Example usage

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("KookyGhost/GPT2-small-summarization")

prompt = "Summarize this: Reddit user shares a long story about learning to code with free online resources and eventually landing their first developer job."

inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
outputs = model.generate(
    **inputs,
    max_new_tokens=60,
    do_sample=True,
    top_k=50,
    top_p=0.95,
    temperature=0.7
)

summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(summary)
Downloads last month
16
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train KookyGhost/GPT2-small-summarization