|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: Labira/LabiraPJOK_2x_50 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Labira/LabiraPJOK_3x_50 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Labira/LabiraPJOK_3x_50 |
|
|
|
This model is a fine-tuned version of [Labira/LabiraPJOK_2x_50](https://huggingface.co/Labira/LabiraPJOK_2x_50) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0125 |
|
- Validation Loss: 1.5431 |
|
- Epoch: 49 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 450, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 2.7214 | 1.2242 | 0 | |
|
| 1.5828 | 1.1158 | 1 | |
|
| 0.9946 | 1.0677 | 2 | |
|
| 0.7404 | 1.2115 | 3 | |
|
| 0.5481 | 1.0920 | 4 | |
|
| 0.3599 | 1.1031 | 5 | |
|
| 0.2659 | 1.1035 | 6 | |
|
| 0.2725 | 1.1251 | 7 | |
|
| 0.2207 | 1.1364 | 8 | |
|
| 0.1379 | 1.2039 | 9 | |
|
| 0.1687 | 1.2331 | 10 | |
|
| 0.1154 | 1.1677 | 11 | |
|
| 0.1126 | 1.2093 | 12 | |
|
| 0.0953 | 1.2532 | 13 | |
|
| 0.0753 | 1.2455 | 14 | |
|
| 0.0519 | 1.2544 | 15 | |
|
| 0.0603 | 1.2511 | 16 | |
|
| 0.0609 | 1.2736 | 17 | |
|
| 0.0530 | 1.2692 | 18 | |
|
| 0.0384 | 1.2869 | 19 | |
|
| 0.0337 | 1.3048 | 20 | |
|
| 0.0304 | 1.3314 | 21 | |
|
| 0.0565 | 1.3378 | 22 | |
|
| 0.0351 | 1.3842 | 23 | |
|
| 0.0480 | 1.4148 | 24 | |
|
| 0.0308 | 1.3959 | 25 | |
|
| 0.0454 | 1.3768 | 26 | |
|
| 0.0557 | 1.4469 | 27 | |
|
| 0.0397 | 1.4431 | 28 | |
|
| 0.0212 | 1.4441 | 29 | |
|
| 0.0251 | 1.4262 | 30 | |
|
| 0.0291 | 1.4412 | 31 | |
|
| 0.0194 | 1.5155 | 32 | |
|
| 0.0238 | 1.5136 | 33 | |
|
| 0.0209 | 1.5002 | 34 | |
|
| 0.0183 | 1.4976 | 35 | |
|
| 0.0204 | 1.5533 | 36 | |
|
| 0.0183 | 1.6057 | 37 | |
|
| 0.0147 | 1.6047 | 38 | |
|
| 0.0137 | 1.6029 | 39 | |
|
| 0.0090 | 1.5879 | 40 | |
|
| 0.0323 | 1.5802 | 41 | |
|
| 0.0181 | 1.5748 | 42 | |
|
| 0.0144 | 1.5629 | 43 | |
|
| 0.0215 | 1.5534 | 44 | |
|
| 0.0058 | 1.5442 | 45 | |
|
| 0.0144 | 1.5485 | 46 | |
|
| 0.0122 | 1.5449 | 47 | |
|
| 0.0139 | 1.5428 | 48 | |
|
| 0.0125 | 1.5431 | 49 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- TensorFlow 2.17.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|