
+
"eval_steps_per_second": 6.796,
|
1252 |
+
"step": 1650
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"epoch": 6.163113994439295,
|
1256 |
+
"grad_norm": 60.91183090209961,
|
1257 |
+
"learning_rate": 2.304832713754647e-05,
|
1258 |
+
"loss": 9.062,
|
1259 |
+
"step": 1660
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"epoch": 6.200185356811863,
|
1263 |
+
"grad_norm": 76.2873306274414,
|
1264 |
+
"learning_rate": 2.298636926889715e-05,
|
1265 |
+
"loss": 8.8499,
|
1266 |
+
"step": 1670
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 6.23725671918443,
|
1270 |
+
"grad_norm": 74.2361068725586,
|
1271 |
+
"learning_rate": 2.2924411400247832e-05,
|
1272 |
+
"loss": 8.6576,
|
1273 |
+
"step": 1680
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 6.274328081556997,
|
1277 |
+
"grad_norm": 84.99951934814453,
|
1278 |
+
"learning_rate": 2.2862453531598513e-05,
|
1279 |
+
"loss": 8.4652,
|
1280 |
+
"step": 1690
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 6.311399443929565,
|
1284 |
+
"grad_norm": 86.40947723388672,
|
1285 |
+
"learning_rate": 2.2800495662949197e-05,
|
1286 |
+
"loss": 9.0782,
|
1287 |
+
"step": 1700
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 6.348470806302132,
|
1291 |
+
"grad_norm": 75.45568084716797,
|
1292 |
+
"learning_rate": 2.2738537794299878e-05,
|
1293 |
+
"loss": 8.1532,
|
1294 |
+
"step": 1710
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 6.385542168674699,
|
1298 |
+
"grad_norm": 86.65908813476562,
|
1299 |
+
"learning_rate": 2.267657992565056e-05,
|
1300 |
+
"loss": 8.5185,
|
1301 |
+
"step": 1720
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 6.422613531047266,
|
1305 |
+
"grad_norm": 62.620758056640625,
|
1306 |
+
"learning_rate": 2.261462205700124e-05,
|
1307 |
+
"loss": 9.5908,
|
1308 |
+
"step": 1730
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 6.459684893419833,
|
1312 |
+
"grad_norm": 73.63095092773438,
|
1313 |
+
"learning_rate": 2.255266418835192e-05,
|
1314 |
+
"loss": 8.4188,
|
1315 |
+
"step": 1740
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"epoch": 6.4967562557924,
|
1319 |
+
"grad_norm": 55.175045013427734,
|
1320 |
+
"learning_rate": 2.2490706319702606e-05,
|
1321 |
+
"loss": 8.1885,
|
1322 |
+
"step": 1750
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 6.533827618164968,
|
1326 |
+
"grad_norm": 47.647621154785156,
|
1327 |
+
"learning_rate": 2.2428748451053287e-05,
|
1328 |
+
"loss": 8.7666,
|
1329 |
+
"step": 1760
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 6.570898980537534,
|
1333 |
+
"grad_norm": 191.0419158935547,
|
1334 |
+
"learning_rate": 2.2366790582403964e-05,
|
1335 |
+
"loss": 8.6105,
|
1336 |
+
"step": 1770
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 6.607970342910102,
|
1340 |
+
"grad_norm": 57.81939697265625,
|
1341 |
+
"learning_rate": 2.2304832713754645e-05,
|
1342 |
+
"loss": 8.664,
|
1343 |
+
"step": 1780
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 6.645041705282669,
|
1347 |
+
"grad_norm": 85.04927825927734,
|
1348 |
+
"learning_rate": 2.2242874845105326e-05,
|
1349 |
+
"loss": 8.5294,
|
1350 |
+
"step": 1790
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 6.682113067655236,
|
1354 |
+
"grad_norm": 55.604122161865234,
|
1355 |
+
"learning_rate": 2.218091697645601e-05,
|
1356 |
+
"loss": 9.1857,
|
1357 |
+
"step": 1800
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 6.682113067655236,
|
1361 |
+
"eval_loss": 2.497358560562134,
|
1362 |
+
"eval_runtime": 34.0441,
|
1363 |
+
"eval_samples_per_second": 47.527,
|
1364 |
+
"eval_steps_per_second": 6.815,
|
1365 |
+
"step": 1800
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 6.719184430027804,
|
1369 |
+
"grad_norm": 75.21812438964844,
|
1370 |
+
"learning_rate": 2.211895910780669e-05,
|
1371 |
+
"loss": 8.7053,
|
1372 |
+
"step": 1810
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 6.7562557924003706,
|
1376 |
+
"grad_norm": 85.76676940917969,
|
1377 |
+
"learning_rate": 2.2057001239157373e-05,
|
1378 |
+
"loss": 8.1428,
|
1379 |
+
"step": 1820
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 6.793327154772938,
|
1383 |
+
"grad_norm": 69.85575866699219,
|
1384 |
+
"learning_rate": 2.1995043370508054e-05,
|
1385 |
+
"loss": 8.4988,
|
1386 |
+
"step": 1830
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 6.830398517145505,
|
1390 |
+
"grad_norm": 66.85325622558594,
|
1391 |
+
"learning_rate": 2.1933085501858735e-05,
|
1392 |
+
"loss": 8.4147,
|
1393 |
+
"step": 1840
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 6.867469879518072,
|
1397 |
+
"grad_norm": 60.645294189453125,
|
1398 |
+
"learning_rate": 2.187112763320942e-05,
|
1399 |
+
"loss": 9.069,
|
1400 |
+
"step": 1850
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 6.904541241890639,
|
1404 |
+
"grad_norm": 77.59921264648438,
|
1405 |
+
"learning_rate": 2.18091697645601e-05,
|
1406 |
+
"loss": 8.4405,
|
1407 |
+
"step": 1860
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 6.941612604263207,
|
1411 |
+
"grad_norm": 56.27996826171875,
|
1412 |
+
"learning_rate": 2.174721189591078e-05,
|
1413 |
+
"loss": 9.2157,
|
1414 |
+
"step": 1870
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 6.978683966635774,
|
1418 |
+
"grad_norm": 64.18400573730469,
|
1419 |
+
"learning_rate": 2.1685254027261462e-05,
|
1420 |
+
"loss": 9.5492,
|
1421 |
+
"step": 1880
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 7.014828544949027,
|
1425 |
+
"grad_norm": 76.78484344482422,
|
1426 |
+
"learning_rate": 2.1623296158612143e-05,
|
1427 |
+
"loss": 8.1325,
|
1428 |
+
"step": 1890
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 7.051899907321594,
|
1432 |
+
"grad_norm": 77.69871520996094,
|
1433 |
+
"learning_rate": 2.1561338289962827e-05,
|
1434 |
+
"loss": 8.324,
|
1435 |
+
"step": 1900
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 7.088971269694161,
|
1439 |
+
"grad_norm": 102.43340301513672,
|
1440 |
+
"learning_rate": 2.149938042131351e-05,
|
1441 |
+
"loss": 7.7097,
|
1442 |
+
"step": 1910
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 7.126042632066729,
|
1446 |
+
"grad_norm": 114.0189208984375,
|
1447 |
+
"learning_rate": 2.143742255266419e-05,
|
1448 |
+
"loss": 8.0982,
|
1449 |
+
"step": 1920
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 7.163113994439295,
|
1453 |
+
"grad_norm": 66.60838317871094,
|
1454 |
+
"learning_rate": 2.137546468401487e-05,
|
1455 |
+
"loss": 7.7669,
|
1456 |
+
"step": 1930
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 7.200185356811863,
|
1460 |
+
"grad_norm": 252.72503662109375,
|
1461 |
+
"learning_rate": 2.1313506815365555e-05,
|
1462 |
+
"loss": 7.809,
|
1463 |
+
"step": 1940
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 7.23725671918443,
|
1467 |
+
"grad_norm": 91.0379409790039,
|
1468 |
+
"learning_rate": 2.1251548946716236e-05,
|
1469 |
+
"loss": 7.9729,
|
1470 |
+
"step": 1950
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 7.23725671918443,
|
1474 |
+
"eval_loss": 2.610764741897583,
|
1475 |
+
"eval_runtime": 34.0774,
|
1476 |
+
"eval_samples_per_second": 47.48,
|
1477 |
+
"eval_steps_per_second": 6.808,
|
1478 |
+
"step": 1950
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 7.274328081556997,
|
1482 |
+
"grad_norm": 96.09555053710938,
|
1483 |
+
"learning_rate": 2.1189591078066917e-05,
|
1484 |
+
"loss": 8.2125,
|
1485 |
+
"step": 1960
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 7.311399443929565,
|
1489 |
+
"grad_norm": 68.51132202148438,
|
1490 |
+
"learning_rate": 2.1127633209417594e-05,
|
1491 |
+
"loss": 7.7403,
|
1492 |
+
"step": 1970
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 7.348470806302132,
|
1496 |
+
"grad_norm": 94.45308685302734,
|
1497 |
+
"learning_rate": 2.1065675340768275e-05,
|
1498 |
+
"loss": 7.5494,
|
1499 |
+
"step": 1980
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 7.385542168674699,
|
1503 |
+
"grad_norm": 56.785587310791016,
|
1504 |
+
"learning_rate": 2.100371747211896e-05,
|
1505 |
+
"loss": 8.2821,
|
1506 |
+
"step": 1990
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 7.422613531047266,
|
1510 |
+
"grad_norm": 91.59173583984375,
|
1511 |
+
"learning_rate": 2.094175960346964e-05,
|
1512 |
+
"loss": 8.1644,
|
1513 |
+
"step": 2000
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 7.459684893419833,
|
1517 |
+
"grad_norm": 78.57572174072266,
|
1518 |
+
"learning_rate": 2.0879801734820322e-05,
|
1519 |
+
"loss": 8.1664,
|
1520 |
+
"step": 2010
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 7.4967562557924,
|
1524 |
+
"grad_norm": 71.83062744140625,
|
1525 |
+
"learning_rate": 2.0817843866171003e-05,
|
1526 |
+
"loss": 8.5876,
|
1527 |
+
"step": 2020
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 7.533827618164968,
|
1531 |
+
"grad_norm": 74.75129699707031,
|
1532 |
+
"learning_rate": 2.0755885997521684e-05,
|
1533 |
+
"loss": 8.2753,
|
1534 |
+
"step": 2030
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 7.570898980537534,
|
1538 |
+
"grad_norm": 96.26950073242188,
|
1539 |
+
"learning_rate": 2.0693928128872368e-05,
|
1540 |
+
"loss": 9.2057,
|
1541 |
+
"step": 2040
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 7.607970342910102,
|
1545 |
+
"grad_norm": 96.87144470214844,
|
1546 |
+
"learning_rate": 2.063197026022305e-05,
|
1547 |
+
"loss": 8.0052,
|
1548 |
+
"step": 2050
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 7.645041705282669,
|
1552 |
+
"grad_norm": 83.44422912597656,
|
1553 |
+
"learning_rate": 2.057001239157373e-05,
|
1554 |
+
"loss": 8.4954,
|
1555 |
+
"step": 2060
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 7.682113067655236,
|
1559 |
+
"grad_norm": 86.1534194946289,
|
1560 |
+
"learning_rate": 2.050805452292441e-05,
|
1561 |
+
"loss": 8.0325,
|
1562 |
+
"step": 2070
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 7.719184430027804,
|
1566 |
+
"grad_norm": 89.11744689941406,
|
1567 |
+
"learning_rate": 2.0446096654275092e-05,
|
1568 |
+
"loss": 8.2934,
|
1569 |
+
"step": 2080
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 7.7562557924003706,
|
1573 |
+
"grad_norm": 60.81666946411133,
|
1574 |
+
"learning_rate": 2.0384138785625777e-05,
|
1575 |
+
"loss": 9.4019,
|
1576 |
+
"step": 2090
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 7.793327154772938,
|
1580 |
+
"grad_norm": 82.93228912353516,
|
1581 |
+
"learning_rate": 2.0322180916976458e-05,
|
1582 |
+
"loss": 8.874,
|
1583 |
+
"step": 2100
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 7.793327154772938,
|
1587 |
+
"eval_loss": 2.452894926071167,
|
1588 |
+
"eval_runtime": 34.0684,
|
1589 |
+
"eval_samples_per_second": 47.493,
|
1590 |
+
"eval_steps_per_second": 6.81,
|
1591 |
+
"step": 2100
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 7.830398517145505,
|
1595 |
+
"grad_norm": 62.004817962646484,
|
1596 |
+
"learning_rate": 2.026022304832714e-05,
|
1597 |
+
"loss": 8.0985,
|
1598 |
+
"step": 2110
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 7.867469879518072,
|
1602 |
+
"grad_norm": 72.79752349853516,
|
1603 |
+
"learning_rate": 2.019826517967782e-05,
|
1604 |
+
"loss": 8.9063,
|
1605 |
+
"step": 2120
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 7.904541241890639,
|
1609 |
+
"grad_norm": 1507.2855224609375,
|
1610 |
+
"learning_rate": 2.01363073110285e-05,
|
1611 |
+
"loss": 8.6332,
|
1612 |
+
"step": 2130
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 7.941612604263207,
|
1616 |
+
"grad_norm": 134.11378479003906,
|
1617 |
+
"learning_rate": 2.0074349442379185e-05,
|
1618 |
+
"loss": 9.4106,
|
1619 |
+
"step": 2140
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 7.978683966635774,
|
1623 |
+
"grad_norm": 72.19046783447266,
|
1624 |
+
"learning_rate": 2.0012391573729866e-05,
|
1625 |
+
"loss": 8.2304,
|
1626 |
+
"step": 2150
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 8.014828544949028,
|
1630 |
+
"grad_norm": 57.130165100097656,
|
1631 |
+
"learning_rate": 1.9950433705080544e-05,
|
1632 |
+
"loss": 7.9675,
|
1633 |
+
"step": 2160
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 8.051899907321594,
|
1637 |
+
"grad_norm": 72.58036041259766,
|
1638 |
+
"learning_rate": 1.9888475836431225e-05,
|
1639 |
+
"loss": 7.602,
|
1640 |
+
"step": 2170
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 8.088971269694161,
|
1644 |
+
"grad_norm": 91.77513885498047,
|
1645 |
+
"learning_rate": 1.982651796778191e-05,
|
1646 |
+
"loss": 7.9151,
|
1647 |
+
"step": 2180
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 8.126042632066728,
|
1651 |
+
"grad_norm": 111.52696228027344,
|
1652 |
+
"learning_rate": 1.976456009913259e-05,
|
1653 |
+
"loss": 7.5653,
|
1654 |
+
"step": 2190
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 8.163113994439296,
|
1658 |
+
"grad_norm": 74.9671401977539,
|
1659 |
+
"learning_rate": 1.970260223048327e-05,
|
1660 |
+
"loss": 7.1567,
|
1661 |
+
"step": 2200
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 8.200185356811863,
|
1665 |
+
"grad_norm": 124.09498596191406,
|
1666 |
+
"learning_rate": 1.9640644361833952e-05,
|
1667 |
+
"loss": 8.1708,
|
1668 |
+
"step": 2210
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 8.23725671918443,
|
1672 |
+
"grad_norm": 95.21754455566406,
|
1673 |
+
"learning_rate": 1.9578686493184633e-05,
|
1674 |
+
"loss": 7.0013,
|
1675 |
+
"step": 2220
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 8.274328081556996,
|
1679 |
+
"grad_norm": 135.3839569091797,
|
1680 |
+
"learning_rate": 1.9516728624535318e-05,
|
1681 |
+
"loss": 7.5999,
|
1682 |
+
"step": 2230
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 8.311399443929565,
|
1686 |
+
"grad_norm": 89.70751190185547,
|
1687 |
+
"learning_rate": 1.9454770755886e-05,
|
1688 |
+
"loss": 7.2028,
|
1689 |
+
"step": 2240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 8.348470806302132,
|
1693 |
+
"grad_norm": 70.08137512207031,
|
1694 |
+
"learning_rate": 1.939281288723668e-05,
|
1695 |
+
"loss": 8.3759,
|
1696 |
+
"step": 2250
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 8.348470806302132,
|
1700 |
+
"eval_loss": 2.746619939804077,
|
1701 |
+
"eval_runtime": 34.0831,
|
1702 |
+
"eval_samples_per_second": 47.472,
|
1703 |
+
"eval_steps_per_second": 6.807,
|
1704 |
+
"step": 2250
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 8.400370713623726,
|
1708 |
+
"grad_norm": 69.07305145263672,
|
1709 |
+
"learning_rate": 1.933085501858736e-05,
|
1710 |
+
"loss": 8.9083,
|
1711 |
+
"step": 2260
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 8.437442075996293,
|
1715 |
+
"grad_norm": 66.43407440185547,
|
1716 |
+
"learning_rate": 1.926889714993804e-05,
|
1717 |
+
"loss": 6.9349,
|
1718 |
+
"step": 2270
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 8.47451343836886,
|
1722 |
+
"grad_norm": 167.85784912109375,
|
1723 |
+
"learning_rate": 1.9206939281288726e-05,
|
1724 |
+
"loss": 7.5041,
|
1725 |
+
"step": 2280
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 8.511584800741428,
|
1729 |
+
"grad_norm": 173.38304138183594,
|
1730 |
+
"learning_rate": 1.9144981412639407e-05,
|
1731 |
+
"loss": 7.3744,
|
1732 |
+
"step": 2290
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 8.548656163113995,
|
1736 |
+
"grad_norm": 80.71511840820312,
|
1737 |
+
"learning_rate": 1.9083023543990088e-05,
|
1738 |
+
"loss": 8.6541,
|
1739 |
+
"step": 2300
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 8.585727525486561,
|
1743 |
+
"grad_norm": 82.77088928222656,
|
1744 |
+
"learning_rate": 1.902106567534077e-05,
|
1745 |
+
"loss": 8.6305,
|
1746 |
+
"step": 2310
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 8.62279888785913,
|
1750 |
+
"grad_norm": 55.3135871887207,
|
1751 |
+
"learning_rate": 1.895910780669145e-05,
|
1752 |
+
"loss": 8.2577,
|
1753 |
+
"step": 2320
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 8.659870250231696,
|
1757 |
+
"grad_norm": 64.61204528808594,
|
1758 |
+
"learning_rate": 1.8897149938042134e-05,
|
1759 |
+
"loss": 7.6382,
|
1760 |
+
"step": 2330
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 8.696941612604263,
|
1764 |
+
"grad_norm": 77.9918212890625,
|
1765 |
+
"learning_rate": 1.8835192069392815e-05,
|
1766 |
+
"loss": 8.114,
|
1767 |
+
"step": 2340
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 8.73401297497683,
|
1771 |
+
"grad_norm": 50.139678955078125,
|
1772 |
+
"learning_rate": 1.8773234200743496e-05,
|
1773 |
+
"loss": 7.8875,
|
1774 |
+
"step": 2350
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 8.771084337349398,
|
1778 |
+
"grad_norm": 241.43588256835938,
|
1779 |
+
"learning_rate": 1.8711276332094174e-05,
|
1780 |
+
"loss": 7.0444,
|
1781 |
+
"step": 2360
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 8.808155699721965,
|
1785 |
+
"grad_norm": 133.25645446777344,
|
1786 |
+
"learning_rate": 1.8649318463444855e-05,
|
1787 |
+
"loss": 7.7393,
|
1788 |
+
"step": 2370
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 8.845227062094532,
|
1792 |
+
"grad_norm": 94.1192855834961,
|
1793 |
+
"learning_rate": 1.858736059479554e-05,
|
1794 |
+
"loss": 8.8284,
|
1795 |
+
"step": 2380
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 8.882298424467098,
|
1799 |
+
"grad_norm": 83.68805694580078,
|
1800 |
+
"learning_rate": 1.852540272614622e-05,
|
1801 |
+
"loss": 7.997,
|
1802 |
+
"step": 2390
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 8.919369786839667,
|
1806 |
+
"grad_norm": 67.01426696777344,
|
1807 |
+
"learning_rate": 1.84634448574969e-05,
|
1808 |
+
"loss": 7.786,
|
1809 |
+
"step": 2400
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 8.919369786839667,
|
1813 |
+
"eval_loss": 2.6791422367095947,
|
1814 |
+
"eval_runtime": 34.2417,
|
1815 |
+
"eval_samples_per_second": 47.252,
|
1816 |
+
"eval_steps_per_second": 6.775,
|
1817 |
+
"step": 2400
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 8.956441149212234,
|
1821 |
+
"grad_norm": 72.36073303222656,
|
1822 |
+
"learning_rate": 1.8401486988847582e-05,
|
1823 |
+
"loss": 7.6257,
|
1824 |
+
"step": 2410
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 8.9935125115848,
|
1828 |
+
"grad_norm": 70.3509521484375,
|
1829 |
+
"learning_rate": 1.8339529120198267e-05,
|
1830 |
+
"loss": 7.099,
|
1831 |
+
"step": 2420
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 9.03336422613531,
|
1835 |
+
"grad_norm": 136.34727478027344,
|
1836 |
+
"learning_rate": 1.8277571251548948e-05,
|
1837 |
+
"loss": 8.041,
|
1838 |
+
"step": 2430
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 9.070435588507877,
|
1842 |
+
"grad_norm": 81.48332214355469,
|
1843 |
+
"learning_rate": 1.821561338289963e-05,
|
1844 |
+
"loss": 7.8606,
|
1845 |
+
"step": 2440
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 9.107506950880445,
|
1849 |
+
"grad_norm": 93.1724853515625,
|
1850 |
+
"learning_rate": 1.815365551425031e-05,
|
1851 |
+
"loss": 7.8551,
|
1852 |
+
"step": 2450
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 9.144578313253012,
|
1856 |
+
"grad_norm": 132.82778930664062,
|
1857 |
+
"learning_rate": 1.809169764560099e-05,
|
1858 |
+
"loss": 7.3977,
|
1859 |
+
"step": 2460
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 9.181649675625579,
|
1863 |
+
"grad_norm": 102.73971557617188,
|
1864 |
+
"learning_rate": 1.8029739776951675e-05,
|
1865 |
+
"loss": 7.8721,
|
1866 |
+
"step": 2470
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 9.218721037998147,
|
1870 |
+
"grad_norm": 106.7470932006836,
|
1871 |
+
"learning_rate": 1.7967781908302356e-05,
|
1872 |
+
"loss": 7.5839,
|
1873 |
+
"step": 2480
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 9.255792400370714,
|
1877 |
+
"grad_norm": 84.64981842041016,
|
1878 |
+
"learning_rate": 1.7905824039653037e-05,
|
1879 |
+
"loss": 7.1823,
|
1880 |
+
"step": 2490
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 9.29286376274328,
|
1884 |
+
"grad_norm": 85.59486389160156,
|
1885 |
+
"learning_rate": 1.7843866171003718e-05,
|
1886 |
+
"loss": 7.5513,
|
1887 |
+
"step": 2500
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 9.329935125115847,
|
1891 |
+
"grad_norm": 89.53803253173828,
|
1892 |
+
"learning_rate": 1.77819083023544e-05,
|
1893 |
+
"loss": 8.0879,
|
1894 |
+
"step": 2510
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 9.367006487488416,
|
1898 |
+
"grad_norm": 43.886898040771484,
|
1899 |
+
"learning_rate": 1.7719950433705084e-05,
|
1900 |
+
"loss": 7.5694,
|
1901 |
+
"step": 2520
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 9.404077849860982,
|
1905 |
+
"grad_norm": 73.4898910522461,
|
1906 |
+
"learning_rate": 1.7657992565055765e-05,
|
1907 |
+
"loss": 7.3436,
|
1908 |
+
"step": 2530
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 9.44114921223355,
|
1912 |
+
"grad_norm": 100.42314147949219,
|
1913 |
+
"learning_rate": 1.7596034696406446e-05,
|
1914 |
+
"loss": 6.9425,
|
1915 |
+
"step": 2540
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 9.478220574606116,
|
1919 |
+
"grad_norm": 121.53675079345703,
|
1920 |
+
"learning_rate": 1.7534076827757123e-05,
|
1921 |
+
"loss": 7.9461,
|
1922 |
+
"step": 2550
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 9.478220574606116,
|
1926 |
+
"eval_loss": 2.6608545780181885,
|
1927 |
+
"eval_runtime": 34.2437,
|
1928 |
+
"eval_samples_per_second": 47.25,
|
1929 |
+
"eval_steps_per_second": 6.775,
|
1930 |
+
"step": 2550
|
1931 |
+
},
|
1932 |
+
{
|
1933 |
+
"epoch": 9.515291936978684,
|
1934 |
+
"grad_norm": 83.28184509277344,
|
1935 |
+
"learning_rate": 1.7472118959107804e-05,
|
1936 |
+
"loss": 6.782,
|
1937 |
+
"step": 2560
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 9.552363299351251,
|
1941 |
+
"grad_norm": 81.46753692626953,
|
1942 |
+
"learning_rate": 1.741016109045849e-05,
|
1943 |
+
"loss": 7.3027,
|
1944 |
+
"step": 2570
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 9.589434661723818,
|
1948 |
+
"grad_norm": 77.35752868652344,
|
1949 |
+
"learning_rate": 1.734820322180917e-05,
|
1950 |
+
"loss": 7.3348,
|
1951 |
+
"step": 2580
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 9.626506024096386,
|
1955 |
+
"grad_norm": 77.17479705810547,
|
1956 |
+
"learning_rate": 1.728624535315985e-05,
|
1957 |
+
"loss": 7.7864,
|
1958 |
+
"step": 2590
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 9.663577386468953,
|
1962 |
+
"grad_norm": 103.42965698242188,
|
1963 |
+
"learning_rate": 1.722428748451053e-05,
|
1964 |
+
"loss": 6.3552,
|
1965 |
+
"step": 2600
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 9.70064874884152,
|
1969 |
+
"grad_norm": 103.3230972290039,
|
1970 |
+
"learning_rate": 1.7162329615861213e-05,
|
1971 |
+
"loss": 7.151,
|
1972 |
+
"step": 2610
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"epoch": 9.737720111214086,
|
1976 |
+
"grad_norm": 91.23753356933594,
|
1977 |
+
"learning_rate": 1.7100371747211897e-05,
|
1978 |
+
"loss": 6.1664,
|
1979 |
+
"step": 2620
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 9.774791473586655,
|
1983 |
+
"grad_norm": 68.76666259765625,
|
1984 |
+
"learning_rate": 1.7038413878562578e-05,
|
1985 |
+
"loss": 6.0398,
|
1986 |
+
"step": 2630
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 9.811862835959221,
|
1990 |
+
"grad_norm": 112.56900787353516,
|
1991 |
+
"learning_rate": 1.697645600991326e-05,
|
1992 |
+
"loss": 7.0452,
|
1993 |
+
"step": 2640
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 9.848934198331788,
|
1997 |
+
"grad_norm": 142.0828399658203,
|
1998 |
+
"learning_rate": 1.691449814126394e-05,
|
1999 |
+
"loss": 7.2457,
|
2000 |
+
"step": 2650
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 9.886005560704357,
|
2004 |
+
"grad_norm": 149.853515625,
|
2005 |
+
"learning_rate": 1.685254027261462e-05,
|
2006 |
+
"loss": 6.7531,
|
2007 |
+
"step": 2660
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 9.923076923076923,
|
2011 |
+
"grad_norm": 107.76028442382812,
|
2012 |
+
"learning_rate": 1.6790582403965305e-05,
|
2013 |
+
"loss": 6.7149,
|
2014 |
+
"step": 2670
|
2015 |
+
},
|
2016 |
+
{
|
2017 |
+
"epoch": 9.96014828544949,
|
2018 |
+
"grad_norm": 83.82595825195312,
|
2019 |
+
"learning_rate": 1.6728624535315986e-05,
|
2020 |
+
"loss": 6.4635,
|
2021 |
+
"step": 2680
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 9.997219647822057,
|
2025 |
+
"grad_norm": 106.68073272705078,
|
2026 |
+
"learning_rate": 1.6666666666666667e-05,
|
2027 |
+
"loss": 6.2237,
|
2028 |
+
"step": 2690
|
2029 |
+
},
|
2030 |
+
{
|
2031 |
+
"epoch": 10.037071362372567,
|
2032 |
+
"grad_norm": 78.0780029296875,
|
2033 |
+
"learning_rate": 1.660470879801735e-05,
|
2034 |
+
"loss": 6.1798,
|
2035 |
+
"step": 2700
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"epoch": 10.037071362372567,
|
2039 |
+
"eval_loss": 2.993870735168457,
|
2040 |
+
"eval_runtime": 34.3527,
|
2041 |
+
"eval_samples_per_second": 47.1,
|
2042 |
+
"eval_steps_per_second": 6.753,
|
2043 |
+
"step": 2700
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 10.074142724745135,
|
2047 |
+
"grad_norm": 177.5696563720703,
|
2048 |
+
"learning_rate": 1.6542750929368033e-05,
|
2049 |
+
"loss": 7.2224,
|
2050 |
+
"step": 2710
|
2051 |
+
},
|
2052 |
+
{
|
2053 |
+
"epoch": 10.111214087117702,
|
2054 |
+
"grad_norm": 134.7563018798828,
|
2055 |
+
"learning_rate": 1.6480793060718714e-05,
|
2056 |
+
"loss": 6.5327,
|
2057 |
+
"step": 2720
|
2058 |
+
},
|
2059 |
+
{
|
2060 |
+
"epoch": 10.148285449490269,
|
2061 |
+
"grad_norm": 122.22810363769531,
|
2062 |
+
"learning_rate": 1.6418835192069395e-05,
|
2063 |
+
"loss": 7.4686,
|
2064 |
+
"step": 2730
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 10.185356811862835,
|
2068 |
+
"grad_norm": 137.185302734375,
|
2069 |
+
"learning_rate": 1.6356877323420076e-05,
|
2070 |
+
"loss": 6.1404,
|
2071 |
+
"step": 2740
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 10.222428174235404,
|
2075 |
+
"grad_norm": 100.84989166259766,
|
2076 |
+
"learning_rate": 1.6294919454770753e-05,
|
2077 |
+
"loss": 7.0005,
|
2078 |
+
"step": 2750
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 10.25949953660797,
|
2082 |
+
"grad_norm": 122.00653839111328,
|
2083 |
+
"learning_rate": 1.6232961586121438e-05,
|
2084 |
+
"loss": 5.7726,
|
2085 |
+
"step": 2760
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 10.296570898980537,
|
2089 |
+
"grad_norm": 172.2955780029297,
|
2090 |
+
"learning_rate": 1.617100371747212e-05,
|
2091 |
+
"loss": 6.5327,
|
2092 |
+
"step": 2770
|
2093 |
+
},
|
2094 |
+
{
|
2095 |
+
"epoch": 10.333642261353106,
|
2096 |
+
"grad_norm": 195.36851501464844,
|
2097 |
+
"learning_rate": 1.61090458488228e-05,
|
2098 |
+
"loss": 7.5015,
|
2099 |
+
"step": 2780
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 10.370713623725672,
|
2103 |
+
"grad_norm": 135.3350372314453,
|
2104 |
+
"learning_rate": 1.604708798017348e-05,
|
2105 |
+
"loss": 6.5526,
|
2106 |
+
"step": 2790
|
2107 |
+
},
|
2108 |
+
{
|
2109 |
+
"epoch": 10.407784986098239,
|
2110 |
+
"grad_norm": 106.01554870605469,
|
2111 |
+
"learning_rate": 1.5985130111524162e-05,
|
2112 |
+
"loss": 6.2078,
|
2113 |
+
"step": 2800
|
2114 |
+
},
|
2115 |
+
{
|
2116 |
+
"epoch": 10.444856348470806,
|
2117 |
+
"grad_norm": 104.4194564819336,
|
2118 |
+
"learning_rate": 1.5923172242874846e-05,
|
2119 |
+
"loss": 6.1,
|
2120 |
+
"step": 2810
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 10.481927710843374,
|
2124 |
+
"grad_norm": 118.46540069580078,
|
2125 |
+
"learning_rate": 1.5861214374225527e-05,
|
2126 |
+
"loss": 7.1027,
|
2127 |
+
"step": 2820
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 10.51899907321594,
|
2131 |
+
"grad_norm": 108.23471069335938,
|
2132 |
+
"learning_rate": 1.5799256505576208e-05,
|
2133 |
+
"loss": 8.639,
|
2134 |
+
"step": 2830
|
2135 |
+
},
|
2136 |
+
{
|
2137 |
+
"epoch": 10.556070435588508,
|
2138 |
+
"grad_norm": 144.46780395507812,
|
2139 |
+
"learning_rate": 1.573729863692689e-05,
|
2140 |
+
"loss": 6.9937,
|
2141 |
+
"step": 2840
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"epoch": 10.593141797961074,
|
2145 |
+
"grad_norm": 108.4492416381836,
|
2146 |
+
"learning_rate": 1.567534076827757e-05,
|
2147 |
+
"loss": 7.2734,
|
2148 |
+
"step": 2850
|
2149 |
+
},
|
2150 |
+
{
|
2151 |
+
"epoch": 10.593141797961074,
|
2152 |
+
"eval_loss": 2.8532466888427734,
|
2153 |
+
"eval_runtime": 34.3677,
|
2154 |
+
"eval_samples_per_second": 47.079,
|
2155 |
+
"eval_steps_per_second": 6.751,
|
2156 |
+
"step": 2850
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 10.630213160333643,
|
2160 |
+
"grad_norm": 143.1586151123047,
|
2161 |
+
"learning_rate": 1.5613382899628255e-05,
|
2162 |
+
"loss": 7.6321,
|
2163 |
+
"step": 2860
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 10.66728452270621,
|
2167 |
+
"grad_norm": 98.63433837890625,
|
2168 |
+
"learning_rate": 1.5551425030978936e-05,
|
2169 |
+
"loss": 7.5788,
|
2170 |
+
"step": 2870
|
2171 |
+
},
|
2172 |
+
{
|
2173 |
+
"epoch": 10.704355885078776,
|
2174 |
+
"grad_norm": 90.4648666381836,
|
2175 |
+
"learning_rate": 1.5489467162329617e-05,
|
2176 |
+
"loss": 6.7864,
|
2177 |
+
"step": 2880
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 10.741427247451345,
|
2181 |
+
"grad_norm": 141.69007873535156,
|
2182 |
+
"learning_rate": 1.5427509293680298e-05,
|
2183 |
+
"loss": 7.4237,
|
2184 |
+
"step": 2890
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 10.778498609823911,
|
2188 |
+
"grad_norm": 126.74280548095703,
|
2189 |
+
"learning_rate": 1.536555142503098e-05,
|
2190 |
+
"loss": 6.9813,
|
2191 |
+
"step": 2900
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 10.815569972196478,
|
2195 |
+
"grad_norm": 82.08953094482422,
|
2196 |
+
"learning_rate": 1.5303593556381663e-05,
|
2197 |
+
"loss": 6.6884,
|
2198 |
+
"step": 2910
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 10.852641334569045,
|
2202 |
+
"grad_norm": 123.8572998046875,
|
2203 |
+
"learning_rate": 1.5241635687732344e-05,
|
2204 |
+
"loss": 6.7464,
|
2205 |
+
"step": 2920
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 10.889712696941613,
|
2209 |
+
"grad_norm": 132.33477783203125,
|
2210 |
+
"learning_rate": 1.5179677819083025e-05,
|
2211 |
+
"loss": 7.7989,
|
2212 |
+
"step": 2930
|
2213 |
+
},
|
2214 |
+
{
|
2215 |
+
"epoch": 10.92678405931418,
|
2216 |
+
"grad_norm": 81.7636489868164,
|
2217 |
+
"learning_rate": 1.5117719950433704e-05,
|
2218 |
+
"loss": 7.3568,
|
2219 |
+
"step": 2940
|
2220 |
+
},
|
2221 |
+
{
|
2222 |
+
"epoch": 10.963855421686747,
|
2223 |
+
"grad_norm": 244.56277465820312,
|
2224 |
+
"learning_rate": 1.5055762081784385e-05,
|
2225 |
+
"loss": 8.6706,
|
2226 |
+
"step": 2950
|
2227 |
+
},
|
2228 |
+
{
|
2229 |
+
"epoch": 11.0,
|
2230 |
+
"grad_norm": 121.42695617675781,
|
2231 |
+
"learning_rate": 1.4993804213135068e-05,
|
2232 |
+
"loss": 6.5687,
|
2233 |
+
"step": 2960
|
2234 |
+
},
|
2235 |
+
{
|
2236 |
+
"epoch": 11.037071362372567,
|
2237 |
+
"grad_norm": 145.1683349609375,
|
2238 |
+
"learning_rate": 1.493184634448575e-05,
|
2239 |
+
"loss": 5.8992,
|
2240 |
+
"step": 2970
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 11.074142724745135,
|
2244 |
+
"grad_norm": 109.68660736083984,
|
2245 |
+
"learning_rate": 1.4869888475836432e-05,
|
2246 |
+
"loss": 6.4543,
|
2247 |
+
"step": 2980
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 11.111214087117702,
|
2251 |
+
"grad_norm": 93.12600708007812,
|
2252 |
+
"learning_rate": 1.4807930607187113e-05,
|
2253 |
+
"loss": 6.1386,
|
2254 |
+
"step": 2990
|
2255 |
+
},
|
2256 |
+
{
|
2257 |
+
"epoch": 11.148285449490269,
|
2258 |
+
"grad_norm": 167.23182678222656,
|
2259 |
+
"learning_rate": 1.4745972738537794e-05,
|
2260 |
+
"loss": 6.9047,
|
2261 |
+
"step": 3000
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"epoch": 11.148285449490269,
|
2265 |
+
"eval_loss": 2.9146969318389893,
|
2266 |
+
"eval_runtime": 34.386,
|
2267 |
+
"eval_samples_per_second": 47.054,
|
2268 |
+
"eval_steps_per_second": 6.747,
|
2269 |
+
"step": 3000
|
2270 |
+
}
|
2271 |
+
],
|
2272 |
+
"logging_steps": 10,
|
2273 |
+
"max_steps": 5380,
|
2274 |
+
"num_input_tokens_seen": 0,
|
2275 |
+
"num_train_epochs": 20,
|
2276 |
+
"save_steps": 150,
|
2277 |
+
"stateful_callbacks": {
|
2278 |
+
"TrainerControl": {
|
2279 |
+
"args": {
|
2280 |
+
"should_epoch_stop": false,
|
2281 |
+
"should_evaluate": false,
|
2282 |
+
"should_log": false,
|
2283 |
+
"should_save": true,
|
2284 |
+
"should_training_stop": false
|
2285 |
+
},
|
2286 |
+
"attributes": {}
|
2287 |
+
}
|
2288 |
+
},
|
2289 |
+
"total_flos": 0.0,
|
2290 |
+
"train_batch_size": 7,
|
2291 |
+
"trial_name": null,
|
2292 |
+
"trial_params": null
|
2293 |
+
}
|
checkpoints/checkpoint-3000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fda94467724e48ac975735648aa63a75558d48b6c993506e918a3476acf80697
|
3 |
+
size 129
|
checkpoints/checkpoint-4050/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoints/checkpoint-4050/README.md
ADDED
@@ -0,0 +1,962 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:7552
|
8 |
+
- loss:CoSENTLoss
|
9 |
+
base_model: intfloat/multilingual-e5-large-instruct
|
10 |
+
widget:
|
11 |
+
- source_sentence: How are calibration points linked to equipment?
|
12 |
+
sentences:
|
13 |
+
- 'How are flow computers and measurement systems related?
|
14 |
+
|
15 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
16 |
+
system can only be assigned to one flow computer.
|
17 |
+
|
18 |
+
|
19 |
+
Database terminology:
|
20 |
+
|
21 |
+
In the database, this relationship is referred to as:
|
22 |
+
|
23 |
+
- Meter streams
|
24 |
+
|
25 |
+
- Meter runs
|
26 |
+
|
27 |
+
- Sections
|
28 |
+
|
29 |
+
|
30 |
+
Storage of the relationship:
|
31 |
+
|
32 |
+
The relationship between a flow computer and its assigned measurement system is
|
33 |
+
stored in a special table.
|
34 |
+
|
35 |
+
|
36 |
+
User context:
|
37 |
+
|
38 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
39 |
+
for a measurement system assigned to a specific flow computer.'
|
40 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
41 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
42 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
43 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
44 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
45 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
46 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
47 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
48 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
49 |
+
\ each value in the reports, making it easier to interpret the data."
|
50 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
51 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
52 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
53 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
54 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
55 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
56 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
57 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
58 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
59 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
60 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
61 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
62 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
63 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
64 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
65 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
66 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
67 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
68 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
69 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
70 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
71 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
72 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
73 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
74 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
75 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
76 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
77 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
78 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
79 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
80 |
+
\ systems table + uncertainty of magnitudes table)."
|
81 |
+
- source_sentence: What is the primary key of the flow computer table?
|
82 |
+
sentences:
|
83 |
+
- 'What is equipment calibration?
|
84 |
+
|
85 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
86 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
87 |
+
by the company or a regulatory body.
|
88 |
+
|
89 |
+
|
90 |
+
Purpose of calibration:
|
91 |
+
|
92 |
+
The calibration process corrects any deviations in how the equipment measures
|
93 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
94 |
+
and reliable data.
|
95 |
+
|
96 |
+
|
97 |
+
Calibration cycles:
|
98 |
+
|
99 |
+
There are two main calibration cycles:
|
100 |
+
|
101 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
102 |
+
are made. This cycle is almost always implemented.
|
103 |
+
|
104 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
105 |
+
are made. This cycle is used depending on regulatory requirements.
|
106 |
+
|
107 |
+
|
108 |
+
Calibration uncertainty:
|
109 |
+
|
110 |
+
- Uncertainty is included in the results of a calibration.
|
111 |
+
|
112 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
113 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
114 |
+
- 'What is equipment calibration?
|
115 |
+
|
116 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
117 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
118 |
+
by the company or a regulatory body.
|
119 |
+
|
120 |
+
|
121 |
+
Purpose of calibration:
|
122 |
+
|
123 |
+
The calibration process corrects any deviations in how the equipment measures
|
124 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
125 |
+
and reliable data.
|
126 |
+
|
127 |
+
|
128 |
+
Calibration cycles:
|
129 |
+
|
130 |
+
There are two main calibration cycles:
|
131 |
+
|
132 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
133 |
+
are made. This cycle is almost always implemented.
|
134 |
+
|
135 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
136 |
+
are made. This cycle is used depending on regulatory requirements.
|
137 |
+
|
138 |
+
|
139 |
+
Calibration uncertainty:
|
140 |
+
|
141 |
+
- Uncertainty is included in the results of a calibration.
|
142 |
+
|
143 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
144 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
145 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
146 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
147 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
148 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
149 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
150 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
151 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
152 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
153 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
154 |
+
\ each value in the reports, making it easier to interpret the data."
|
155 |
+
- source_sentence: Can you provide a sample query to test the retrieval of the uncertainty
|
156 |
+
result for the specified tag and date?
|
157 |
+
sentences:
|
158 |
+
- 'What is equipment calibration?
|
159 |
+
|
160 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
161 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
162 |
+
by the company or a regulatory body.
|
163 |
+
|
164 |
+
|
165 |
+
Purpose of calibration:
|
166 |
+
|
167 |
+
The calibration process corrects any deviations in how the equipment measures
|
168 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
169 |
+
and reliable data.
|
170 |
+
|
171 |
+
|
172 |
+
Calibration cycles:
|
173 |
+
|
174 |
+
There are two main calibration cycles:
|
175 |
+
|
176 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
177 |
+
are made. This cycle is almost always implemented.
|
178 |
+
|
179 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
180 |
+
are made. This cycle is used depending on regulatory requirements.
|
181 |
+
|
182 |
+
|
183 |
+
Calibration uncertainty:
|
184 |
+
|
185 |
+
- Uncertainty is included in the results of a calibration.
|
186 |
+
|
187 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
188 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
189 |
+
- 'What kind of data store an equipment?
|
190 |
+
|
191 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
192 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
193 |
+
|
194 |
+
|
195 |
+
Data storage:
|
196 |
+
|
197 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
198 |
+
This table contains the values of the variables captured by the equipments.
|
199 |
+
|
200 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
201 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
202 |
+
uncertainty.
|
203 |
+
|
204 |
+
- The values stored in the variable values table are **different** from variable
|
205 |
+
uncertainty values, which are calculated separately and represent the margin of
|
206 |
+
error.
|
207 |
+
|
208 |
+
|
209 |
+
Accessing the data:
|
210 |
+
|
211 |
+
- Users typically access the data by referring to the readings from the measurement
|
212 |
+
system, not directly from the individual equipments.
|
213 |
+
|
214 |
+
- The readings are stored in a "variable values" table within the database.
|
215 |
+
|
216 |
+
|
217 |
+
Linking variable names:
|
218 |
+
|
219 |
+
If the user needs to know the name of a variable, they must link the data to another
|
220 |
+
table that stores information about the types of variables.'
|
221 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
222 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
223 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
224 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
225 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
226 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
227 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
228 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
229 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
230 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
231 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
232 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
233 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
234 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
235 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
236 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
237 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
238 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
239 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
240 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
241 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
242 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
243 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
244 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
245 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
246 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
247 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
248 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
249 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
250 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
251 |
+
\ systems table + uncertainty of magnitudes table)."
|
252 |
+
- source_sentence: How are the secondary equipment and measurement system related?
|
253 |
+
sentences:
|
254 |
+
- 'What kind of data store an equipment?
|
255 |
+
|
256 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
257 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
258 |
+
|
259 |
+
|
260 |
+
Data storage:
|
261 |
+
|
262 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
263 |
+
This table contains the values of the variables captured by the equipments.
|
264 |
+
|
265 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
266 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
267 |
+
uncertainty.
|
268 |
+
|
269 |
+
- The values stored in the variable values table are **different** from variable
|
270 |
+
uncertainty values, which are calculated separately and represent the margin of
|
271 |
+
error.
|
272 |
+
|
273 |
+
|
274 |
+
Accessing the data:
|
275 |
+
|
276 |
+
- Users typically access the data by referring to the readings from the measurement
|
277 |
+
system, not directly from the individual equipments.
|
278 |
+
|
279 |
+
- The readings are stored in a "variable values" table within the database.
|
280 |
+
|
281 |
+
|
282 |
+
Linking variable names:
|
283 |
+
|
284 |
+
If the user needs to know the name of a variable, they must link the data to another
|
285 |
+
table that stores information about the types of variables.'
|
286 |
+
- 'What do measurement equipment measure?
|
287 |
+
|
288 |
+
Each equipment measures a physical magnitude, also known as a variable. Based
|
289 |
+
on the type of variable they measure, devices are classified into different categories.
|
290 |
+
|
291 |
+
|
292 |
+
Equipment classification:
|
293 |
+
|
294 |
+
- Primary meter: Assigned by default to equipments like orifice plates.
|
295 |
+
|
296 |
+
- Secondary meter: Assigned by default to equipments like transmitters.
|
297 |
+
|
298 |
+
- Tertiary meter: Used for other types of equipments.
|
299 |
+
|
300 |
+
|
301 |
+
Equipment types in the database:
|
302 |
+
|
303 |
+
The database includes a table listing all equipment types. Examples of equipment
|
304 |
+
types are:
|
305 |
+
|
306 |
+
- Differential pressure transmitters
|
307 |
+
|
308 |
+
- RTDs (Resistance Temperature Detectors)
|
309 |
+
|
310 |
+
- Orifice plates
|
311 |
+
|
312 |
+
- Multivariable transmitters
|
313 |
+
|
314 |
+
- Ultrasonic meters
|
315 |
+
|
316 |
+
|
317 |
+
Meteorological checks for equipments:
|
318 |
+
|
319 |
+
Each equipment type is assigned a meteorological check, which can be either:
|
320 |
+
|
321 |
+
- Calibration: To ensure measurement accuracy.
|
322 |
+
|
323 |
+
- Inspection: To verify proper functioning.
|
324 |
+
|
325 |
+
|
326 |
+
Data storage in tables:
|
327 |
+
|
328 |
+
The database also includes a separate table for equipment classifications, which
|
329 |
+
are:
|
330 |
+
|
331 |
+
- Primary meter
|
332 |
+
|
333 |
+
- Secondary meter
|
334 |
+
|
335 |
+
- Tertiary meter
|
336 |
+
|
337 |
+
So, an equipment has equipment types and this types has classifications.'
|
338 |
+
- 'What kind of data store an equipment?
|
339 |
+
|
340 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
341 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
342 |
+
|
343 |
+
|
344 |
+
Data storage:
|
345 |
+
|
346 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
347 |
+
This table contains the values of the variables captured by the equipments.
|
348 |
+
|
349 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
350 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
351 |
+
uncertainty.
|
352 |
+
|
353 |
+
- The values stored in the variable values table are **different** from variable
|
354 |
+
uncertainty values, which are calculated separately and represent the margin of
|
355 |
+
error.
|
356 |
+
|
357 |
+
|
358 |
+
Accessing the data:
|
359 |
+
|
360 |
+
- Users typically access the data by referring to the readings from the measurement
|
361 |
+
system, not directly from the individual equipments.
|
362 |
+
|
363 |
+
- The readings are stored in a "variable values" table within the database.
|
364 |
+
|
365 |
+
|
366 |
+
Linking variable names:
|
367 |
+
|
368 |
+
If the user needs to know the name of a variable, they must link the data to another
|
369 |
+
table that stores information about the types of variables.'
|
370 |
+
- source_sentence: What is the table structure for secondary equipment?
|
371 |
+
sentences:
|
372 |
+
- 'What kind of data store an equipment?
|
373 |
+
|
374 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
375 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
376 |
+
|
377 |
+
|
378 |
+
Data storage:
|
379 |
+
|
380 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
381 |
+
This table contains the values of the variables captured by the equipments.
|
382 |
+
|
383 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
384 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
385 |
+
uncertainty.
|
386 |
+
|
387 |
+
- The values stored in the variable values table are **different** from variable
|
388 |
+
uncertainty values, which are calculated separately and represent the margin of
|
389 |
+
error.
|
390 |
+
|
391 |
+
|
392 |
+
Accessing the data:
|
393 |
+
|
394 |
+
- Users typically access the data by referring to the readings from the measurement
|
395 |
+
system, not directly from the individual equipments.
|
396 |
+
|
397 |
+
- The readings are stored in a "variable values" table within the database.
|
398 |
+
|
399 |
+
|
400 |
+
Linking variable names:
|
401 |
+
|
402 |
+
If the user needs to know the name of a variable, they must link the data to another
|
403 |
+
table that stores information about the types of variables.'
|
404 |
+
- 'How are flow computers and measurement systems related?
|
405 |
+
|
406 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
407 |
+
system can only be assigned to one flow computer.
|
408 |
+
|
409 |
+
|
410 |
+
Database terminology:
|
411 |
+
|
412 |
+
In the database, this relationship is referred to as:
|
413 |
+
|
414 |
+
- Meter streams
|
415 |
+
|
416 |
+
- Meter runs
|
417 |
+
|
418 |
+
- Sections
|
419 |
+
|
420 |
+
|
421 |
+
Storage of the relationship:
|
422 |
+
|
423 |
+
The relationship between a flow computer and its assigned measurement system is
|
424 |
+
stored in a special table.
|
425 |
+
|
426 |
+
|
427 |
+
User context:
|
428 |
+
|
429 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
430 |
+
for a measurement system assigned to a specific flow computer.'
|
431 |
+
- 'How are flow computers and measurement systems related?
|
432 |
+
|
433 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
434 |
+
system can only be assigned to one flow computer.
|
435 |
+
|
436 |
+
|
437 |
+
Database terminology:
|
438 |
+
|
439 |
+
In the database, this relationship is referred to as:
|
440 |
+
|
441 |
+
- Meter streams
|
442 |
+
|
443 |
+
- Meter runs
|
444 |
+
|
445 |
+
- Sections
|
446 |
+
|
447 |
+
|
448 |
+
Storage of the relationship:
|
449 |
+
|
450 |
+
The relationship between a flow computer and its assigned measurement system is
|
451 |
+
stored in a special table.
|
452 |
+
|
453 |
+
|
454 |
+
User context:
|
455 |
+
|
456 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
457 |
+
for a measurement system assigned to a specific flow computer.'
|
458 |
+
datasets:
|
459 |
+
- Lauther/measuring-embeddings-v3
|
460 |
+
pipeline_tag: sentence-similarity
|
461 |
+
library_name: sentence-transformers
|
462 |
+
---
|
463 |
+
|
464 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large-instruct
|
465 |
+
|
466 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
467 |
+
|
468 |
+
## Model Details
|
469 |
+
|
470 |
+
### Model Description
|
471 |
+
- **Model Type:** Sentence Transformer
|
472 |
+
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb -->
|
473 |
+
- **Maximum Sequence Length:** 512 tokens
|
474 |
+
- **Output Dimensionality:** 1024 dimensions
|
475 |
+
- **Similarity Function:** Cosine Similarity
|
476 |
+
- **Training Dataset:**
|
477 |
+
- [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3)
|
478 |
+
<!-- - **Language:** Unknown -->
|
479 |
+
<!-- - **License:** Unknown -->
|
480 |
+
|
481 |
+
### Model Sources
|
482 |
+
|
483 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
484 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
485 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
486 |
+
|
487 |
+
### Full Model Architecture
|
488 |
+
|
489 |
+
```
|
490 |
+
SentenceTransformer(
|
491 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
492 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
493 |
+
(2): Normalize()
|
494 |
+
)
|
495 |
+
```
|
496 |
+
|
497 |
+
## Usage
|
498 |
+
|
499 |
+
### Direct Usage (Sentence Transformers)
|
500 |
+
|
501 |
+
First install the Sentence Transformers library:
|
502 |
+
|
503 |
+
```bash
|
504 |
+
pip install -U sentence-transformers
|
505 |
+
```
|
506 |
+
|
507 |
+
Then you can load this model and run inference.
|
508 |
+
```python
|
509 |
+
from sentence_transformers import SentenceTransformer
|
510 |
+
|
511 |
+
# Download from the 🤗 Hub
|
512 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
513 |
+
# Run inference
|
514 |
+
sentences = [
|
515 |
+
'What is the table structure for secondary equipment?',
|
516 |
+
'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
|
517 |
+
'What kind of data store an equipment?\nEquipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.\n\nData storage:\n- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.\n- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.\n- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.\n\nAccessing the data:\n- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.\n- The readings are stored in a "variable values" table within the database.\n\nLinking variable names:\nIf the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.',
|
518 |
+
]
|
519 |
+
embeddings = model.encode(sentences)
|
520 |
+
print(embeddings.shape)
|
521 |
+
# [3, 1024]
|
522 |
+
|
523 |
+
# Get the similarity scores for the embeddings
|
524 |
+
similarities = model.similarity(embeddings, embeddings)
|
525 |
+
print(similarities.shape)
|
526 |
+
# [3, 3]
|
527 |
+
```
|
528 |
+
|
529 |
+
<!--
|
530 |
+
### Direct Usage (Transformers)
|
531 |
+
|
532 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
533 |
+
|
534 |
+
</details>
|
535 |
+
-->
|
536 |
+
|
537 |
+
<!--
|
538 |
+
### Downstream Usage (Sentence Transformers)
|
539 |
+
|
540 |
+
You can finetune this model on your own dataset.
|
541 |
+
|
542 |
+
<details><summary>Click to expand</summary>
|
543 |
+
|
544 |
+
</details>
|
545 |
+
-->
|
546 |
+
|
547 |
+
<!--
|
548 |
+
### Out-of-Scope Use
|
549 |
+
|
550 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
551 |
+
-->
|
552 |
+
|
553 |
+
<!--
|
554 |
+
## Bias, Risks and Limitations
|
555 |
+
|
556 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
557 |
+
-->
|
558 |
+
|
559 |
+
<!--
|
560 |
+
### Recommendations
|
561 |
+
|
562 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
563 |
+
-->
|
564 |
+
|
565 |
+
## Training Details
|
566 |
+
|
567 |
+
### Training Dataset
|
568 |
+
|
569 |
+
#### measuring-embeddings-v3
|
570 |
+
|
571 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
572 |
+
* Size: 7,552 training samples
|
573 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
574 |
+
* Approximate statistics based on the first 1000 samples:
|
575 |
+
| | sentence1 | sentence2 | score |
|
576 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
577 |
+
| type | string | string | float |
|
578 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.96 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 255.56 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.22</li><li>max: 0.95</li></ul> |
|
579 |
+
* Samples:
|
580 |
+
| sentence1 | sentence2 | score |
|
581 |
+
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
582 |
+
| <code>How can I combine the sub-query with the main query to fetch the last uncertainty report?</code> | <code>What do measurement equipment measure?<br>Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories.<br><br>Equipment classification:<br>- Primary meter: Assigned by default to equipments like orifice plates.<br>- Secondary meter: Assigned by default to equipments like transmitters.<br>- Tertiary meter: Used for other types of equipments.<br><br>Equipment types in the database:<br>The database includes a table listing all equipment types. Examples of equipment types are:<br>- Differential pressure transmitters<br>- RTDs (Resistance Temperature Detectors)<br>- Orifice plates<br>- Multivariable transmitters<br>- Ultrasonic meters<br><br>Meteorological checks for equipments:<br>Each equipment type is assigned a meteorological check, which can be either:<br>- Calibration: To ensure measurement accuracy.<br>- Inspection: To verify proper functioning.<br><br>Data storage in tables:<br>The database also includes a separate table for equipment classific...</code> | <code>0.1</code> |
|
583 |
+
| <code>What is the column name for the calibration date in the calibration table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.1</code> |
|
584 |
+
| <code>What is the name of the table that contains the flow computer tags?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.05</code> |
|
585 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
586 |
+
```json
|
587 |
+
{
|
588 |
+
"scale": 20.0,
|
589 |
+
"similarity_fct": "pairwise_cos_sim"
|
590 |
+
}
|
591 |
+
```
|
592 |
+
|
593 |
+
### Evaluation Dataset
|
594 |
+
|
595 |
+
#### measuring-embeddings-v3
|
596 |
+
|
597 |
+
* Dataset: [measuring-embeddings-v3](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3) at [1b3cbbe](https://huggingface.co/datasets/Lauther/measuring-embeddings-v3/tree/1b3cbbeb70b63338110491cd3de2950fb40b4f87)
|
598 |
+
* Size: 1,618 evaluation samples
|
599 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
600 |
+
* Approximate statistics based on the first 1000 samples:
|
601 |
+
| | sentence1 | sentence2 | score |
|
602 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
603 |
+
| type | string | string | float |
|
604 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 15.83 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 250.41 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 0.95</li></ul> |
|
605 |
+
* Samples:
|
606 |
+
| sentence1 | sentence2 | score |
|
607 |
+
|:--------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
608 |
+
| <code>Identify any additional tables or columns that might be needed for the query.</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.2</code> |
|
609 |
+
| <code>What columns in these tables contain the measurement system tag and the flow computer tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.1</code> |
|
610 |
+
| <code>Identify the column that stores the calibration number.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
|
611 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
612 |
+
```json
|
613 |
+
{
|
614 |
+
"scale": 20.0,
|
615 |
+
"similarity_fct": "pairwise_cos_sim"
|
616 |
+
}
|
617 |
+
```
|
618 |
+
|
619 |
+
### Training Hyperparameters
|
620 |
+
#### Non-Default Hyperparameters
|
621 |
+
|
622 |
+
- `eval_strategy`: steps
|
623 |
+
- `per_device_train_batch_size`: 7
|
624 |
+
- `per_device_eval_batch_size`: 7
|
625 |
+
- `gradient_accumulation_steps`: 4
|
626 |
+
- `learning_rate`: 3e-05
|
627 |
+
- `num_train_epochs`: 20
|
628 |
+
- `warmup_ratio`: 0.1
|
629 |
+
|
630 |
+
#### All Hyperparameters
|
631 |
+
<details><summary>Click to expand</summary>
|
632 |
+
|
633 |
+
- `overwrite_output_dir`: False
|
634 |
+
- `do_predict`: False
|
635 |
+
- `eval_strategy`: steps
|
636 |
+
- `prediction_loss_only`: True
|
637 |
+
- `per_device_train_batch_size`: 7
|
638 |
+
- `per_device_eval_batch_size`: 7
|
639 |
+
- `per_gpu_train_batch_size`: None
|
640 |
+
- `per_gpu_eval_batch_size`: None
|
641 |
+
- `gradient_accumulation_steps`: 4
|
642 |
+
- `eval_accumulation_steps`: None
|
643 |
+
- `torch_empty_cache_steps`: None
|
644 |
+
- `learning_rate`: 3e-05
|
645 |
+
- `weight_decay`: 0.0
|
646 |
+
- `adam_beta1`: 0.9
|
647 |
+
- `adam_beta2`: 0.999
|
648 |
+
- `adam_epsilon`: 1e-08
|
649 |
+
- `max_grad_norm`: 1.0
|
650 |
+
- `num_train_epochs`: 20
|
651 |
+
- `max_steps`: -1
|
652 |
+
- `lr_scheduler_type`: linear
|
653 |
+
- `lr_scheduler_kwargs`: {}
|
654 |
+
- `warmup_ratio`: 0.1
|
655 |
+
- `warmup_steps`: 0
|
656 |
+
- `log_level`: passive
|
657 |
+
- `log_level_replica`: warning
|
658 |
+
- `log_on_each_node`: True
|
659 |
+
- `logging_nan_inf_filter`: True
|
660 |
+
- `save_safetensors`: True
|
661 |
+
- `save_on_each_node`: False
|
662 |
+
- `save_only_model`: False
|
663 |
+
- `restore_callback_states_from_checkpoint`: False
|
664 |
+
- `no_cuda`: False
|
665 |
+
- `use_cpu`: False
|
666 |
+
- `use_mps_device`: False
|
667 |
+
- `seed`: 42
|
668 |
+
- `data_seed`: None
|
669 |
+
- `jit_mode_eval`: False
|
670 |
+
- `use_ipex`: False
|
671 |
+
- `bf16`: False
|
672 |
+
- `fp16`: False
|
673 |
+
- `fp16_opt_level`: O1
|
674 |
+
- `half_precision_backend`: auto
|
675 |
+
- `bf16_full_eval`: False
|
676 |
+
- `fp16_full_eval`: False
|
677 |
+
- `tf32`: None
|
678 |
+
- `local_rank`: 0
|
679 |
+
- `ddp_backend`: None
|
680 |
+
- `tpu_num_cores`: None
|
681 |
+
- `tpu_metrics_debug`: False
|
682 |
+
- `debug`: []
|
683 |
+
- `dataloader_drop_last`: False
|
684 |
+
- `dataloader_num_workers`: 0
|
685 |
+
- `dataloader_prefetch_factor`: None
|
686 |
+
- `past_index`: -1
|
687 |
+
- `disable_tqdm`: False
|
688 |
+
- `remove_unused_columns`: True
|
689 |
+
- `label_names`: None
|
690 |
+
- `load_best_model_at_end`: False
|
691 |
+
- `ignore_data_skip`: False
|
692 |
+
- `fsdp`: []
|
693 |
+
- `fsdp_min_num_params`: 0
|
694 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
695 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
696 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
697 |
+
- `deepspeed`: None
|
698 |
+
- `label_smoothing_factor`: 0.0
|
699 |
+
- `optim`: adamw_torch
|
700 |
+
- `optim_args`: None
|
701 |
+
- `adafactor`: False
|
702 |
+
- `group_by_length`: False
|
703 |
+
- `length_column_name`: length
|
704 |
+
- `ddp_find_unused_parameters`: None
|
705 |
+
- `ddp_bucket_cap_mb`: None
|
706 |
+
- `ddp_broadcast_buffers`: False
|
707 |
+
- `dataloader_pin_memory`: True
|
708 |
+
- `dataloader_persistent_workers`: False
|
709 |
+
- `skip_memory_metrics`: True
|
710 |
+
- `use_legacy_prediction_loop`: False
|
711 |
+
- `push_to_hub`: False
|
712 |
+
- `resume_from_checkpoint`: None
|
713 |
+
- `hub_model_id`: None
|
714 |
+
- `hub_strategy`: every_save
|
715 |
+
- `hub_private_repo`: None
|
716 |
+
- `hub_always_push`: False
|
717 |
+
- `gradient_checkpointing`: False
|
718 |
+
- `gradient_checkpointing_kwargs`: None
|
719 |
+
- `include_inputs_for_metrics`: False
|
720 |
+
- `include_for_metrics`: []
|
721 |
+
- `eval_do_concat_batches`: True
|
722 |
+
- `fp16_backend`: auto
|
723 |
+
- `push_to_hub_model_id`: None
|
724 |
+
- `push_to_hub_organization`: None
|
725 |
+
- `mp_parameters`:
|
726 |
+
- `auto_find_batch_size`: False
|
727 |
+
- `full_determinism`: False
|
728 |
+
- `torchdynamo`: None
|
729 |
+
- `ray_scope`: last
|
730 |
+
- `ddp_timeout`: 1800
|
731 |
+
- `torch_compile`: False
|
732 |
+
- `torch_compile_backend`: None
|
733 |
+
- `torch_compile_mode`: None
|
734 |
+
- `dispatch_batches`: None
|
735 |
+
- `split_batches`: None
|
736 |
+
- `include_tokens_per_second`: False
|
737 |
+
- `include_num_input_tokens_seen`: False
|
738 |
+
- `neftune_noise_alpha`: None
|
739 |
+
- `optim_target_modules`: None
|
740 |
+
- `batch_eval_metrics`: False
|
741 |
+
- `eval_on_start`: False
|
742 |
+
- `use_liger_kernel`: False
|
743 |
+
- `eval_use_gather_object`: False
|
744 |
+
- `average_tokens_across_devices`: False
|
745 |
+
- `prompts`: None
|
746 |
+
- `batch_sampler`: batch_sampler
|
747 |
+
- `multi_dataset_batch_sampler`: proportional
|
748 |
+
|
749 |
+
</details>
|
750 |
+
|
751 |
+
### Training Logs
|
752 |
+
<details><summary>Click to expand</summary>
|
753 |
+
|
754 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
755 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
756 |
+
| 9.5153 | 2560 | 6.782 | - |
|
757 |
+
| 9.5524 | 2570 | 7.3027 | - |
|
758 |
+
| 9.5894 | 2580 | 7.3348 | - |
|
759 |
+
| 9.6265 | 2590 | 7.7864 | - |
|
760 |
+
| 9.6636 | 2600 | 6.3552 | - |
|
761 |
+
| 9.7006 | 2610 | 7.151 | - |
|
762 |
+
| 9.7377 | 2620 | 6.1664 | - |
|
763 |
+
| 9.7748 | 2630 | 6.0398 | - |
|
764 |
+
| 9.8119 | 2640 | 7.0452 | - |
|
765 |
+
| 9.8489 | 2650 | 7.2457 | - |
|
766 |
+
| 9.8860 | 2660 | 6.7531 | - |
|
767 |
+
| 9.9231 | 2670 | 6.7149 | - |
|
768 |
+
| 9.9601 | 2680 | 6.4635 | - |
|
769 |
+
| 9.9972 | 2690 | 6.2237 | - |
|
770 |
+
| 10.0371 | 2700 | 6.1798 | 2.9939 |
|
771 |
+
| 10.0741 | 2710 | 7.2224 | - |
|
772 |
+
| 10.1112 | 2720 | 6.5327 | - |
|
773 |
+
| 10.1483 | 2730 | 7.4686 | - |
|
774 |
+
| 10.1854 | 2740 | 6.1404 | - |
|
775 |
+
| 10.2224 | 2750 | 7.0005 | - |
|
776 |
+
| 10.2595 | 2760 | 5.7726 | - |
|
777 |
+
| 10.2966 | 2770 | 6.5327 | - |
|
778 |
+
| 10.3336 | 2780 | 7.5015 | - |
|
779 |
+
| 10.3707 | 2790 | 6.5526 | - |
|
780 |
+
| 10.4078 | 2800 | 6.2078 | - |
|
781 |
+
| 10.4449 | 2810 | 6.1 | - |
|
782 |
+
| 10.4819 | 2820 | 7.1027 | - |
|
783 |
+
| 10.5190 | 2830 | 8.639 | - |
|
784 |
+
| 10.5561 | 2840 | 6.9937 | - |
|
785 |
+
| 10.5931 | 2850 | 7.2734 | 2.8532 |
|
786 |
+
| 10.6302 | 2860 | 7.6321 | - |
|
787 |
+
| 10.6673 | 2870 | 7.5788 | - |
|
788 |
+
| 10.7044 | 2880 | 6.7864 | - |
|
789 |
+
| 10.7414 | 2890 | 7.4237 | - |
|
790 |
+
| 10.7785 | 2900 | 6.9813 | - |
|
791 |
+
| 10.8156 | 2910 | 6.6884 | - |
|
792 |
+
| 10.8526 | 2920 | 6.7464 | - |
|
793 |
+
| 10.8897 | 2930 | 7.7989 | - |
|
794 |
+
| 10.9268 | 2940 | 7.3568 | - |
|
795 |
+
| 10.9639 | 2950 | 8.6706 | - |
|
796 |
+
| 11.0 | 2960 | 6.5687 | - |
|
797 |
+
| 11.0371 | 2970 | 5.8992 | - |
|
798 |
+
| 11.0741 | 2980 | 6.4543 | - |
|
799 |
+
| 11.1112 | 2990 | 6.1386 | - |
|
800 |
+
| 11.1483 | 3000 | 6.9047 | 2.9147 |
|
801 |
+
| 11.1854 | 3010 | 7.405 | - |
|
802 |
+
| 11.2224 | 3020 | 7.5441 | - |
|
803 |
+
| 11.2595 | 3030 | 6.7524 | - |
|
804 |
+
| 11.2966 | 3040 | 7.698 | - |
|
805 |
+
| 11.3336 | 3050 | 7.6167 | - |
|
806 |
+
| 11.3707 | 3060 | 7.1516 | - |
|
807 |
+
| 11.4078 | 3070 | 6.7458 | - |
|
808 |
+
| 11.4449 | 3080 | 6.7608 | - |
|
809 |
+
| 11.4819 | 3090 | 7.1508 | - |
|
810 |
+
| 11.5190 | 3100 | 6.9155 | - |
|
811 |
+
| 11.5561 | 3110 | 6.6664 | - |
|
812 |
+
| 11.5931 | 3120 | 8.3841 | - |
|
813 |
+
| 11.6302 | 3130 | 7.1934 | - |
|
814 |
+
| 11.6673 | 3140 | 6.9681 | - |
|
815 |
+
| 11.7044 | 3150 | 7.2187 | 2.7509 |
|
816 |
+
| 11.7414 | 3160 | 7.3155 | - |
|
817 |
+
| 11.7785 | 3170 | 7.3103 | - |
|
818 |
+
| 11.8156 | 3180 | 7.1959 | - |
|
819 |
+
| 11.8526 | 3190 | 6.8164 | - |
|
820 |
+
| 11.8897 | 3200 | 7.5836 | - |
|
821 |
+
| 11.9268 | 3210 | 5.2671 | - |
|
822 |
+
| 11.9639 | 3220 | 6.4929 | - |
|
823 |
+
| 12.0 | 3230 | 7.0892 | - |
|
824 |
+
| 12.0371 | 3240 | 7.0877 | - |
|
825 |
+
| 12.0741 | 3250 | 5.8302 | - |
|
826 |
+
| 12.1112 | 3260 | 5.6145 | - |
|
827 |
+
| 12.1483 | 3270 | 6.5808 | - |
|
828 |
+
| 12.1854 | 3280 | 6.6826 | - |
|
829 |
+
| 12.2224 | 3290 | 5.9819 | - |
|
830 |
+
| 12.2595 | 3300 | 6.68 | 3.0175 |
|
831 |
+
| 12.2966 | 3310 | 6.1685 | - |
|
832 |
+
| 12.3336 | 3320 | 6.4473 | - |
|
833 |
+
| 12.3707 | 3330 | 6.3965 | - |
|
834 |
+
| 12.4078 | 3340 | 6.6278 | - |
|
835 |
+
| 12.4449 | 3350 | 5.4575 | - |
|
836 |
+
| 12.4819 | 3360 | 7.3019 | - |
|
837 |
+
| 12.5190 | 3370 | 7.4843 | - |
|
838 |
+
| 12.5561 | 3380 | 6.709 | - |
|
839 |
+
| 12.5931 | 3390 | 6.7168 | - |
|
840 |
+
| 12.6302 | 3400 | 7.0223 | - |
|
841 |
+
| 12.6673 | 3410 | 6.5089 | - |
|
842 |
+
| 12.7044 | 3420 | 6.5094 | - |
|
843 |
+
| 12.7414 | 3430 | 7.2317 | - |
|
844 |
+
| 12.7785 | 3440 | 6.6885 | - |
|
845 |
+
| 12.8156 | 3450 | 6.9693 | 2.8462 |
|
846 |
+
| 12.8526 | 3460 | 6.8242 | - |
|
847 |
+
| 12.8897 | 3470 | 6.6899 | - |
|
848 |
+
| 12.9268 | 3480 | 6.9113 | - |
|
849 |
+
| 12.9639 | 3490 | 7.1903 | - |
|
850 |
+
| 13.0 | 3500 | 7.3286 | - |
|
851 |
+
| 13.0371 | 3510 | 6.5465 | - |
|
852 |
+
| 13.0741 | 3520 | 5.6804 | - |
|
853 |
+
| 13.1112 | 3530 | 5.6412 | - |
|
854 |
+
| 13.1483 | 3540 | 6.6161 | - |
|
855 |
+
| 13.1854 | 3550 | 5.761 | - |
|
856 |
+
| 13.2224 | 3560 | 5.5669 | - |
|
857 |
+
| 13.2595 | 3570 | 5.6184 | - |
|
858 |
+
| 13.2966 | 3580 | 6.2996 | - |
|
859 |
+
| 13.3336 | 3590 | 4.99 | - |
|
860 |
+
| 13.3707 | 3600 | 5.9974 | 3.2358 |
|
861 |
+
| 13.4078 | 3610 | 5.6962 | - |
|
862 |
+
| 13.4449 | 3620 | 6.3662 | - |
|
863 |
+
| 13.4819 | 3630 | 7.0398 | - |
|
864 |
+
| 13.5190 | 3640 | 7.7358 | - |
|
865 |
+
| 13.5561 | 3650 | 7.9063 | - |
|
866 |
+
| 13.5931 | 3660 | 5.7823 | - |
|
867 |
+
| 13.6302 | 3670 | 6.9861 | - |
|
868 |
+
| 13.6673 | 3680 | 7.2855 | - |
|
869 |
+
| 13.7044 | 3690 | 5.6785 | - |
|
870 |
+
| 13.7414 | 3700 | 6.4071 | - |
|
871 |
+
| 13.7785 | 3710 | 6.4294 | - |
|
872 |
+
| 13.8156 | 3720 | 6.0842 | - |
|
873 |
+
| 13.8526 | 3730 | 5.9422 | - |
|
874 |
+
| 13.8897 | 3740 | 7.0778 | - |
|
875 |
+
| 13.9268 | 3750 | 8.1597 | 3.0093 |
|
876 |
+
| 13.9639 | 3760 | 6.3154 | - |
|
877 |
+
| 14.0 | 3770 | 6.2416 | - |
|
878 |
+
| 14.0371 | 3780 | 5.9958 | - |
|
879 |
+
| 14.0741 | 3790 | 5.7032 | - |
|
880 |
+
| 14.1112 | 3800 | 4.9524 | - |
|
881 |
+
| 14.1483 | 3810 | 5.386 | - |
|
882 |
+
| 14.1854 | 3820 | 5.6353 | - |
|
883 |
+
| 14.2224 | 3830 | 5.0873 | - |
|
884 |
+
| 14.2595 | 3840 | 4.9255 | - |
|
885 |
+
| 14.2966 | 3850 | 5.1423 | - |
|
886 |
+
| 14.3336 | 3860 | 6.0775 | - |
|
887 |
+
| 14.3707 | 3870 | 4.5073 | - |
|
888 |
+
| 14.4078 | 3880 | 6.8347 | - |
|
889 |
+
| 14.4449 | 3890 | 6.5397 | - |
|
890 |
+
| 14.4819 | 3900 | 7.2143 | 3.3080 |
|
891 |
+
| 14.5190 | 3910 | 6.1123 | - |
|
892 |
+
| 14.5561 | 3920 | 6.6048 | - |
|
893 |
+
| 14.5931 | 3930 | 6.3464 | - |
|
894 |
+
| 14.6302 | 3940 | 6.3618 | - |
|
895 |
+
| 14.6673 | 3950 | 6.5718 | - |
|
896 |
+
| 14.7044 | 3960 | 5.9785 | - |
|
897 |
+
| 14.7414 | 3970 | 6.5758 | - |
|
898 |
+
| 14.7785 | 3980 | 6.4308 | - |
|
899 |
+
| 14.8156 | 3990 | 6.0208 | - |
|
900 |
+
| 14.8526 | 4000 | 6.0303 | - |
|
901 |
+
| 14.8897 | 4010 | 6.6396 | - |
|
902 |
+
| 14.9268 | 4020 | 6.0184 | - |
|
903 |
+
| 14.9639 | 4030 | 6.6248 | - |
|
904 |
+
| 15.0 | 4040 | 6.4538 | - |
|
905 |
+
| 15.0371 | 4050 | 6.4742 | 3.1761 |
|
906 |
+
|
907 |
+
</details>
|
908 |
+
|
909 |
+
### Framework Versions
|
910 |
+
- Python: 3.11.0
|
911 |
+
- Sentence Transformers: 3.4.0
|
912 |
+
- Transformers: 4.48.1
|
913 |
+
- PyTorch: 2.5.1+cu124
|
914 |
+
- Accelerate: 1.3.0
|
915 |
+
- Datasets: 3.2.0
|
916 |
+
- Tokenizers: 0.21.0
|
917 |
+
|
918 |
+
## Citation
|
919 |
+
|
920 |
+
### BibTeX
|
921 |
+
|
922 |
+
#### Sentence Transformers
|
923 |
+
```bibtex
|
924 |
+
@inproceedings{reimers-2019-sentence-bert,
|
925 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
926 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
927 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
928 |
+
month = "11",
|
929 |
+
year = "2019",
|
930 |
+
publisher = "Association for Computational Linguistics",
|
931 |
+
url = "https://arxiv.org/abs/1908.10084",
|
932 |
+
}
|
933 |
+
```
|
934 |
+
|
935 |
+
#### CoSENTLoss
|
936 |
+
```bibtex
|
937 |
+
@online{kexuefm-8847,
|
938 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
939 |
+
author={Su Jianlin},
|
940 |
+
year={2022},
|
941 |
+
month={Jan},
|
942 |
+
url={https://kexue.fm/archives/8847},
|
943 |
+
}
|
944 |
+
```
|
945 |
+
|
946 |
+
<!--
|
947 |
+
## Glossary
|
948 |
+
|
949 |
+
*Clearly define terms in order to be accessible across audiences.*
|
950 |
+
-->
|
951 |
+
|
952 |
+
<!--
|
953 |
+
## Model Card Authors
|
954 |
+
|
955 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
956 |
+
-->
|
957 |
+
|
958 |
+
<!--
|
959 |
+
## Model Card Contact
|
960 |
+
|
961 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
962 |
+
-->
|
checkpoints/checkpoint-4050/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-large-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoints/checkpoint-4050/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
checkpoints/checkpoint-4050/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:744747a222d89369979383193e85ed3d9f744ae075e8ebe3f415ae1943e53795
|
3 |
+
size 135
|