t5-small-finetuned-xsum-custom

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5478
  • Rouge1: 28.4804
  • Rouge2: 7.7367
  • Rougel: 22.7607
  • Rougelsum: 22.762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.9745 1.0 999 2.6463 25.8883 6.5128 20.4979 20.4769
2.7924 2.0 1998 2.5992 27.3518 7.3916 21.7638 21.7476
2.7061 3.0 2997 2.5763 27.7159 7.5086 22.188 22.1916
2.6502 4.0 3996 2.5637 28.175 7.7661 22.6274 22.6179
2.6044 5.0 4995 2.5571 28.2348 7.7937 22.6196 22.6568
2.5781 6.0 5994 2.5526 28.319 7.7453 22.6005 22.6044
2.5618 7.0 6993 2.5488 28.4962 7.7803 22.7827 22.803
2.5441 8.0 7992 2.5478 28.4804 7.7367 22.7607 22.762

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kallia/t5-small-finetuned-xsum-custom

Base model

google-t5/t5-small
Finetuned
(2026)
this model