layout_lm_fine_tune_funsd_dataset

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2499
  • Validation Loss: 0.6927
  • Train Overall Precision: 0.7401
  • Train Overall Recall: 0.8159
  • Train Overall F1: 0.7761
  • Train Overall Accuracy: 0.8046
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Overall Precision Train Overall Recall Train Overall F1 Train Overall Accuracy Epoch
1.7326 1.4249 0.2261 0.2052 0.2151 0.5250 0
1.1901 0.9108 0.5753 0.6207 0.5972 0.7156 1
0.7777 0.7170 0.6511 0.7396 0.6925 0.7679 2
0.5681 0.6626 0.6988 0.7777 0.7362 0.7920 3
0.4449 0.6512 0.7236 0.7762 0.7490 0.8013 4
0.3576 0.6547 0.7251 0.7888 0.7556 0.8073 5
0.2910 0.6700 0.7380 0.7958 0.7658 0.8106 6
0.2499 0.6927 0.7401 0.8159 0.7761 0.8046 7

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
60
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.