NeuralContext-7b

NeuralContext-7b is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: NousResearch/Yarn-Mistral-7b-128k
    # No parameters necessary for base model
  - model: Eric111/Mayo
    parameters:
      density: 0.33
      weight: 0.2
  - model: NousResearch/Hermes-2-Pro-Mistral-7B
    parameters:
      density: 0.66
      weight: 0.2
  - model: mistralai/Mistral-7B-Instruct-v0.2
    parameters:
      density: 0.66
      weight: 0.2
  - model: NousResearch/Yarn-Mistral-7b-128k
    parameters:
      density: 0.66
      weight: 0.2
  - model: Kukedlc/MyModelsMerge-7b
    parameters:
      density: 0.55
      weight: 0.2
merge_method: dare_ties
base_model: NousResearch/Yarn-Mistral-7b-128k
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/NeuralContext-7b-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
10
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Kukedlc/NeuralContext-7b-v1