Kiwinicki commited on
Commit
bb75d9f
·
verified ·
1 Parent(s): b0a5256

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +43 -9
README.md CHANGED
@@ -1,9 +1,43 @@
1
- ---
2
- tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
5
- ---
6
-
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ To load and initialize the `Generator` model from the repository, follow these steps:
2
+
3
+ 1. **Install Required Packages**: Ensure you have the necessary Python packages installed:
4
+
5
+ ```python
6
+ pip install torch omegaconf huggingface_hub
7
+ ```
8
+
9
+ 2. **Download Model Files**: Retrieve the `generator.pth`, `config.json`, and `model.py` files from the Hugging Face repository. You can use the `huggingface_hub` library for this:
10
+
11
+ ```python
12
+ from huggingface_hub import hf_hub_download
13
+
14
+ repo_id = "Kiwinicki/sat2map-generator"
15
+ generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
16
+ config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
17
+ model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
18
+ ```
19
+
20
+ 3. **Load the Model**: Incorporate the downloaded `model.py` to define the `Generator` class, then load the model's state dictionary and configuration:
21
+
22
+ ```python
23
+ import torch
24
+ import json
25
+ from omegaconf import OmegaConf
26
+ import sys
27
+ from pathlib import Path
28
+ from model import Generator
29
+
30
+ # Load configuration
31
+ with open(config_path, "r") as f:
32
+ config_dict = json.load(f)
33
+ cfg = OmegaConf.create(config_dict)
34
+
35
+ # Initialize and load the generator model
36
+ generator = Generator(cfg)
37
+ generator.load_state_dict(torch.load(generator_path))
38
+ generator.eval()
39
+ x = torch.randn([1, cfg['channels'], 256, 256])
40
+ out = generator(x)
41
+ ```
42
+
43
+ Here, `generator` is the initialized model ready for inference.