metadata
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_1_500
results: []
Labira/LabiraPJOK_1_500
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0003
- Validation Loss: 9.4417
- Epoch: 60
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
0.0054 | 8.3302 | 0 |
0.0108 | 7.8442 | 1 |
0.0114 | 7.0958 | 2 |
0.0284 | 6.6490 | 3 |
0.0179 | 7.3034 | 4 |
0.0044 | 8.1785 | 5 |
0.0070 | 8.4039 | 6 |
0.0038 | 8.2728 | 7 |
0.0028 | 8.1154 | 8 |
0.0140 | 8.1207 | 9 |
0.0160 | 8.1384 | 10 |
0.0029 | 8.2978 | 11 |
0.0112 | 8.6940 | 12 |
0.0100 | 8.7433 | 13 |
0.0062 | 8.6486 | 14 |
0.0059 | 8.4821 | 15 |
0.0055 | 8.4559 | 16 |
0.0039 | 8.5136 | 17 |
0.0044 | 8.2783 | 18 |
0.0016 | 8.0974 | 19 |
0.0094 | 7.9739 | 20 |
0.0020 | 8.2513 | 21 |
0.0008 | 8.4637 | 22 |
0.0039 | 8.2813 | 23 |
0.0017 | 8.2027 | 24 |
0.0018 | 8.2722 | 25 |
0.0015 | 8.3875 | 26 |
0.0013 | 8.4975 | 27 |
0.0013 | 8.6171 | 28 |
0.0009 | 8.7272 | 29 |
0.0010 | 8.8335 | 30 |
0.0007 | 8.9168 | 31 |
0.0007 | 8.9992 | 32 |
0.0006 | 9.0661 | 33 |
0.0007 | 9.1103 | 34 |
0.0004 | 9.1424 | 35 |
0.0008 | 9.1573 | 36 |
0.0006 | 9.1666 | 37 |
0.0008 | 9.1732 | 38 |
0.0004 | 9.1781 | 39 |
0.0006 | 9.1867 | 40 |
0.0005 | 9.1986 | 41 |
0.0005 | 9.2203 | 42 |
0.0005 | 9.2512 | 43 |
0.0006 | 9.2889 | 44 |
0.0005 | 9.3360 | 45 |
0.0007 | 9.3759 | 46 |
0.0004 | 9.4144 | 47 |
0.0006 | 9.4461 | 48 |
0.0004 | 9.4718 | 49 |
0.0005 | 9.5113 | 50 |
0.0004 | 9.5425 | 51 |
0.0003 | 9.5667 | 52 |
0.0015 | 9.5468 | 53 |
0.0003 | 9.4515 | 54 |
0.0005 | 9.3881 | 55 |
0.0006 | 9.3797 | 56 |
0.0006 | 9.3887 | 57 |
0.0003 | 9.4038 | 58 |
0.0004 | 9.4206 | 59 |
0.0003 | 9.4417 | 60 |
Framework versions
- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1