WhartonDS_ClsModel
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2321
- Auc Roc: 0.9733
- F1: 0.9180
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Auc Roc | F1 |
---|---|---|---|---|---|
0.6867 | 1.0 | 24 | 0.6946 | 0.4032 | 0.3328 |
0.669 | 2.0 | 48 | 0.6939 | 0.3556 | 0.3870 |
0.6525 | 3.0 | 72 | 0.6943 | 0.4651 | 0.4785 |
0.6385 | 4.0 | 96 | 0.6943 | 0.4137 | 0.3457 |
0.6269 | 5.0 | 120 | 0.6841 | 0.6255 | 0.5463 |
0.6056 | 6.0 | 144 | 0.6594 | 0.7160 | 0.5929 |
0.5931 | 7.0 | 168 | 0.6276 | 0.8175 | 0.7434 |
0.5769 | 8.0 | 192 | 0.6095 | 0.7805 | 0.6345 |
0.5621 | 9.0 | 216 | 0.5912 | 0.8197 | 0.6743 |
0.5431 | 10.0 | 240 | 0.5745 | 0.8568 | 0.7837 |
0.5264 | 11.0 | 264 | 0.5599 | 0.8599 | 0.7661 |
0.5138 | 12.0 | 288 | 0.5102 | 0.8799 | 0.8002 |
0.4982 | 13.0 | 312 | 0.5327 | 0.8859 | 0.7199 |
0.4885 | 14.0 | 336 | 0.5418 | 0.8999 | 0.7225 |
0.4684 | 15.0 | 360 | 0.5488 | 0.8854 | 0.7436 |
0.4539 | 16.0 | 384 | 0.4811 | 0.9111 | 0.8367 |
0.4451 | 17.0 | 408 | 0.4769 | 0.9188 | 0.8343 |
0.4359 | 18.0 | 432 | 0.4694 | 0.9203 | 0.8440 |
0.4222 | 19.0 | 456 | 0.4808 | 0.9236 | 0.8215 |
0.408 | 20.0 | 480 | 0.4217 | 0.9286 | 0.8658 |
0.3967 | 21.0 | 504 | 0.4193 | 0.9276 | 0.8475 |
0.386 | 22.0 | 528 | 0.4244 | 0.9214 | 0.8457 |
0.3873 | 23.0 | 552 | 0.3868 | 0.9431 | 0.8687 |
0.3751 | 24.0 | 576 | 0.3742 | 0.9483 | 0.8873 |
0.3679 | 25.0 | 600 | 0.3668 | 0.9478 | 0.8774 |
0.3634 | 26.0 | 624 | 0.3732 | 0.9478 | 0.8666 |
0.3557 | 27.0 | 648 | 0.3957 | 0.9495 | 0.8681 |
0.3421 | 28.0 | 672 | 0.3342 | 0.9467 | 0.8818 |
0.3424 | 29.0 | 696 | 0.3314 | 0.9519 | 0.8771 |
0.3344 | 30.0 | 720 | 0.3045 | 0.9604 | 0.8935 |
0.339 | 31.0 | 744 | 0.3084 | 0.9618 | 0.8988 |
0.3238 | 32.0 | 768 | 0.3854 | 0.9584 | 0.8850 |
0.3133 | 33.0 | 792 | 0.3031 | 0.9638 | 0.8988 |
0.317 | 34.0 | 816 | 0.2811 | 0.9649 | 0.9048 |
0.3151 | 35.0 | 840 | 0.2650 | 0.9661 | 0.9088 |
0.3137 | 36.0 | 864 | 0.3104 | 0.9647 | 0.8754 |
0.307 | 37.0 | 888 | 0.2695 | 0.9697 | 0.9103 |
0.306 | 38.0 | 912 | 0.2897 | 0.9628 | 0.8994 |
0.2928 | 39.0 | 936 | 0.3111 | 0.9640 | 0.8798 |
0.3068 | 40.0 | 960 | 0.2492 | 0.9707 | 0.9126 |
0.2963 | 41.0 | 984 | 0.2642 | 0.9703 | 0.9165 |
0.2915 | 42.0 | 1008 | 0.2567 | 0.9694 | 0.9141 |
0.2951 | 43.0 | 1032 | 0.2470 | 0.9710 | 0.9118 |
0.2891 | 44.0 | 1056 | 0.2389 | 0.9718 | 0.9142 |
0.2836 | 45.0 | 1080 | 0.2411 | 0.9724 | 0.9172 |
0.3091 | 46.0 | 1104 | 0.2401 | 0.9719 | 0.9134 |
0.2877 | 47.0 | 1128 | 0.2476 | 0.9712 | 0.9126 |
0.2777 | 48.0 | 1152 | 0.2516 | 0.9702 | 0.9110 |
0.285 | 49.0 | 1176 | 0.2367 | 0.9732 | 0.9180 |
0.2841 | 50.0 | 1200 | 0.2435 | 0.9728 | 0.9110 |
0.2809 | 51.0 | 1224 | 0.2388 | 0.9723 | 0.9119 |
0.283 | 52.0 | 1248 | 0.2335 | 0.9729 | 0.9165 |
0.2946 | 53.0 | 1272 | 0.2365 | 0.9726 | 0.9180 |
0.2924 | 54.0 | 1296 | 0.2338 | 0.9734 | 0.9172 |
0.289 | 55.0 | 1320 | 0.2333 | 0.9731 | 0.9165 |
0.2815 | 56.0 | 1344 | 0.2316 | 0.9737 | 0.9157 |
0.2808 | 57.0 | 1368 | 0.2333 | 0.9734 | 0.9157 |
0.2961 | 58.0 | 1392 | 0.2332 | 0.9735 | 0.9157 |
0.2806 | 59.0 | 1416 | 0.2336 | 0.9730 | 0.9126 |
0.274 | 60.0 | 1440 | 0.2321 | 0.9733 | 0.9180 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1,461
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.