File size: 1,533 Bytes
bb75d9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
To load and initialize the `Generator` model from the repository, follow these steps:
1. **Install Required Packages**: Ensure you have the necessary Python packages installed:
```python
pip install torch omegaconf huggingface_hub
```
2. **Download Model Files**: Retrieve the `generator.pth`, `config.json`, and `model.py` files from the Hugging Face repository. You can use the `huggingface_hub` library for this:
```python
from huggingface_hub import hf_hub_download
repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
```
3. **Load the Model**: Incorporate the downloaded `model.py` to define the `Generator` class, then load the model's state dictionary and configuration:
```python
import torch
import json
from omegaconf import OmegaConf
import sys
from pathlib import Path
from model import Generator
# Load configuration
with open(config_path, "r") as f:
config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)
# Initialize and load the generator model
generator = Generator(cfg)
generator.load_state_dict(torch.load(generator_path))
generator.eval()
x = torch.randn([1, cfg['channels'], 256, 256])
out = generator(x)
```
Here, `generator` is the initialized model ready for inference. |