LabiraPJOK_2x_50 / README.md
Labira's picture
Training in progress epoch 44
ba22f1e
---
library_name: transformers
license: mit
base_model: Labira/LabiraPJOK_1_50
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_2x_50
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Labira/LabiraPJOK_2x_50
This model is a fine-tuned version of [Labira/LabiraPJOK_1_50](https://huggingface.co/Labira/LabiraPJOK_1_50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0131
- Validation Loss: 4.2318
- Epoch: 44
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.4264 | 3.9800 | 0 |
| 3.0757 | 3.5083 | 1 |
| 2.2362 | 3.1869 | 2 |
| 1.5246 | 2.7953 | 3 |
| 0.9065 | 2.8214 | 4 |
| 0.7330 | 3.3041 | 5 |
| 0.6050 | 3.4187 | 6 |
| 0.5238 | 3.4963 | 7 |
| 0.3471 | 3.4544 | 8 |
| 0.2836 | 3.1970 | 9 |
| 0.4074 | 3.1324 | 10 |
| 0.1832 | 3.2997 | 11 |
| 0.1899 | 3.5169 | 12 |
| 0.0939 | 3.5228 | 13 |
| 0.1638 | 3.3909 | 14 |
| 0.1055 | 3.4798 | 15 |
| 0.0827 | 3.6602 | 16 |
| 0.1070 | 3.7096 | 17 |
| 0.0751 | 3.7451 | 18 |
| 0.0449 | 3.7821 | 19 |
| 0.0299 | 3.8203 | 20 |
| 0.0505 | 3.8744 | 21 |
| 0.0247 | 3.9163 | 22 |
| 0.0534 | 3.9760 | 23 |
| 0.0442 | 4.0388 | 24 |
| 0.0211 | 4.0753 | 25 |
| 0.0216 | 4.0966 | 26 |
| 0.0219 | 4.1131 | 27 |
| 0.0234 | 4.1117 | 28 |
| 0.0255 | 4.1391 | 29 |
| 0.0199 | 4.1682 | 30 |
| 0.0196 | 4.1973 | 31 |
| 0.0317 | 4.2302 | 32 |
| 0.0263 | 4.2538 | 33 |
| 0.0322 | 4.2648 | 34 |
| 0.0171 | 4.2541 | 35 |
| 0.0200 | 4.2429 | 36 |
| 0.0201 | 4.2240 | 37 |
| 0.0331 | 4.1675 | 38 |
| 0.0220 | 4.1519 | 39 |
| 0.0158 | 4.1661 | 40 |
| 0.0131 | 4.1824 | 41 |
| 0.0174 | 4.2002 | 42 |
| 0.0170 | 4.2208 | 43 |
| 0.0131 | 4.2318 | 44 |
### Framework versions
- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1